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Calcium-independent phospholipase A2� (iPLA2�) is a mito-
chondrial enzyme that produces lipid second messengers that
facilitate opening of the mitochondrial permeability transition
pore (mPTP) and contribute to the production of oxidized fatty
acids in myocardium. To specifically identify the roles of iPLA2�

in cardiac myocytes, we generated cardiac myocyte-specific
iPLA2� knock-out (CMiPLA2�KO) mice by removing the
exon encoding the active site serine (Ser-477). Hearts of
CMiPLA2�KO mice exhibited normal hemodynamic function,
glycerophospholipid molecular species composition, and nor-
mal rates of mitochondrial respiration and ATP production. In
contrast, CMiPLA2�KO mice demonstrated attenuated Ca2�-
induced mPTP opening that could be rapidly restored by the
addition of palmitate and substantially reduced production of
oxidized polyunsaturated fatty acids (PUFAs). Furthermore,
myocardial ischemia/reperfusion (I/R) in CMiPLA2�KO mice
(30 min of ischemia followed by 30 min of reperfusion in vivo)
dramatically decreased oxidized fatty acid production in the
ischemic border zones. Moreover, CMiPLA2�KO mice sub-
jected to 30 min of ischemia followed by 24 h of reperfusion in
vivo developed substantially less cardiac necrosis in the area-at-
risk in comparison with their WT littermates. Furthermore, we
found that membrane depolarization in murine heart mito-
chondria was sensitized to Ca2� by the presence of oxidized
PUFAs. Because mitochondrial membrane depolarization and
calcium are known to activate iPLA2�, these results are consis-
tent with salvage of myocardium after I/R by iPLA2� loss of
function through decreasing mPTP opening, diminishing
production of proinflammatory oxidized fatty acids, and atten-
uating the deleterious effects of abrupt increases in calcium ion
on membrane potential during reperfusion.

The salvage of jeopardized regions of myocardium during
ischemia/reperfusion (I/R)3 has been a long-standing goal of
heart research. Because mortality and morbidity are related to
infarct size, a variety of hemodynamic, metabolic, and pharma-
cological approaches have been used to reduce the severity of
myocardial infarction during ischemia (1–3). Recent studies
have accumulated evidence that the irreversible opening of the
mitochondrial permeability transition pore (mPTP) upon oxi-
dative stress is a principal mechanism of apoptotic/necrotic
cardiac cell death accounting for the majority of I/R injury
(4 – 6). Although therapies for acute ischemia (e.g. reperfusion)
have been extensively studied, at present there is no therapy for
attenuating mPTP opening during reperfusion of ischemic
zones in myocardium.

Although the precise chemical composition of the mPTP is
incompletely understood (6), a variety of initiators and modu-
lators of mPTP opening has been identified (7, 8). For example,
during reperfusion, the reoxygenation of ischemic tissue results
in mitochondrial Ca2� overload and renormalization of intra-
cellular and matrix pH, which are accompanied by the prodi-
gious generation of reactive oxygen species that synergistically
induce the opening of the mPTP. Furthermore, both fatty acids
and their acyl-CoA derivatives increase dramatically during
myocardial ischemia and each greatly facilitate mPTP opening
(9 –15). The extensive permeability of the inner mitochondrial
membrane culminates in the release of proapoptotic factors
and the efflux of toxic lipid metabolites into the cytosol that
collectivelyprecipitateirreversiblemyocardialnecrosisandapo-
ptosis (10, 16, 17).

Previously, we identified a novel calcium-independent phos-
pholipase A2� (iPLA2�; also known as PNPLA8) that was mem-
brane-associated, present in multiple tissues, and possessed
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multiple discrete isoforms (18). Further studies demonstrated
that iPLA2� transcription was tightly regulated through multi-
ple complex mechanisms (19). Through immunohistochemis-
try and cardiac myocyte-specific expression, iPLA2� was shown
to be localized to mitochondrial and peroxisomal compart-
ments. Transgenic expression of iPLA2� resulted in the dra-
matic increase of 2-arachidonoyl lysophosphatidylcholine and
2-docosahexaenoyl lysophosphatidylcholine in cardiac myo-
cytes (19, 20). Later studies also identified iPLA2� in the endo-
plasmic reticulum (21). To begin the mechanistic dissection of
the roles of iPLA2� in biological function in health and disease,
we generated a germ line knock-out of iPLA2� in mice (iPLA2�
KO) (22–24). These studies revealed that iPLA2� loss of func-
tion dramatically reduced the opening of the mitochondrial
permeability transition pore (mPTP) in liver mitochondria and
that calcium challenge of myocardial mitochondria obtained
from the iPLA2� KO mouse markedly decreased the produc-
tion of inflammatory eicosanoids in comparison with wild-type
mice. However, germ line iPLA2� KO mice displayed multiple
defects in virtually every organ system studied, thus rendering
definitive mechanistic interpretation of responses to in vivo
cardiac ischemia difficult. To traverse this difficulty, in this
study we generated cardiac myocyte-specific iPLA2� knock-out
mice (CMiPLA2�KO) by inserting flox sites proximal and distal
to the active site serine of iPLA2� (Ser-477 in exon 5) and sub-
sequently excising the exon containing the active site by tamox-
ifen-activated cardiac myocyte-specific Cre recombinase. Uti-
lizing this novel genetic mouse model, we have investigated the
effects of cardiac myocyte-specific KO of iPLA2� on ischemia/
reperfusion in vivo.

The regiospecificity of iPLA2� toward phospholipid sub-
strates is atypical among mammalian PLA2 enzymes in that the
site of hydrolysis is dependent on the nature of the sn-2 ali-
phatic group (25). Specifically, if the sn-2 group is saturated or
contains a single double bond, iPLA2� exhibits no preference
for cleavage of the fatty acyl group at the sn-1 or sn-2 position.
In sharp contrast, if the sn-2 substituent is polyunsaturated,
iPLA2� serves predominantly as a PLA1 releasing the saturated
fatty acid from the sn-1 position and generating 2-polyunsatu-
rated fatty acyl lysolipids. Thus, the regiospecificity of hydroly-
sis is determined by the degree of unsaturation in the sn-2 phos-
pholipid constituent. This unusual feature allows the enzyme to
accomplish multiple regulatory functions in mitochondria,
including the release of palmitate in the inner membrane,
which opens the mPTP, the generation of polyunsaturated lyso-
phospholipids, which are readily hydrolyzed by endogenous
lipases to lead to the production of bioactive oxidized fatty acids
(e.g. eicosanoids, docosanoids, etc.), and the provision of fatty
acid substrates for use in mitochondrial energy generation.

