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Abstract

Luneburg’s model has been the reference for experimental studies of visual space for almost
seventy years. His claim for a curved visual space has been a source of inspiration for visual
scientists as well as philosophers. The conclusion of many experimental studies has been that
Luneburg’s model does not describe visual space in various tasks and conditions. Remarkably, no
alternative model has been suggested. The current study explores perspective transformations of
Euclidean space as a model for visual space. Computations show that the geometry of perspective
spaces is considerably different from that of Euclidean space. Collinearity but not parallelism is
preserved in perspective space and angles are not invariant under translation and rotation. Similar
relationships have shown to be properties of visual space. Alley experiments performed early in
the nineteenth century have been instrumental in hypothesizing curved visual spaces. Alleys were
computed in perspective space and compared with reconstructed alleys of Blumenfeld. Parallel
alleys were accurately described by perspective geometry. Accurate distance alleys were derived
from parallel alleys by adjusting the interstimulus distances according to the size-distance
invariance hypothesis. Agreement between computed and experimental alleys and
accommodation of experimental results that rejected Luneburg’s model show that perspective
space is an appropriate model for how we perceive orientations and angles. The model is also
appropriate for perceived distance ratios between stimuli but fails to predict perceived distances.
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Introduction

Visual space is the space we perceive through vision. Euclid suggested that visual space was
confined to a cone having the apex in the eye and the base at the limits of vision (Burton,
1945). In the 18th century, Reid proposed that visual space was spherical on the basis of the
shape of the eyes (Suppes, 1977). Luneburg (1947) was the first who attempted to establish
the geometry of visual space by combining psychophysical data with mathematical analysis

Corresponding author:
Casper ] Erkelens, Helmholtz Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.
Email: c.j.erkelens@uu.nl

@ Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 3.0 License

(http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without
further permission provided the original work is attributed as specified on the SAGE and Open Access pages (http://www.us.
sagepub.com/aboutus/openaccess.htm)..




2 i-Perception 6(5)

(Rosar, 1985). Although both Hillebrand (1902) and Blumenfeld (1913) performed so-called
alley experiments, the geometry proposed by Luneburg was based mainly on data of
Blumenfeld. Blumenfeld (1913) used two experimental tasks consisting of positioning alleys
of small flames by making judgments about their parallelism and equidistance. The claim
made by Luneburg was that the different results from the two alley experiments were evidence
for a non-Euclidean geometry of visual space. Luneburg (1947, 1950) proposed a hyperbolic
geometry possessing negative Gaussian curvature. Blumenfeld’s alley experiments have been
repeated and extended several times (Battro, di Pierro Netto & Rozenstraten, 1976; Hardy,
Rand, & Rittler, 1951; Indow, Inoue, & Matsushima, 1962; Shipley, 1957; Zajaczkowska,
1956). All studies concluded that visual space is curved although a few authors challenged its
hyperbolic nature. Foley (1972) conducted experiments in which subjects judged visual
angles, that is, angles between visual directions, and ratios between perceived frontal and
egocentric extents. He found that the ratio of perceived frontal to egocentric extent greatly
exceeded the physical ratio, while perceived visual angles corresponded closely to physical
ones. Foley (1972) concluded that perceived distances and perceived visual angles are the
product of different and independent processes. A possible consequence of Foley’s conclusion
is that perceived angles and distances do not constitute a single visual space. Later studies did
not consider this possibility and persevered in constructing curved visual spaces by combining
angles and distances (Battro et al., 1976; Cuijpers, Kappers & Koenderink, 2000, 2001, 2002;
Higashiyama, 1984; Indow & Watanabe, 1984a, 1984b; Koenderink, van Doorn, Kappers,
Doumen, & Todd, 2008; Koenderink, van Doorn, Kappers, & Todd, 2002; Koenderink, van
Doorn, & Lappin, 2000; Koenderink, van Doorn, & Lappin, 2003; Musatov, 1976;
Schoumans, Kappers, & Koenderink, 2000; Todd, Oomes, Koenderink, & Kappers, 2001;
Wagner, 1985). All authors compared their experimental results with predictions of
Luneburg’s model of a curved visual space and reported all sorts of deviations.
Dependence of results on task, reference, distance, and instruction questioned Luneburg’s
model of visual space and culminated in even questioning visual space itself (Koenderink
et al., 2008). Here the effort is undertaken to investigate whether a model of visual space that
is very different from Luneburg’s model can restore the entity of visual space.

