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Abstract

High false alarm rates in the ICU decrease quality of care by slowing staff response times while 

increasing patient delirium through noise pollution. The 2015 Physio-Net/Computing in 

Cardiology Challenge provides a set of 1,250 multi-parameter ICU data segments associated with 

critical arrhythmia alarms, and challenges the general research community to address the issue of 

false alarm suppression using all available signals. Each data segment was 5 minutes long (for real 

time analysis), ending at the time of the alarm. For retrospective analysis, we provided a further 30 

seconds of data after the alarm was triggered.

A total of 750 data segments were made available for training and 500 were held back for testing. 

Each alarm was reviewed by expert annotators, at least two of whom agreed that the alarm was 

either true or false. Challenge participants were invited to submit a complete, working algorithm to 

distinguish true from false alarms, and received a score based on their program's performance on 

the hidden test set. This score was based on the percentage of alarms correct, but with a penalty 

that weights the suppression of true alarms five times more heavily than acceptance of false 

alarms.

We provided three example entries based on well-known, open source signal processing 

algorithms, to serve as a basis for comparison and as a starting point for participants to develop 

their own code. A total of 38 teams submitted a total of 215 entries in this year's Challenge.

This editorial reviews the background issues for this Challenge, the design of the Challenge itself, 

the key achievements, and the follow-up research generated as a result of the Challenge, published 

in the concurrent special issue of Physiological Measurement. Additionally we make some 

recommendations for future changes in the field of patient monitoring as a result of the Challenge.

1. Introduction

During the last decade, over a period of seven years, Intensive Care Unit (ICU) admissions 

at U.S. hospitals increased by 48.8% with a mean biennial increase of 14.2%. By 
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comparison, overall emergency department (ED) visits increased by 5.8% biennially. In 

absolute terms, admissions jumped from 2.79 million in 2002-2003 to 4.14 million in 

2008-2009, according to data from the National Hospital Ambulatory Care Survey Mullins 

et al. (2013a). The three most common diagnoses for ICU admissions were unspecified chest 

pain, congestive heart failure, and pneumonia. Utilization rates of most tests and services 

delivered to patients admitted to the ICU from the ED increased, with the largest increase 

occurring in computed tomography (CT) and magnetic resonance imaging (MRI), which 

increased from 16.8% in 2002/2003 to 37.4% in 2008/2009, a 6.9% mean biennial increase. 

These findings suggested emergency physicians were sending more patients on to the ICU. 

The increase might be the result of an older, sicker population that needs more care Mullins 

et al. (2013a).

ICU patients require a high level of acute care, with numerous bedside monitors which are 

continuously monitoring both invasive and non-invasive variables. These monitors provide 

synchronous waveforms with both independent and complementary information. Huge ICU 

databases are therefore becoming available, and include parameters such as the 

electrocardiogram (ECG), the photoplethysmogram (PPG), the arterial blood pressure (ABP) 

waveform and respiratory effort. In clinical practice these signals are processed individually 

and derived parameters are frequently set to trigger an alarm when a specific parameter 

(such as heart rate) exceeds a pre-defined range. These alarms are frequently false alarms 

(FAs) and account for a large majority of all alarms generated in the ICU Chambrin et al. 

(1999).

Furthermore, the high rate of false alarms significantly burdens clinical staff, which can lead 

to decreased quality of care Donchin and Seagull (2002); Imho and Kuhls (2006), impacting 

both the patient and the clinical staff through noise disturbances, desensitization to warnings, 

slowing of response times Chambrin (2001) and missed true alarms Allen and Murray 

(1996); Chambrin (2001); Hug et al. (2011). ICU alarms produce sound intensities above 80 

dB that can lead to sleep deprivation Chambrin (2001); Meyer et al. (1994); Parthasarathy 

and Tobin (2004), inferior sleep structure Johnson (2001); Slevin et al. (2000), stress for 

both patients and staff Cropp et al. (1994); Novaes et al. (1997); Topf and Thompson (2001); 

Morrison et al. (2003) and depressed immune systems Berg (2001). There are also 

indications that the incidence of re-hospitalization is lower if disruptive noise levels are 

decreased during a patient's stay Hagerman et al. (2005). Furthermore, such disruptions have 

been shown to have an important effect on recovery and length of stay Donchin and Seagull 

(2002); Cropp et al. (1994). In particular, cortisol levels have been shown to be elevated 

(reflecting increased stress) Topf and Thompson (2001); Morrison et al. (2003), and sleep 

disruption has been shown to lead to longer stays in the ICU Parthasarathy and Tobin 