Accordingly, we hypothesized that loss of cardiac iPLA2�
function would decrease I/R injury through a four-tiered syn-
ergistic mechanism involving the following: 1) attenuation of
mPTP opening; 2) decreased inflammatory lipid second mes-
sengers; 3) preservation of mitochondrial membrane potential;
and 4) attenuated release of toxic lipid metabolites (e.g. non-
esterified saturated fatty acids, lysolipids, acyl-CoAs, and acyl-
carnitines) that accumulate during myocardial ischemia and
are released during reperfusion.

In this study, we utilized CMiPLA2�KO mice to investigate
iPLA2�-mediated mPTP opening upon calcium challenge, its
role in the production of proinflammatory lipid metabolites
(eicosanoids, docosanoids, and oxidized linoleic acid metabo-
lites) in the border zone, and the development of cardiac necro-
sis after I/R in the absence of the confounding pathologies that
were present in the germ line knock-out. Importantly, we dem-
onstrate that myocardial loss of iPLA2� function substantially
reduces infarct size after I/R in vivo and markedly decreases
production of inflammatory oxidized fatty acids (oxylipins) in
the ischemic border zone. Through ablation of iPLA2�-facili-
tated mPTP opening, generation of inflammatory lipid second
messengers, and the release of toxic mitochondrial metabolites,
a novel strategy to attenuate cardiac necrosis and inflammation
during acute coronary syndromes has been identified.

Results

Generation of Cardiac Myocyte-specific iPLA2� Knock-out
Mice—To definitively identify the mechanistic importance of
iPLA2� in cardiac myocytes, we engineered an inducible car-
diac myocyte-specific knock-out of iPLA2�. Because of the
presence of multiple transcriptional start sites in iPLA2�, our
strategy was to flox exon 5 containing the active site and remove
it by tamoxifen induction of cardiac myocyte-specific Cre
recombinase (Fig. 1). Southern analysis for the floxed iPLA2�
allele in multiple tissues of the f/f mouse and PCR analyses for
the identification of ablation of the PGK-neo cassette and
iPLA2�f/f Cre� in the iPLA2� conditional KO mice are shown in
Fig. 1. Northern and Western analyses demonstrated the spe-
cific ablation of iPLA2� in heart but not in other tissues in the
CMiPLA2�KO mouse (Fig. 1, E and F).

Demonstration That the Majority of iPLA2� Activity in Myo-
cardium Is Present in Cardiac Myocytes and Discrete Tissue
Distributions of iPLA2� Isoforms in Different Tissues—Myocar-
dium is composed of multiple cell types, including cardiac myo-
cytes, endothelial cells, smooth muscle cells, fibroblasts, and
macrophages. Although myocardium contains substantial
amounts of iPLA2� activity and protein, the cell type of origin of
iPLA2� is not known with certainty. Comparisons of WT Cre�

with CMiPLA2�KO mice definitively demonstrate that the
overwhelming majority of iPLA2� protein of murine myocar-
dium is present in cardiac myocytes by tissue-specific knock-
out mediated by the specificity of cardiac myocyte-specific
expression of Cre recombinase. Moreover, the results of Fig. 1F
demonstrate the diverse tissue-specific distribution of iPLA2�
isoforms (e.g. 88, 74, 63, and 52 kDa), which were previously
identified by germ line knock-out and transgenic overexpres-
sion of iPLA2� (9, 19, 20). For example, note the predominance
of the lower molecular mass iPLA2� isoforms (50 – 60 kDa) in
liver in comparison with myocardium and brain. Collectively,
these results demonstrate that iPLA2� in myocardium is pre-
dominantly located in cardiac myocytes and identify the tissue-
specific distributions of different isoforms of iPLA2�.

Constitutional Characteristics of the CMiPLA2�KO Mouse—
In contrast to the global iPLA2� knock-out, which demon-
strated a thin body habitus, decreased length, cognitive dys-
function, kyphosis, and decreased locomotor activity (22, 24),
the CMiPLA2�KO mice gained weight normally, possessed
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normal insulin sensitivity, did not develop kyphosis, and had no
demonstrable sensory-motor abnormalities (data not shown).

Echocardiographic analyses of myocardial hemodynamic
function in the CMiPLA2�KO mice at 6 months of age (3
months after tamoxifen administration) revealed no significant
alterations in left ventricular wall thickness, left ventricular
mass index, or chamber diameters during end systole/diastole
and displayed normal fractional shortening in comparison with
WT littermates (Table 1).

High Resolution Respirometry of Myocardial Mitochondria
from WT and CMiPLA2�KO Mice—High resolution respirom-
etry of myocardial mitochondria was performed to identify
alterations in mitochondrial function and respiratory coupling
efficiency in CMiPLA2�KO mice. To examine mitochondrial