Linear perspective used by artists starting from the Renaissance is a mathematical system
for projecting three-dimensional scenes onto two-dimensional surfaces, such as paper,
canvas, or a screen. Parallel lines receding in the three-dimensional scenes converge to a
vanishing point in such projections. Furthermore, distant objects are imaged smaller than
equally sized near ones. Linear perspective prescribes how three-dimensional scenes are
imaged on surfaces. It does not prescribe how we perceive such scenes in pictures and in
the free field. From just looking at a straight railway line or road, it is obvious that
perspective is present in visual perception of real three-dimensional scenes and, thus, a
property of visual space. Actually, it is odd that visual space is such a deformed
representation of physical space. In view of plasticity of cortical maps (Singer, 1995), one
would expect that visual space would adapt to long-term and systematic deviations from
physical space. Apparently, adaptation does not occur. Instead, human beings have both
perspective and Euclidean representations of physical space at their disposal. For example,
we see on the one hand that a road narrows in front of us but on the other hand we are
confident that it does not. The availability of different representations gives human beings the
possibility to answer questions about spatial relationships in different ways. For instance:
What is the angle between rails of a railway track or between the lane dividers of a road? One
answer expresses properties of visual space whereas the other may express experience with
physical space in general and knowledge of rails and roads in particular. Recently, I argued
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that we see the world in perspective not because we view it from one or two vantage points,
but because lines vanish at a finite distance (Erkelens, 2015a).

Perspective has not been considered as a constituent of models of visual space, probably
because experiments have usually been conducted in near space where influence of
perspective is assumed negligible. However, this argument does not justify the complete
absence of perspective in discussions of visual space. For instance, Battro et al. (1976)
used distances up to 240 m in their alley experiments without even mentioning perspective
in their paper. Recent studies showed that angles perceived between lane dividers of a straight
road (Osa et al., 2011) or between rails of a straight railway track (Erkelens, 2015a) were
remarkably large. Depending on eye height, perceived angles ranged between 20° and 70° in
individual subjects. In a curved visual space, such large perspective angles, distinctive of a
highly curved space, are incompatible with perceived distances of vanishing points of many
hundreds of metres. The purpose of this study is to explore the geometry of spaces that are
perspective transformations of the Euclidean, physical space. Another purpose is to
investigate whether such a space, dubbed perspective space, can explain the experimental
results of previous studies of visual space, among which the classic parallel and distance alley
experiments of Blumenfeld (1913).

Geometry of Perspective Space

Visual space as a perspective transformation of Euclidean space has hardly been explored in
the literature (Lehar, 2003). This is curious because perspective is so obviously a property of
visual perception, especially at long distances. Vanishing points at a specific finite distance are
a distinctive property of perspective space (Erkelens, 2015a, 2015b). Both physical space and
retinal images can be regarded as limiting cases of perspective space because physical space is
characterized by vanishing points at infinite distance and retinal images are characterized by
vanishing points at zero distance. In this respect, perspective space constitutes a natural
bridge between the geometric properties of retinal images and physical environment.