(2004). ICU false alarm (FA) rates as high as 90% Aboukhalil et al. (2008) have been 

reported, with between 6% and 40% of ICU alarms having been shown to be true but 

clinically insignificant (requiring no immediate action) Lawless (1994). In fact, only 2% to 

9% of alarms have been found to be important for patient management Tsien and Fackler 

(1997). In response to this, thresholds and filter settings for alarms are often manipulated on 

a case-by-case basis in response to an individual clinical user's preferences (to reduce 

annoyance), which may well be sub optimal in terms of the trade off between true and false 

alarms Mullins et al. (2013b).
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In the 2015 PhysioNet/Computing in Cardiology Challenge Clifford et al. (2015) (http://

physionet.org/challenge/2015), we aimed to address the problem of high false alarm rates by 

encouraging the development of new algorithms to improve the specificity of ICU alarms. In 

this Challenge, we focused on five types of life-threatening arrhythmia events, which we 

defined as follows:

Asystole (ASY): No heartbeats for a period of four seconds or more.

Extreme bradycardia (EBR): Heart rate lower than 40 beats per minute; 

fewer than five beats occur within a period of six seconds.

Extreme tachycardia (ETC): Heart rate higher than 140 beats per minute; 

more than 17 beats occur within a period of 6.85 seconds.

Ventricular tachycardia (VTA): Five or more consecutive ventricular beats 

within a period of 2.4 seconds (a rate of 100 per minute.)

Ventricular fibrillation or flutter (VFB): The heart exhibits a rapid 

fibrillatory, flutter, or oscillatory waveform for at least four seconds.

Participants in the Challenge were given samples of ICU patient waveforms that were 

identified by the bedside monitor as falling into one of the above categories, and were tasked 

with devising an algorithm to determine which of these alarms represented true arrhythmias, 

and which were caused by other factors (such as noise, patient movement, leads falling off, 

or mis-identification of ECG features on the part of the monitor.)

The Challenge was divided into two events. Event 1 was a simulation of the real-time alarm 

suppression problem: the algorithm needed to determine whether the alarm was true or false 

based solely on the information available before the alarm was first triggered. In Event 2, 

algorithms were also able to see 30 seconds’ worth of waveform data following the time of 

the alarm, and could use this information to retrospectively classify the alarm as true or 

false. The development of an algorithm that could reliably solve either of these problems 

would be a major step forward in patient care.

2. Example algorithms

Key to rhythm detection is accurate heart rate estimation. Several ECG R-peak detection 

algorithms are freely available, several of which were used in the Challenge example entries.

eplimited (available at www.eplimited.com) Hamilton and Tompkins (1986), 

which used digital filtering and a group of decision rules.

sqrs (available on PhysioNet Goldberger et al. (2000)) Engelse and Zeelenberg 

(1979), which uses a single scan of the sampled data and combines digital filter 

preprocessing with a detector and feature extractor based on dynamically 

adjusted slope and timing criteria.

wqrs (available on PhysioNet) Zong, Moody and Jiang (2003), which is based 

on the length transform.
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gqrs (available on PhysioNet), which consists of a QRS matched filter with a 

custom built set of heuristics (such as search back).

coqrs Clifford (2002); Nygårds and Sörnmo (1983); Oster et al. (2013) based 

on the peak energy (no search back).

jqrs Behar, Johnson, Clifford and Oster (2014); Behar, Oster and Clifford 

(2014) consists of a window-based peak energy detector but with replacement 

of the original band-pass filter with a QRS matched filter (Mexican hat) and an 

additional heuristic ensuring no detection were made during flat lines.

Detection of the onset of the pulses in the ABP and PPG signals can provide further 

information on rhythm and rate. An open-source algorithm, wabp Zong, Heldt, Moody and 

Mark (2003), is available from PhysioNet. The algorithm consists of three components: 1) a 

low-pass filter which is to suppress high frequency noise that might affect the onset 

detection; 2) a windowed and weighted slope sum function (SSF) which is to enhance the 

up-slope of the pulse and to suppress the remainder of the pressure wave; 3) a decision rule 

which allows for detection of each SSF pulse onset.

We provided three example Challenge entries, based on these and other open-source 

algorithms, and implemented in various programming languages, to serve as a basis on 

which participants could develop their own code.

The simplest example entry (#1) used wabp and gqrs, along with the gqfuse tool (available 

on PhysioNet), to analyze all available signals and select the most stable sequence of RR 

intervals, in order to detect asystole, bradycardia, and tachycardia. To detect the onset of VF, 

this entry analyzed the ECG and pulsatile signals separately (using gqfuse for each), and 

searched for a 10-second interval where the QRS rate and pulse rate were equal, followed by 

a 3-second interval in which the QRS rate increased by at least 25% and the pulse rate 

decreased by at least 75%. This entry did not attempt to detect VT.