bioenergetic efficiency under different conditions, we utilized
multiple substrates, including pyruvate/malate, palmitoylcar-
nitine/malate, and pyruvate/glutamate/malate. Mitochondria
from CMiPLA2�KO mice demonstrated similar oxygen con-
sumption rates in comparison with WT littermates during both
state 2 and 3 respiration or after inhibition of complex I (rote-
none) or complex V (oligomycin-induced state 4) (Fig. 2). The
coupling of electron transport to oxidative phosphorylation
(P/O ratio), which was determined by quantifying ATP produc-
tion and O2 consumption during state 3 respiration, was not
significantly different in WT versus CMiPLA2�KO mice (Fig.
2). These results demonstrate the ability of mitochondria from
the CMiPLA2�KO to respire normally and efficiently synthe-
size ATP.
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FIGURE 1. Cardiac myocyte-specific ablation of iPLA2� in mouse myocardium. A, graphic representation of the iPLA2� conditional targeting strategy. Exons
4 and 5 (E4, E5) of the WT allele are depicted as open boxes, and the intronic sequence is represented as a solid line. PCR products generated for construction of
the targeting construct with restriction sites used for cloning are as indicated. The targeting vector is shown with FLP sites (F) indicated as closed boxes flanking
the PGK-neo cassette and loxP sites indicated as triangle (L) flanking both the PGK-neo cassette (Neo) and E5. Below the targeting vector is a representation
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Lipidomic Analyses of Myocardium from WT and
CMiPLA2�KO Mice—To determine alterations in the myocar-
dial lipidome of WT versus CMiPLA2�KO mice, we utilized
multidimensional mass spectrometry-based shotgun lipidom-
ics (MDMS-SL) (26). The major phospholipid classes in myo-
cardium are choline and ethanolamine glycerophospholipids.
Examination of choline glycerophospholipids demonstrated
the presence of over 45 molecular species in murine myocar-
dium that were largely composed of diacyl (D) phosphatidyl-
choline molecular species containing D16:0 –22:6/D18:2–20:4,
D18:0 –22:6, D16:0 –20:4/D18:2–18:2, D18:2–22:6, and D18:
0 –20:4/D18:2–20:2 in both the WT and the CMiPLA2�KO
mice. Mirror plots of choline glycerophospholipids from aver-
aged tandem mass spectra collected from six different mice
demonstrated nearly identical profiles of individual molecular
species (Fig. 3A). Similarly, MDMS-SL analysis of ethanolamine

glycerophospholipids demonstrated over 30 diacyl phos-
phatidylethanolamine molecular species largely composed of
D18:0 –22:6, D16:0 –22:6, D18:1–22:6, and D18:0 –20:4 molec-
ular species as well as 20 plasmenyl (P) ethanolamine phospho-
lipid molecular species largely composed of P16:0 –22:6, P18:1–
20:4/P16:0 –22:5, P18:0 –22:6, and P18:1–22:6 molecular
species. Mirror plots of ethanolamine glycerophospholipids
from averaged mass spectra from six separate mice did not
identify any significant differences between WT and CMiPLA2�KO
mouse hearts (Fig. 3B). Triglyceride analysis by MDMS-SL
demonstrated nearly identical total amounts of triglycerides
and no differences in their molecular species composition in
WT versus CMiPLA2�KO mice (Fig. 3C). Negative ion mass
spectra did not reveal any significant differences in phos-
phatidylinositol, phosphatidylserine, or phosphatidylglyc-
erol molecular species (Fig. 3D).

TABLE 1
Echocardiographic analysis of myocardial hemodynamic function in wild-type (WT) and cardiac myocyte-specific iPLA2� knock-out (KO) mice
under light anesthesia
Echocardiographic comparisons of hemodynamic function in WT Cre� versus CMiPLA2�KO mice at 6 months of age demonstrated no alterations in cardiac function after
cardiac myocyte genetic ablation of iPLA2�. Parameters examined for each group were as follows: HR, heart rate (beats/min); LVPWd, left ventricular posterior wall
thickness at end diastole (mm); IVSd, interventricular septal wall thickness at end diastole (mm); LVIDd, left ventricular internal diameter at end diastole (mm); LVPW, LV
posterior wall thickness at end systole (mm); IVS, interventricular septal wall thickness at end systole (mm); LVID, LV internal diameter at end systole (mm); LVM, left
ventricular mass (mg); RWT, relative wall thickness; FS, fractional shortening (%). Data are presented as the mean �S.D.utilizing six WT and six CMiPLA2�KO male mice.

Type Body wt HR LVPWd IVSd LVIDd LVPW IVS LVID LVM LVMI RWT FS

g beats/min mm mm mm mm mm mm mg %
WT 30.3�1.7 638.7�51.8 0.93�0.06 0.99�0.04 3.59�0.25 1.56�0.20 1.67�0.14 1.60�0.20 124.7�9.4 4.12�0.28 0.54�0.05 55.3�5.0
KO 31.2�2.9 651.0�11.8 0.95�0.06 0.96�0.03 3.72�0.25 1.63�0.14 1.68�0.12 1.59�0.24 131.1�7.6 4.22�0.34 0.51�0.06 57.2�4.9
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FIGURE 2. High resolution respirometry of mitochondria from wild-type and cardiac myocyte-specific iPLA2� knock-out mice. Heart mitochondria
isolated from wild-type Cre� (WT) and cardiac myocyte-specific iPLA2� knock-out (KO) mice were utilized to measure oxygen consumption and ATP production
in the presence of the indicated substrates as described under “Experimental Procedures.” Oxygen consumption rates are expressed as nmol of O2/min�mg of
protein in the presence of: A, pyruvate and malate (Pyr M); B, palmitoylcarnitine and malate (Pc M); C, pyruvate, glutamate, and malate (Pyr G M). ADP (1.25 mM),
succinate (5 mM), rotenone (Rot, 0.5 �M), and oligomycin (O, 2.5 �M) were sequentially added. D, ATP to oxygen (P/O) ratios for WT and CMiPLA2�KO (KO) mice
were determined by measurement of ATP production and O2 consumption during state 3 respiration in the presence of ADP for 3 min. Data are presented as
means � S.E. (n � 3– 4/group) from male mice 6 months of age. No significant differences in mitochondrial respiration and P/O ratios were found in WT versus
CMiPLA2�KO mouse myocardium as determined by Student’s test.

iPLA2� Knock-out Decreases Eicosanoids during I/R

19690 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 291 • NUMBER 37 • SEPTEMBER 9, 2016



Next, because tetra-18:2 cardiolipin (CL) has been previously
proposed to enhance mitochondrial efficiency by stabilizing the
formation of mitochondrial supercomplexes (27–30), we deter-
mined the content and composition of myocardial CL using the
M�1/2 isotopologue approach (Fig. 4) (31). The results dem-
onstrated no significant differences in the total content of CL.
The composition of most molecular species of CL, including
symmetric tetra-18:2 CL (m/z 723.5 in Fig. 4A) in WT versus
CMiPLA2�KO myocardium, were nearly identical. Modest
decreases in the levels of 18:2–18:2–18:2–22:6 CL and 18:2–18:
2–22:6 –22:6 CL (m/z 747.5 and m/z 771.5, respectively, in Fig.
4A) were present in CMiPLA2�KO mice (Fig. 4B).