To explore the geometry of perspective spaces, computations were made on points and
lines in physical space. Figure la shows the basic idea behind the computations. The
Cartesian grid represents a plane in physical space that includes the centers of both eyes.
The blue lines represent parallel and equidistant lines in the straight-ahead viewing direction
in physical space. Lines converging to a vanishing point at finite distance in perspective space,
which are associated with lines in parallel to the viewing direction in physical space, are
dubbed perspective lines from now on. The red lines in Figure 1(a) are perspective lines
associated with viewing in the straight-ahead direction. Each position in physical space is
specified by an egocentric direction and distance. Using a polar coordinate system is
appropriate for vision because directions and distances result from different processes.
Information about directions follows from retinal and eye position signals whereas
distances require interpretation of nonpositional properties of the retinal stimulus
(Erkelens, 2012). In the computations we assume that directions of objects in perspective
space are identical to their egocentric directions in physical space. The position of a stimulus
in perspective space is computed from its position in physical space by finding the
intersections between directional and perspective lines. In this way, the distances of stimuli
are given by the structure of perspective space. The distance of the vanishing point determines
the distance of stimuli in perspective space. The distance of the vanishing point represents the
weighted sum of all depth cues. If depth cues such as disparity, size, blur, and ocular vergence
together would indicate veridical depth, then the vanishing point would be located at infinity.
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Figure 1. Transformations from physical to perspective space. Panels show stimuli (blue dots and lines) in a
plane of physical space and their equivalents in perspective space (red dots and lines). Gray dots indicate the
positions of the eyes. Panel (a) shows a set of seven dots (blue) arranged along a straight line in physical space.
The dots are lying on equidistant lines (blue) that vanish at infinity in the straight-ahead viewing direction. In
perspective space the lines (red) converge to a finite vanishing point. Dots have identical egocentric directions
in physical and perspective space (dashed blue lines). Panel (b) shows dots (blue) arranged along two parallel
lines in physical space and their equivalents (red) in perspective space. Panel (c) shows dots (blue) arranged
along two orthogonal lines in physical space and their non-orthogonal equivalents (red) in perspective space.
For reasons of clarity the underlying directional and perspective lines are not drawn in panels (b) and (c).

Depth is not veridical in perspective space. The distance of the vanishing point indicates the
underestimation of depth. Figure I(a) shows that a straight line-piece in physical space
(the row of blue lines) transfers to a straight line-piece in perspective space (the row of red
dots and lines). Conserved straightness implies that collinearity is preserved in perspective
space. Figure 1(b) shows that two parallel line-pieces in physical space are generally not
parallel in perspective space. Fronto-parallel line-pieces are the exception. Implication of
the directional differences is that parallelism is not preserved in perspective space. Both
properties, that is, violated parallelism and preserved collinearity, are also properties of
visual space. Evidence comes from experiments in which subjects were asked to set bars in
parallel (Cuijpers et al., 2000) and collinear (Cuijpers et al., 2002). Figure 1(c) shows that
angles between orthogonal lines in physical space are non-orthogonal in perspective space.
Similar differences between physical and perspective angles were measured in a recent study
in which subjects judged angles between bars oriented in depth (Erkelens, 2015b). Agreement
between computations and experimental results regarding preserved collinearity, violated
parallelism, and large angular deviations shows that perspective space is an attractive
candidate model of visual space as far as directions and angles are concerned.

Figure 2 shows relations between distances and distances in physical and perspective
space. Due to the finite vanishing point in perspective space, distances are shorter than
their equivalents in physical space. Distances in perspective space decrease relative to
distances in physical space with increasing egocentric distance. The graph at the bottom of
Figure 2(a) illustrates the relationship by showing the highest ratio between distances in
perspective and physical space at the shortest egocentric distance. Figure 2(b) shows the
relationships for sizes of differently oriented line-pieces. The graph at the bottom indicates
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Figure 2. Transformation of distances from physical to perspective space. Panels show stimuli (blue dots
and lines) in physical space and their equivalents in perspective space (red dots and lines). Gray dots indicate
the positions of the eyes. Panel (a) shows two sets of blue dots in a plane in physical space arranged along
straight, frontal line-pieces at different distances from the viewer (big dots at short distance and small dots at
long distance). Their perspective equivalents are shown in red. Line segments are numbered from | to 6.
Ratios between interdot distances in perspective and physical space are shown at the bottom. The horizontal
lines through the data indicate that ratios are constant for dots placed along a frontal line. Panel (b) shows
similar sets of dots and line segments arranged along other orientations. Ratios between distances in
perspective and physical space are shown at the bottom. Lines are best exponential fits to the data. Panel (c)
shows the Pappus condition in physical (blue) and perspective (red) space.

that ratios between perspective and physical sizes decrease approximately exponentially as a
function of distance in the depth direction. Figure 2(a) and (b) shows that sizes are not
invariant under translation and rotation in perspective space. The size ratios are consistent
with experimental evidence that perceived sizes are underestimated (Gilinsky, 1951) and
compression of size in depth relative to frontal size increases with distance (Li, Phillips, &
Durgin, 2011). Perspective space as a model of visual space provides geometrical explanations
for these experimental findings.