Mass Spectrometric Analysis of Myocardial Eicosanoids,
Docosanoids, and Oxidized Linoleic Acids—Previous studies
have demonstrated the important roles of iPLA2� in releasing
polyunsaturated fatty acids from mitochondria that are subse-
quently oxidized by a wide variety of downstream oxygenases
(32–35). To gain access to the extremely low abundance regime
necessary for accurate identification and quantification of oxi-
dized fatty acids in myocardium, we used charge-switch
derivatization with multiple reaction monitoring (MRM) in
conjunction with high mass accuracy analysis of signature
product ions from diagnostic transitions (36). Multiple differ-
ences in oxidized fatty acids containing 18-, 20-, and 22-carbons
were observed in CMiPLA2�KO mice (Fig. 5). These include
decreases in prostaglandins, 11-hydroxy-5Z,8Z,12E,14Z-eicosa-
tetraenoic acid (11-HETE), 12-hydroxy-5Z,8Z,10E,14Z-eicosatet-
raenoic acid (12-HETE), and 15-hydroxy-5Z,8Z,11Z,13E-eicosa-

tetraenoic acid (15-HETE) as well as increased levels of
14(15)-epoxy-5Z,8Z,11Z-eicosatrienoic acid (14,15-EET). Simi-
larly, CMiPLA2�KO mice had decreased levels of all observable
oxidized linoleic acid metabolites (oxlams) except 9-oxo-10E,12Z-
octadecadienoic acid (9-oxoODE) and had significant decreases in
22-carbon oxidized fatty acids, including 7S,8R,17S-trihydroxy-
4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid (RVD-1), 19,20-di-
hydroxy-4Z,7Z,10Z,13Z,16Z-docosapentaenoic acid, and 7-hy-
droxy-4Z,8E,10Z,13Z,16Z,19Z-docosahexaenoic acid (7-HDoHE)
(Fig. 5). These results identify iPLA2� as a prominent enzymic
mediator for the generation of signaling oxidized fatty acids in
myocardium.

Decreased Susceptibility of mPTP Opening in Myocardium
from CMiPLA2�KO Mice in Comparison with Wild-type
Mice—Recent work in our laboratory led to the identification of
iPLA2� as an important modulator of the Ca2�-induced open-
ing of the mPTP in mitochondria isolated from liver (9). To
determine the contribution of iPLA2� to the opening of the
cardiac myocyte mPTP, we compared Ca2�-induced mito-
chondrial swelling in WT versus CMiPLA2�KO mice. Incuba-
tion with calcium resulted in the anticipated swelling of WT
myocardial mitochondria due to opening of the mPTP. In
marked contrast, mitochondrial swelling was substantially
attenuated in CMiPLA2�KO mice (Fig. 6). Ca2�-induced swell-
ing of mitochondria from both WT and CMiPLA2�KO mice
was demonstrated to be cyclophilin D (also known as peptidyl-
prolyl cis-trans isomerase F)-dependent through nearly com-
plete inhibition by 2 �M cyclosporin A. No observable differ-
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ences in cyclophilin D and adenine nucleotide translocase
protein expression levels were present in WT versus
CMiPLA2�KO myocardium indicating that the attenuation of
mPTP opening in CMiPLA2�KO mice is not due to alterations
in the expression of regulatory machinery of the mPTP by abla-
tion of iPLA2� (Fig. 6D). Because iPLA2� selectively releases
palmitate from the sn-1 position of polyunsaturated phospho-
lipids, we investigated the role of low concentrations of palmi-
tate on mPTP opening in WT and CMiPLA2�KO mice. Addi-
tion of as little as 500 nM palmitate to mitochondria isolated
from CMiPLA2�KO mice completely recapitulated the calci-
um-induced swelling present in WT mice (Fig. 6).

Ischemia/Reperfusion Results in Dramatic Increases in Sig-
naling Oxidized Fatty Acids That Are Attenuated in the
CMiPLA2�KO Mouse—Next, we determined whether iPLA2�
loss of function results in alterations in lipid second messenger
production during 30 min of ischemia followed by 30 min of
reperfusion in vivo. High mass accuracy mass spectrometric
analysis demonstrated 10 –30-fold increases in multiple oxi-
dized 18-, 20-, and 22-carbon fatty acids (i.e. oxlams, eico-

sanoids, and docosanoids, respectively) in the ischemic border
zone versus non-ischemic regions of WT control hearts follow-
ing I/R (Fig. 7). This dramatic increase was markedly attenuated
in the border zone of ischemia in CMiPLA2�KO mouse hearts.
We specifically point out that the majority of signaling fatty
acids induced by I/R result from lipoxygenase, cytochrome
P450, and/or other oxidases acting on polyunsaturated fatty
acids and do not originate from cyclooxygenase-mediated oxi-
dation. These results are suggestive of fatty acid metabolic
channeling from iPLA2� to downstream lipoxygenase, P450,
and/or other as yet unidentified mitochondrial fatty acid
oxidases.

Oxidized Fatty Acids, Including HETEs and 8-HDoHE, Facil-
itate Ca2�-mediated Mitochondrial Membrane Depolar-
ization—Because severe mitochondrial membrane depolariza-
tion is manifest upon calcium challenge, we investigated the
effects of the oxidized fatty acid metabolites that dramatically
increase during I/R on Ca2�-mediated membrane depolariza-
tion of myocardial mitochondria. Mitochondrial membrane
potential (��mt) was determined by using a tetraphenylphos-
phonium (TPP�) ion-selective electrode as described under
“Experimental Procedures.” By measuring the extramitochon-
drial concentration of TPP�, the changes in mitochondrial
membrane potential were monitored following Ca2� titration
in the presence of either vehicle (ethanol), 12-HETE, 20-HETE,
14,15-EET, PGE2, 9-oxoODE, or 8-HDoHE, all of which were
dramatically increased during I/R in vivo (see Fig. 7). The initial
��mt (approximately 	160 mV) became less negative rapidly
upon sequential calcium additions in the presence of either
vehicle alone (control), 14,15-EET, PGE2, or 9-oxoODE, but the
membrane potential was partially restored within 4 min (Fig. 8).
In contrast, 12-HETE, 20-HETE, or 8-HDoHE greatly facili-
tated mitochondrial depolarization at 60 – 80 �M calcium ion
by dissipating the electric potential across the membrane
resulting in no further depolarization upon addition of an
uncoupling agent, trifluoromethoxy carbonylcyanide phenyl-
hydrazone (FCCP) (Fig. 8).