Experimentally, Koenderink et al. (2002) found that visual space fulfills the Pappus
condition, implying that visual space is a homogenous projective space. The Pappus
condition is fulfilled if connections (dashed lines in Figure 2(c)) between two sets of
collinear triples of points (the top and bottom rows of blue and red dots) constitute a
collinear triple of intersections (the middle rows of blue and red dots). Positions of the set
of red dots in Figure 2(c) were computed by transforming the positions of dots from physical
to perspective space. The middle row of red dots shows that the intersections are collinear in
perspective space. The Pappus condition is fulfilled because collinearity is preserved in
perspective space (Figure 1(a)).
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Dependence on Vanishing Distance and Fixation Direction

Perspective space as introduced in the previous section contains two parameters, that is,
distance of vanishing point and fixation direction. It is obvious that the parameters may
vary across observers and conditions. Distance of vanishing point may depend on context as
was recently shown in judgments of perspective angles between rails (Erkelens, 2015a).
Distances were about 5m for judgments made in a full-cue, natural environment and
about 0.3m for judgments made from pictures of the same scene. Fixation direction is
fixed in some psychophysical experiments but not in others and certainly not under
natural viewing conditions. It is relevant to know how the two parameters affect the
positions of objects in perspective space. Figure 3 shows the positions of points in
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Figure 3. Effect of vanishing distance and fixation direction on perspective space. Panels show physical
stimuli (blue dots and lines) and their equivalents in perspective space (red dots and lines). Gray dots indicate
the positions of the eyes. Panels (a) show the panels of Figure | but now for the conditions that the vanishing
point is at half the distance. Panels (b) show the panels of Figure | for a fixation direction of about 10° to the
left side.
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perspective space for a short distance of the vanishing point (Figure 3(a)) and an oblique
direction of fixation (Figure 3(b)).

Comparison of Figures 1 and 3 shows that different vanishing distances and fixation
directions do not affect perspective space in qualitative terms. The main properties, that is,
preserved collinearity, violated parallelism, and angular deviations, are retained in the
different conditions. Quantitatively, however, there are differences. Distance of vanishing
point has a substantial effect on orientations of line-pieces in perspective space
(Figure 3(a)). A shorter distance of the vanishing point (by a factor of 2) was associated
with larger perspective angles (133° vs. 117°). Similar results were found for judgments made
in the natural environment and from pictures of perspective angles of roads and rails
(Erkelens, 2015a; Osa et al., 2011) and perspective angles between converging and
diverging bars (Erkelens, 2015b). It seems a fair interpretation of the experimental findings
that contextual differences affect vanishing distance and perspective angles. Based on other
types of experimental results, other authors have earlier argued that the geometry of visual
space depends on contextual conditions (Foley, 1972; Schoumans et al., 2000; Suppes, 1977).
The oblique direction of fixation slightly affected the orientations of line-pieces in perspective
space. The subtle differences are visible in Figures 1 and 3 by closely comparing the positions
of dots and lines. The change in fixation direction of 10° to the left resulted in a leftward
rotation of 4° of all line-pieces. As a consequence, perspective angles between line-pieces were
preserved. Small but significant effects of fixation have been reported for measurements of the
geometry of visual space (Ehrenstein, 1977) and for bisection judgments in visual grasp space
(Trommershduser, Maloney, & Landy, 2003).

Blumenfeld’s Parallel and Distance Alleys

A critical test for the perspective space model is being able to describe the parallel and
distance alleys of Blumenfeld (1913) because on the basis of these alleys Luneburg (1947,
1950) concluded that visual space had to be a Riemannian space of constant curvature.
To make the alley results accessible to computation, Blumenfeld’s data were reanalyzed
and rearranged. Blumenfeld (1913) reported the parallel and distance alleys in an extensive
paper of 160 pages including 73 tables, written in the German language. Each table lists the
settings made by one subject under one (parallel or equidistant) instruction. Four subjects
produced complete sets of data in both types of alley experiments. Blumenfeld (1913) did not
provide an oversight of these data. Therefore, parallel and distance alleys were constructed
from Blumenfeld’s tables for these four subjects (Figure 4). Mean settings were computed of
all settings made by individual subjects. No distinction was made between measurements in
which stimuli were presented simultaneously or in succession.