Cardiac Myocyte-specific Ablation of iPLA2� Results in Dra-
matic Protection from Myocardial Ischemia/Reperfusion Injury
in Vivo—Because mitochondria from CMiPLA2�KO myocar-
dium are resistant to mPTP opening and contained decreased
amounts of inflammatory oxidized fatty acids that promote
Ca2�-mediated mitochondrial depolarization, we hypothe-
sized that the CMiPLA2�KO heart would be protected from I/R
injury. Accordingly, we induced myocardial ischemia in vivo by
ligation of the left anterior descending coronary artery for 30
min followed by 24 h of closed chest reperfusion, and we com-
pared the infarct area to the area-at-risk in WT versus
CMiPLA2�KO mice. In WT mice, ischemia/reperfusion
resulted in infarction of 40% of the area-at-risk (Fig. 9). Remark-
ably, in CMiPLA2�KO mice, iPLA2� loss of function protected
the heart from ischemia/reperfusion damage resulting in
reduction of the infarct area to 16% of the area-at-risk (Fig. 9).
Taken together, these results demonstrate that iPLA2� plays a
prominent role in I/R-induced cardiac myocyte cell death illu-
minating iPLA2� inhibition as a novel multitiered therapeutic
approach to significantly reduce infarct size during I/R.
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Discussion

Previous studies have emphasized the central roles of the
mPTP in mediating cardiac damage during ischemia/reperfu-
sion through opening of the channel precipitated by calcium
overload, accumulation of inorganic phosphate, and induction
of oxidative stress that is amplified by the production of satu-
rated fatty acids and oxidized lipid metabolites (4, 37, 38). The
large amounts of acyl-CoA and acylcarnitine that accumulate in
the mitochondrial matrix during ischemia accelerate mPTP
opening and are directly released into the cytosol along with
cytochrome c after mPTP opening (9, 39, 40). Prolonged Ca2�-
induced opening of the mPTP that is facilitated by Ca2� activa-
tion of iPLA2� causes irreversible dissipation of the mitochon-
drial membrane potential and loss of membrane integrity
leading to extensive mitochondrial damage (41). The resultant
mitochondrial depolarization exacerbates mitochondrial dys-
function by autoamplification of membrane potential-sensitive
iPLA2� activity (42). Furthermore, mPTP opening results in the
release of apoptogenic factors (e.g. cytochrome c and apoptosis-
inducing factor) from the intermembrane space that triggers
cell death programs rather than homeostatic clearance of
metabolically inefficient mitochondria (e.g. mitophagy).
This study demonstrates the unanticipated and dramatic
accumulation of oxidized fatty acids, including large
amounts of oxidized linoleic acid metabolites, which likely
originate from cardiolipin, the major pool of esterified lino-
leic acid in the mitochondrial compartment as well as a
plethora of eicosanoid metabolites known to have adverse
effects on cardiac myocyte membrane proteins, inflamma-

tion, and bioenergetics (43– 45). The benefits of iPLA2� loss
of function investigated in this study include the attenuation
of many of the molecular mechanisms known to predispose
to myocardial tissue damage during pathological processes,
including cardiac ischemia/reperfusion (46).

Consistent with our prior work identifying iPLA2� as an
important regulator of the calcium-induced opening of the
mPTP in liver mitochondria (9), myocardial mitochondria from
the CMiPLA2�KO mouse demonstrate the regulatory role of
cardiac iPLA2� on the mitochondrial permeability transition.
Furthermore, we demonstrated that submicromolar concen-
trations of free palmitic acid restored mPTP opening that was
attenuated by loss of myocardial iPLA2�. This is particularly
relevant because iPLA2� has a marked sn-1 regiospecificity for
hydrolysis of diacyl phospholipids containing sn-2 arachidonic
acid or docosahexaenoic acid leading to the release of saturated
fatty acids from the sn-1 position concomitant with the gener-
ation of 2-arachidonoyl- and 2-docosahexaenoyl-lysolipids,
respectively, in the mitochondrial membrane (25). The rapid
lateral diffusion of the released saturated fatty acid in the plane
of the inner membrane allows it to directly interact with the
mPTP without sequestration by cytosolic fatty acid-binding
proteins. The regulatory effects of palmitate on the mPTP are
further aggravated by its ability to induce ER Ca2� depletion
and reactive oxygen species generation (47, 48) and by acting as
an endogenous ionophore (49). Supporting these mechanisms,
deletion of mitochondrial membrane-associated iPLA2� led to
the remarkable and robust salvage of damaged regions of myo-
cardium after I/R, which emphasizes a prominent role of car-
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diac myocyte iPLA2� in facilitating mPTP opening and the
resultant increase in infarct size.

In addition to iPLA2�-mediated release of saturated fatty
acids from phospholipid pools, we previously reported marked
iPLA2�-dependent production of cardiac eicosanoids in the
myocardium by utilizing cardiac myocyte-specific overexpres-
sion of iPLA2� and global iPLA2� knock-out mice (34). Our
previous findings suggest that iPLA2�-generated 2-polyunsat-
urated fatty acyl lysolipids and their downstream hydrolytic
products (non-esterified polyunsaturated fatty acids) are fur-
ther channeled to multiple metabolic pathways to produce
numerous oxidative metabolites (34, 50). A variety of oxidized

polyunsaturated lipids generated by multiple oxygenases (e.g.
cyclooxygenases, lipoxygenases, and P450 hydroxylases) have
been identified as pro-inflammatory mediators in diverse tis-
sues and cell types (45, 51). The deleterious sequelae of pro-
inflammatory oxylipins in myocardial I/R injury are also well
known, although the precise complement and functions of indi-
vidual signaling oxylipin molecular species are poorly under-
stood (52–54). To determine the types and changes in
extremely low abundance signaling oxidized fatty acids
released during pathological processes, we utilized a mass spec-
trometric “charge-switch” high mass accuracy product ion
approach that resulted in a marked increase in sensitivity and
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FIGURE 8. Facilitation of Ca2�-mediated mitochondrial membrane depolarization by oxidized polyunsaturated fatty acids. A and B, mitochondria were
isolated from C57BL/6J mice (4 –5 months of age) and 0.125 mg of protein/ml of mitochondria (mito) were placed into an OROBOROS Oxygraph 2K chamber
containing a buffer solution of 0.23 M mannitol, 0.07 M sucrose, 3 mM HEPES, pH 7.4, 5 mM succinate, and 2 �M tetraphenylphosphonium chloride (TPP�Cl). The
final concentrations of 0.1 mM KH2PO4 (KPi) and 1 �M oxidized fatty acids, including 12-HETE, 20-HETE, 14,15-EET, PGE2, 9-oxoODE, and 8-HDoHE, or ethanol
vehicle (control) were added to the chamber at the indicated times (arrows). CaCl2 was sequentially added at 4-min intervals to the final concentrations of 10,
20, 40, 60, and 80 �M. Mitochondrial membrane potential (��mt) was determined by the concentration of extramitochondrial TPP� measured with an
ion-selective electrode. Maximum depolarization of mitochondria was observed in the presence of 1.5 �M FCCP. *, p � 0.05, and **, p � 0.01 by Student’s test
when compared with the controls (n � 3– 4). C, representative potentiometric tracings are shown.
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successful exclusion of false-positive identification through
high mass accuracy analysis of informative product ions (36).
Although the myocardial lipidome of CMiPLA2�KO mice is
relatively unaltered in comparison with WT, the decrease in
numerous low abundance oxidized free fatty acids was evident
in CMiPLA2�KO mouse myocardium under basal conditions.
The presence of large amounts of oxlams in WT murine myo-
cardium was unanticipated and suggests their previously
unknown roles in myocardial signaling. The observation that
oxlams were so prominent suggests that their oxidation
occurred predominantly in the mitochondrial compartment
that is rich in 18:2 fatty acids esterified to cardiolipin. More-
over, the finding of dramatic increases in multiple oxidized lipid
second messengers present in the infarct border zone after I/R,
which were substantially reduced in the CMiPLA2�KO mouse,
identifies iPLA2� as the rate-determining step for the patholog-
ical production of these oxylipins during I/R injury.

Because oxidized fatty acids have a multitude of effects on
transmembrane proteins, including ion channels and receptors
(55, 56), we monitored the changes in mitochondrial mem-
brane potential (��mt) in the presence of multiple oxidized
lipid metabolites to determine their effects on Ca2�-mediated

potential dissipation. During sequential calcium challenges,
mitochondria in the absence of extramitochondrial oxidized
fatty acids partially recovered their membrane potential from
multiple rapid initial losses of transmembrane potential
induced by additions of Ca2�. In contrast, hydroxylated
polyunsaturated fatty acids (e.g. 12-HETE, 20-HETE, and
8-HDoHE), but not 14,15-EET, 9-oxoODE, or PGE2, sensitize
mitochondria to the calcium-induced loss of membrane poten-
tial. These findings are supported by previous studies that
showed arachidonic acid- and 12-HETE-facilitated Ca2� over-
load resulting in abnormal oxidative stress and mitochondrial
dysfunction (44, 49). Therefore, the results of this study suggest
that iPLA2� facilitates production of oxidized lipid metabolites
by providing PUFAs and/or polyunsaturated fatty acyl lysolip-
ids, which can be further hydrolyzed to non-esterified PUFAs
by lysophospholipases and subsequent oxidation by down-
stream oxygenases. The resultant oxidized fatty acids likely reg-
ulate ion channels through selective binding to transmembrane
domains of ion channels and ion transporters, direct disruption
of interactive membrane domains, and/or the formation of
pores in the membrane bilayer. Collectively, it seems likely
that the enzymic activity of iPLA2� integrates metabolic infor-
mation from multiple pathways to regulate myocardial net-
works that control cell fate decisions, electrophysiological
function, and receptor-mediated alterations in cardiac myo-
cyte metabolism.

Taken together, this study identifies a critical role of cardiac
myocyte iPLA2� in the Ca2�-induced opening of the mPTP and
the generation of inflammatory signaling oxidized fatty acids
that each contribute to cardiac damage during I/R, which can
be largely ablated by iPLA2� loss of function. Thus, inhibition of
a single enzyme has multiple salutary effects during I/R provid-
ing a novel synergistic approach for the pharmacological treat-
ment of acute coronary syndromes and multiple myocardial
diseases.

Experimental Procedures

Materials—PCR reagents were purchased from Applied
Biosystems (Foster City, CA) for genotyping of WT and
CMiPLA2�KO mice. Radiolabeled nucleotides ([�-32P]dCTP)
were purchased from PerkinElmer Life Sciences. Synthetic
phospholipids used as internal standards in mass spectrometric
analyses were purchased from either Avanti Polar Lipids (Ala-
baster, AL) or Nu-Chek Prep, Inc. (Elysian, MN). Oxylipins,
including deuterated stable isotopes used as internal standards,
and FCCP were obtained from Cayman Chemical (Ann Arbor,
MI). Tamoxifen utilized for heart-specific conditional ablation
of iPLA2� was obtained from Sigma. Anti-iPLA2� antibody was
generated in our laboratory as described previously (9).
Cyclosporin A was obtained from EMD Millipore (Billerica,
MA). Antibodies for cyclophilin D, voltage-dependent anion
channel, and adenine nucleotide translocase were purchased
from Santa Cruz Biotechnology, Inc. (Dallas, TX). Most other
supplies and reagents were obtained from Sigma or Fisher.