Stimuli and results are presented here in the format used by Blumenfeld (1913), which
means that frontal distance is amplified by a factor of four relative to distance in the depth
direction. The square elements of the grids shown in Figure 4 represent frontal distances of
0.1 m and in-depth distances of 0.4 m. Amplification of frontal distances, which has also been
applied by later presenters of alleys (Angell, 1974; Battro et al., 1976; Blank, 1953; Hardy
et al., 1951; Indow et al., 1962; Luneburg, 1950; Roberts & Suppes, 1967; Shipley, 1957,
Yamazaki, 1987; Zage, 1980; Zajaczkowska, 1956), visually emphasizes, and thus
exaggerates, the differences between parallel and distance alleys. Stimuli were little flames
at the end of thin vertical tubes in a further dark room or thin vertical rods in a lit room. The
flames (rods) could move only sideways except for the two flames (rods) at the far end, which
stood at fixed places. Subjects received very detailed instructions. For the parallel-alley
experiment, the instructions were as follows: “Adjust the little flames (rods) so that the
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Stimuli

Figure 4. Parallel and distance alleys as measured by Blumenfeld (1913). Panels show the stimuli at their
initial locations (blue dots) and the mean settings of four subjects under the instructions of parallelism (red
dots) and equidistance (green dots). The panel labeled Means shows the settings averaged across the four
subjects. Gray dots indicate the positions of the eyes.

(virtual) lines connecting them with the most distant flames (rods) appear to you as parallel,
symmetrical, straight lines, that is, that the two rows from front to rear and back do not
converge or diverge. The observation must be made with free viewing along the rows, if
possible, in a casual manner”. For the distance alleys, the instructions were as follows:
“Adjust the lights so that the lateral distance between the two flames of each pair appears
equal to that of the farthest pair. It is not necessary that the interflame distances of the other
pairs seem equal to each other. If possible, one should not look at the rows oriented in depth
on each side. It is not allowed to use the absolute size of a distance expressed in any objective
measure (cm or m) during the comparison of distances”. Figure 4 shows that the subjects
produced rather symmetric alleys, with little intersubject variability. All subjects set the
distance alley wider than the parallel alley. The flames (rods) were placed in almost
straight lines in the parallel-alley experiment. The trajectories were curved outward in the
distance-alley experiment mainly as a result of the settings of the near pairs of stimuli.
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Figure 5. Computed parallel and distance alleys. Panel (a) shows Blumenfeld’s stimuli (blue dots) arranged
along two parallel and equidistant lines (blue lines). Blue dashed lines indicate their egocentric directions. In
perspective space the stimuli (small red dots) are aligned along two (red) lines converging to a vanishing point
located at a finite distance from the observer. Panel (b) shows how the stimuli in physical space (red dots
connected by blue lines) have to be positioned in order to align the stimuli in two parallel rows in perspective
space (small red dots). Panel (c) shows the computed parallel (red dots) and equidistance (green dots) alleys
in physical space together with the parallel alleys (small red dots) and equidistant alleys (small green dots) in
perspective space.

Computation of Blumenfeld’s Alleys

Blumenfeld’s parallel and distance alleys were computed by transforming positions of stimuli
from physical space to perspective space and vice versa. First, the settings were computed for
the parallel-alley task. To that end positions in perspective space were computed for
Blumenfeld’s stimuli at their initial positions in physical space (Figure 5(a)). Stimuli
(red dots) had egocentric directions in perspective space that were identical to those in
physical space but were lying on two perspective lines meeting at a certain finite vanishing
point. At this point of the computation, the choice for the position of the vanishing point was
provisional because its final location depended on the final settings of the stimuli in physical
space in the parallel-alley task. The next operation was to shift the stimuli sideways in
perspective space so that they formed a parallel alley (Figure 5(b)). The shifts were made
sideways because in Blumenfeld’s experiments the stimuli could only be displaced sideways in
physical space. In perspective space, the farthest stimulus was kept at a fixed position because
in Blumenfeld’s experiments the farthest stimulus had a fixed position in physical space.
The positions of the stimuli in physical space were computed from the new positions of
the stimuli in perspective space by finding the intersections between the new directional
lines and the frontal lines along which the stimuli could move in physical space. Finally,
the position of the vanishing point was found by trial and error, guided by the criterion that
computed settings (Figure 5(b)) were as close as possible to the mean settings of subjects in
Blumenfeld’s experiment (Figure 4). A vanishing point located at 0.74 m from the viewer gave
the best result. Then the mean deviation of the computed positions was as small as
5.4+ 5.7mm for the parallel alley.