General Animal Studies—Animal protocols were in strict
accordance with guidelines of the National Institutes of Health
Office of Laboratory Animal Welfare and were approved by the
Animal Studies Committee at Washington University. Mice
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FIGURE 9. Cardiac myocyte-specific ablation of iPLA2� decreases infarct
size in ischemic zones following ischemia/reperfusion. A, stained ventric-
ular slices of hearts from either WT or CMiPLA2�KO (KO) mouse hearts at
similar levels demonstrate excellent definition of the areas of infarction (IA
bordered by yellow dashed line, arrows), area-at-risk (AAR, red dashed line), and
the left ventricle (LV, black dashed line) after a 30-min occlusion and 24 h of
reperfusion of the left anterior descending artery (LAD). At the end of the
reperfusion interval, the heart was excised and perfused with Phthalo blue
dye with the LAD reoccluded (to define the previous area-at-risk) followed by
TTC staining to define the infarct size. B, dramatic decreases in IA/left ventricle
and IA/area-at-risk were quantified and subjected to statistical analysis. Data
are presented as means � S.E. utilizing 9 WT and 12 KO male mice (�6 –7
months of age).
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were fed a standard diet (PicoLab Rodent 20 from LabDiet (St.
Louis, MO) containing 5% total fat (13% of total calories) and
0.94% saturated fat) ad libitum unless otherwise indicated.
Echocardiographic analyses were performed under light anes-
thesia as described previously (57, 58). Following euthanasia by
cervical dislocation, heart tissues were dissected from male
mice, weighed, and either flash-frozen in liquid N2 or the fresh
tissue was used immediately.

Generation of Cardiac Myocyte-specific iPLA2� Knock-out
Mice—To elucidate the specific roles of iPLA2� in myocardium,
we engineered a conditional iPLA2� targeting construct con-
taining 7208 bases of the mouse iPLA2� gene (mouse BAC
clone bMQ-391E22, Geneservice Ltd., Cambridge, UK) with an
inserted loxP-flippase (FLP) recombinase target (FRT)-neomy-
cin-FRT resistance cassette and a loxP site encompassing exon
5 of the iPLA2� gene (Fig. 1). Deletion of exon 5 has been pre-
viously shown to result in a genotype null for iPLA2� and com-
plete ablation of iPLA2� protein expression in multiple tissues
(22). The sequence of the targeting vector was verified prior to
electroporation into EDJ22 ES cells at the Mouse Genetic Core,
Washington University. PCR analyses using iPLA2�-specific
primers 5
-TATAGAGATGCACAACCAGTGAAGCGCG-3

and 5
-AGTTGGTAGTGTATGACTAGCACT-3
 identified
three targeted ES clones; however, Southern blot analyses
revealed that two of the clones also contained an additional
random incorporation event. Therefore, only the ES cell clone
containing the single targeted event was expanded and used for
injection of blastocysts and implantation into pseudo pregnant
female C57BL/6 mice. Chimeric mice were identified by PCR
analyses of tail gDNA as described for the ES cell clones. F1
mice obtained from mating to C57BL/6 mice were similarly
genotyped and revealed germ line transmission of the floxed
target allele. Next, the PGK-neo cassette was removed by cross-
ing with an FLP recombinase expressing mouse (stock no. 3800;
The Jackson Laboratory). Deletion of the PGK-neo cassette by
this FRT recombinase transgenic line was confirmed by PCR
(Fig. 1C).

Our floxed iPLA2� allele (abbreviated gf/gf) mice were next
crossed with an �MHC-MerCreMer mouse line (stock no.
005657, The Jackson Laboratory), which produces a tamoxifen-
inducible Cre recombinase in myocardium. The progeny were
genotyped by duplex PCR using the above-mentioned iPLA2�-
specific primers combined with Cre-specific primers
5
-CGGTCGATGCAACGAGTGATGAG-3
 and 5
-ACG-
AACCTGGTCGAAATCAGTGCG-3
 (Fig. 1). Transgenic
�MHC-MerCreMer and gf/gf mice were backcrossed onto a
C57BL/6 background for at least four generations prior to gen-
erating double transgenic �MHC-MerCreMer:gf/gf mice. Myo-
cardial iPLA2� gene ablation was induced in 1.5–3-month-old
�MHC-MerCreMer:gf/gf mice by intraperitoneal tamoxifen
injections (30 �g/gm body weight) twice daily for 2 consecutive
days. Initially, two control groups of 3-month-old mice (one
group possessing only the functional floxed iPLA2� alleles (gf/
gf) and a second group bearing the inducible Cre transgene but
no loxP sites) were identically treated with tamoxifen. This dos-
age of tamoxifen in 3-month-old mice induced a level of Cre-
recombinase that produces no observable pathology in controls
but was sufficient to attain a null iPLA2� gene.

Mass Spectrometric Analyses of Eicosanoids, Docosanoids,
and Oxidized Metabolites of Linoleic Acid—Mass spectromet-
ric analyses of signaling eicosanoids, docosanoids, and oxlams
were performed using a charge-switch strategy by derivatiza-
tion with N-(4-aminomethylphenyl) pyridinium (AMPP) and
subsequent LC-MS/MS with MRM and accurate mass determi-
nation of diagnostic product ions as described previously (36).

MDMS-SL Analyses—Lipidomic analyses of WT and
CMiPLA2�KO mouse myocardium were performed as described
previously (22, 23). Lipid extracts were reconstituted with 1:1
(v/v) CHCl3/CH3OH, flushed with nitrogen and stored at
	20 °C prior to electrospray ionization-MS using a TSQ Quan-
tum Ultra Plus triple-quadrupole mass spectrometer (Thermo
Fisher Scientific, San Jose, CA) equipped with an automated
nanospray apparatus (Advion Biosciences Ltd., Ithaca, NY) and
customized sequence subroutine operated under Xcalibur soft-
ware. Enhanced MDMS-SL analysis of cardiolipins was per-
formed with a mass resolution setting of 0.3 Thomson using
the M �1/2 isotopologue approach as we described previously
(31, 59).

Isolation of Mitochondria—Mice were euthanized by cervical
dislocation, and their hearts were removed and placed in ice-
cold mitochondria isolation buffer (MIB: 0.21 M mannitol, 0.07
M sucrose, 0.1 mM K-EDTA, 10 mM Tris-HCl, 1 mM EGTA, 0.5%
BSA, pH 7.4) in a Petri dish on ice. Heart tissue was immediately
diced into small pieces with a razor blade and transferred to a
10-ml Potter-Elvehjem tissue grinder with 5 ml of MIB. The
tissue was homogenized using a rotorized homogenizer with a
Teflon pestle set at 120 rpm. The homogenate was then diluted
to 10 ml with MIB and centrifuged for 7 min at 850 � g. The
supernatant was carefully collected and centrifuged at 10,000 �
g for 10 min. The final pellet was resuspended in MIB with no
BSA.

High Resolution Mitochondrial Respirometry—High resolu-
tion respirometry was performed using an OROBOROS� Oxy-
graph 2K (Innsbruck, Austria) as described previously (23).
Respiration was started by the addition of palmitoylcarnitine
(20 �M)/malate (5 mM), pyruvate (5 mM)/malate, or pyruvate/
glutamate (10 mM)/malate (state 2) followed by sequential addi-
tion of ADP (1.25 mM) (state 3), succinate (5 mM) (state 3 Max),
rotenone (0.5 �M), oligomycin (2.5 �M) (state 4), and antimycin
A (3.75 �M). For measurement of ATP production, a 10-�l ali-
quot was collected from the respirometry chamber during state
3 respiration for 3 min following addition of ADP, mixed with
an equal volume of DMSO, and stored at 	80 °C for subsequent
measurement of ATP synthesis using an ATP determination kit
(Molecular Probes, Eugene, OR) according to the manufactu-
rer’s instructions. Finally, the ATP/O (P/O) ratio was deter-
mined by ATP production and O2 consumption during state 3
respiration.

Mitochondrial Membrane Potentiometry—Mitochondrial
membrane potential (��mt) measurement was performed
using OROBOROS� Oxygraph 2K equipped with a TPP� ion-
selective electrode. Mitochondria isolated from C57BL/6J mice
(4 –5 months of age) were placed into a chamber containing a
buffer solution of 0.23 M mannitol, 0.07 M sucrose, 3 mM HEPES,
pH 7.2, 5 mM succinate, and 2 �M TPP�Cl at 30 °C. 0.1 mM

KH2PO4 and oxidized fatty acids (1 �M 12-HETE, 20-HETE,
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14,15-EET, PGE2, 9-oxoODE, or 8-HDoHE) or ethanol vehicle
for control were added to the chamber. CaCl2 was sequentially
injected at 4-min intervals to 10, 20, 40, 60, and 80 �M final
concentration. Mitochondrial membrane potential was calcu-
lated by following the instructions provided by the manufac-
turer (OROBOROS INSTRUMENTS Corp.).

Mitochondrial Swelling Assays—For determination of
mPTP opening, isolated mitochondria from wild-type and
CMiPLA2�KO mouse hearts were placed in mitochondrial
swelling buffer (3 mM HEPES, pH 7.0, containing 0.23 M man-
nitol, 70 mM sucrose, 5 mM succinate, 1.25 �M rotenone, and 2
mM KH2PO4). 70 �g of mitochondria were placed in a 96-well
plate with either ethanol vehicle alone (1%), 0.5 or 2 �M palmitic
acid, and mitochondrial swelling was initiated by addition of
150 �M CaCl2 (final) with comparisons with the addition of 10
�M EGTA as control. Decreases in absorbance (540 nm) are
indicative of swelling of the mitochondria by opening of the
mPTP and were monitored every 15 s using a SpectraMax M5e
microplate reader (Molecular Devices, Sunnyvale, CA) (9).

Myocardial Ischemia Reperfusion Studies—The methods of
Weinheimer et al. (60) were used. Mice were subjected to
reversible left anterior descending (LAD) coronary artery
occlusion to induce ischemia for 30 min, followed by 24 h of
reperfusion. Briefly, mice were anesthetized with a mixture of
ketamine (100 mg/kg of body weight) and xylazine (10 mg/kg),
surgically prepped, and ventilated. After thoracotomy, the LAD
artery was identified, and a 9-0 polypropylene suture was
passed under the LAD artery. A knot was tied over a 1-mm
section of PE-10 tubing placed directly over the vessel to create
the occlusion. Ischemia was confirmed by an absence of blood
flow and verified visually and by the presence of ST elevations
on the electrocardiogram. The chest wall was approximated
and covered with moistened gauze during the 30-min ischemia
time. Reperfusion was induced by cutting the knot on top of the
polyethylene tubing or simply removing the tubing piece. This
allowed release of the occlusion, and resolution of ST segment
elevations was observed. The chest was then closed, and mice
were monitored closely for warmth and recovery until the end
of the reperfusion time. After 24 h, the mice were given heparin
(100 units, i.p.) and re-anesthetized with ketamine/xylazine,
and the sternotomy was re-opened to expose the heart. The
heart was excised and perfused retrograde through a catheter
placed in the aorta. After slow perfusion of 1–2 ml of warmed
phosphate-buffered saline (37 °C) to remove blood, the LAD
was re-occluded with the 8-0 suture, and the heart was perfused
with 5% Phthalo blue dye (Heucotech Ltd., Fairless Hill, PA) in
saline to delineate the previously occluded and reperfused vas-
cular bed (area-at-risk). The portion of the LV supplied by the
occluded coronary was identified by the absence of blue dye.
The heart was then wrapped in Saran wrap and placed in a
	20 °C freezer for 10 min. The ventricles were then cut with a
scalpel in 1–2-mm transverse sections, and the slices were pho-
tographed on both sides to identify the perfused myocardium.
The slices were stained by immersion with 1% triphenyltetra-
zolium chloride (TTC) (in phosphate buffer, pH 7.4, 37 °C),
which forms an insoluble red diformazan product in the pres-
ence of active dehydrogenase enzymes. The slices were weighed
and re-photographed at low magnification on both sides. The

images from dye perfusion (area-at-risk) and TTC staining
were digitized to permit computerized videoplanimetry of TTC
stained and unstained tissue as well as the area perfused and
non-perfused with Phthalo dye on the surface of each slice. The
percentage of the surface area-at-risk that was infarcted was
averaged for each group of mice, and the degree of infarction
was calculated as a percentage of the area-at-risk.

Miscellaneous Procedures—Standard methods were used for
SDS-PAGE and Western analyses. Protein concentration was
measured by a Bradford assay (Bio-Rad) or bicinchoninic acid
assay (Thermo Scientific) utilizing bovine serum albumin as
standard. Northern and Southern analyses were performed as
described previously (22).

Statistics—Comparisons between the WT and CMiPLA2�KO
groups studied were made using a two-tailed Student’s t test. A
value of p � 0.05 was considered significant. All data are
reported as the means � S.E. unless otherwise noted.
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