After having made their final settings in the parallel-alley task of Blumenfeld’s experiment,
subjects reported that the nearer stimuli pairs were set closer to each other than the farthest
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pair (Blumenfeld, 1913). In the distance-alley task, Blumenfeld asked subjects to adjust the
distance between pairs of stimuli so that distances between stimuli were judged equidistant.
Consequently, subjects set the distance between nearer stimuli pairs wider in the distance-
alley task than in the parallel-alley task. In the current computations, the frontal distance
between each pair in the distance alley was obtained by multiplying frontal interstimulus
distances of the parallel alley with a factor related to the in-depth distances of the stimulus
pairs in perspective space. The distance alley (Figure 5(c)) was computed by choosing the
factor of multiplication equal to the ratio between the in-depth distances of farthest stimulus
pair and stimulus pair under evaluation. The multiplication factor resulted in very good
agreement of the computed distance alley with the experimental settings of Blumenfeld
(1913). The mean deviation of the computed positions of the distance alley was just
4.6 £3.5mm.

Discussion
Perspective Space as a Model of Visual Space

Perspective is a so familiar property of visual perception that it seems totally
unremarkable for both laymen and scholars. Only very recently perspective space was
considered as a model of visual space (Erkelens, 2015a, 2015b). Although replacing
infinite vanishing points in Euclidean space by finite vanishing points in perspective
space may seem a minor operation, the geometry of perspective space is considerably
different from that of Euclidean space. Angles and distances are not invariant under
translation and rotation as they are in Euclidean space. A common property of both
spaces is that they are flat. Properties of perspective space have been investigated here in
two dimensions. However, inclusion of the eyes was the only restriction applied to the
computations made for line-pieces in two-dimensional planes. Rotation of the planes
about the interocular axis generalizes the observed properties of perspective space from
two to three dimensions.

Agreement between computational and experimental results shows that perspective space
is an appropriate model for visual space, particularly in relation to perceived directions and
angles. It is noteworthy that in the perspective space model distance of the vanishing point
determines the distances of stimuli. Experimental findings show that perceived distance in the
depth direction does not fit well within the concept of perspective space. The computations
presented in Figure 2 show that distance in perspective space has an approximately
exponential relationship to distance in physical space. Experimentally, very different
relationships have been reported, showing just small differences between perceived and
physical distances at least up to 20m (Epstein, 1963; Gilinsky, 1951; Sinai, Ooi, & He,
1998; Wagner, 2006). Furthermore, distances of vanishing points computed from
perspective angles were found to be highly incongruent with perceived distances of
vanishing points (Erkelens, 2015a). Perspective angles predicted that vanishing points
would be as close as just a few metres from the observer. In contrast, distance judgments
of the vanishing points gave estimates of many hundreds of metres. Remarkably, the distance
alleys of Blumenfeld (1913) were well described by the perspective space model in
combination with the size-distance invariance hypothesis. The good and bad fits seem to
imply that perspective space is an appropriate model for perceived distance ratios of stimuli
but not for perceived distances. This combination of predicted distance ratios and non-
predicted distances suggests the existence of a factor that is needed to convert perceived
distance ratios into perceived distances. Cognition of distances resulting from experience
with the physical world may be the source of this factor.
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Interpretation of Blumenfeld’s Alleys

The parallel alleys in physical space of Blumenfeld (1913) were obtained by computing the
physical positions of stimuli associated with parallel alleys in perspective space. Agreement
between computed and experimental alleys was very good. The computed alleys were
symmetric because a single vanishing point was assumed for both rows of the alleys.
Agreement would even have been better if the computational results would have been
optimized for stimuli on the left and right rows separately. The perspective model of visual
space contains two free parameters, namely, distance and direction of the vanishing point, the
former related to context and the latter to direction of fixation. Optimal distance of the
vanishing point of 0.74m may seem extremely short. Judgments of perspective angles of
physical rails showed that distance of the vanishing point decreased with eye height and
became as short as 1 to 2m for an eye height of 0.40 m (Erkelens, 2015a). In Blumenfeld’s
experiments, subjects viewed the stimuli at eye level or at an eye height of just 0.07 m. Thus, in
relation to the railway track experiments, the vanishing distance of 0.74m is not an
unrealistic distance.

The distance alleys were computed from the parallel alleys by multiplying the interstimulus
separations with factors related to distance in the depth direction. Again, agreement between
computed and experimental alleys was very good. For explaining the distance alleys, it may be
relevant to look at the instructions that were given to the subjects in Blumenfeld’s experiments
(see Blumenfeld’s Parallel and Distance Alleys). Wagner (2006) described four types of
instructions, namely, objective, perspective, apparent, and projective. The objective and
perspective instructions ask subjects to adjust the positions and directions of stimuli as they
are in physical space. Blumenfeld’s instructions were different. The extensive instructions of
Blumenfeld (1913) even assigned subjects to ignore certain properties of the stimuli in physical
space. Blumenfeld gave the apparent instructions, which means that he emphasized the
subjective or phenomenal experience of parallelism and distance (Wagner, 2006). The
projective instruction asks subjects to adjust the angular extent of stimuli. Blumenfeld (1913)
did certainly not give this type of instruction in the distance-alley task because subjects should
not look at the rows oriented in depth. According to the size-distance invariance hypothesis
(Epstein, 1963; Wagner, 2006), the perceived distances between pairs of stimuli were equally
large when the stimuli were seen to converge to the finite vanishing point (Figure 5(a)).
The consequence of displacing the nearer stimuli inwards such that they became parallel in
perspective space (Figure 5(b)) was that perceived distances between nearer pairs of stimuli
became shorter. Apparently, equidistance was reestablished by multiplying interstimulus
distances between nearer pairs with ratios between far and near stimulus depths. Applying
the size-distance invariance hypothesis to the parallel-alley data produced a realistic distance
alley (Figure 5(c)) provided that the computations used depth values in perspective space.

The parallel and distance alleys of Blumenfeld (1913) are explained within the framework
of perspective space if we assume that subjects mixed up the metrics of both visual and
physical spaces. We, human beings, seem to have two notions of parallelism, one related
to physical space and another to visual space, although it is not quite clear how we define and
calibrate parallelism in visual space. Maybe we compensate for the perceived angle between
parallel lines in physical space to arrive at parallelism in visual space. Parallelism is a rather
troublesome concept outside Euclidean and affine geometries. Parallelism is equivalent with
equidistance in Euclidean space. This equivalence is not valid in Riemannian and perspective
spaces. In Riemannian models of visual space, parallelism is assumed equivalent with
geodesics (Blank, 1953; Luneburg, 1950). However, it is just an assumption. Ironically, the
trajectories orthogonal to geodesics are known as geodesic parallels in differential geometry.
In visual space parallelism is not equivalent with equidistance because, if it were, parallel and
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distance alleys would be indistinguishable. The perspective model of visual space explains the
parallel alleys. Figure 5(b) shows that parallelism in visual space is associated with divergent
parallel alleys in physical space. The divergent parallel alleys are just slightly different from
egocentric directions (blue dashed lines in Figure 5(b)). This fact implies that the observation
of Koenderink, van Doorn, de Ridder, and Oomes (2010), that visual rays in physical space
seem parallel in visual space, is explained by the perspective structure of visual space. The
distance alleys are explained by the model in combination with size-distance invariance.
Computed distance alleys resembled measured distance alleys if in-depth distances were
used as they are in perspective, and thus, visual space. Using physical distances would
have resulted in equidistant alleys as they are in physical space.
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