A second example entry (#2) written in MATLAB used wabp to detect the beats and used 

jSQI Sun et al. (2006) and a template matching SQI Li and Clifford (2012) to estimate the 

signal quality from ABP and PPG channels. For the ECG, an agreement level of two R-peak 

detectors (gqrs and coqrs) in a 10-second window, evaluated every second, known as bSQI, 
was used Behar et al. (2013).

Finally, the third sample entry (#3) was provided for Octave users, with functions from the 

WFDB Toolbox for Octave/MATLAB Silva and Moody (2014). This sample entry ran three 

QRS detectors from the WFDB Toolbox: wqrs on signal 1, sqrs on signals 1 and 2, and gqrs 
on signals 1 and 2. The results of the QRS detectors were then used to compute three 

tachograms. A decision was made on the veracity of the alarm based on the average pair-

wise correlation between the tachograms 30 seconds prior to the alarm (a threshold was set 

arbitrarily based on the training data).

2.1. Signal Quality

Signal quality indices (SQIs), which assess the signal quality or noise levels of the signals, 

can be extracted from the waveforms and used as weighting factors to allow for varying trust 
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levels in the source data. The ECG signal quality has been extensively studied Li et al. 

(2008); Clifford et al. (2012); Behar et al. (2013); Li et al. (2014b). For the benchmark 

algorithms, an agreement level of two R-peak detectors in a 10-second window, evaluated 

every second, known as bSQI, was used. Intuitively, the presence of noise and artifacts will 

lower the agreement level between two semi-independent detectors. The bSQI was recently 

successfully used on a database with pathological rhythms Li et al. (2008); Behar et al. 

(2013). The ABP signal quality was evaluated using an open-source algorithm Sun et al. 

(2006) which flags a signal as bad quality if derived parameters from a blood pressure wave 

are not in reasonable physiological ranges. The PPG signal quality was also evaluated Li and 

Clifford (2012) which matches a running PPG template with the pulsatile beat by dynamic 

time warping, simple matching, linear resampling matching and a clipping detection. When 

the signal quality was equal or greater than 0.9 and the corresponding HR or beat-to-beat 

interval derived from either the ABP or PPG did not surpass a predefined HR threshold (4s 

for ASY, 40 bpm for EBR, 140 bpm for ETC, 100 bpm for VTA and 250 bpm for VFB), the 

alarm was suppressed as a false alarm.

It should be noted that no ECG signal quality metrics were used in our benchmark 

algorithms, although previous studies using the agreement of beat detectors for signal 

quality estimation have shown great promise in this area Behar et al. (2013). We also note 

that no ECG-based rhythm detection was used, although various open source algorithms 

were made available to the Challenge participants Li et al. (2014a).

2.2. Voting algorithms

We also implemented a voting approach to combine together varying numbers of algorithms. 

A simple unweighted voting of the N best performing final entries, ranked by their score on 

the training data (to prevent overfitting on the test scores, was implemented). N was varied 

from 1 to 37 with tied, absent or no vote was treated as ‘true’. In other words, a forward 

selection approach was used to select which algorithms should be combined.

3. Challenge data

Data for the Challenge consisted of waveform recordings from ICU patients in four hospitals 

in the USA and Europe, representing three major manufacturers of ICU monitoring 

equipment. For each arrhythmia alarm matching our selection criteria, we collected all 

available multi-parameter waveforms (including at least five minutes of data before and after 

each alarm), as well as the alarm messages themselves, and any other status messages 

reported by the monitor. If possible, we also collected a list of the fiducial points and types 

of beats that were detected by the monitor; in some cases, the monitor did not provide this 

information. All of the signals were filtered in order to remove spectral characteristics that 

might identify the manufacturer or the country of origin. They were then resampled to 250 

Hz and scaled to a 16-bit range. The specific names of the various alarm annotations were 

also normalized to anonymize the data.

Clifford et al. Page 5

Physiol Meas. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1. Expert labeling

To build the “gold standard” list of true and false alarms, a team of experts visually 

inspected the waveform record at the time of each alarm. Each annotator worked 

independently and was assigned a randomized list of patients to review. For each alarm, the 

annotator was initially shown 15 seconds of waveforms prior to the alarm and 5 seconds 

after it, but could resize and scroll the window in order to examine earlier and later portions 

of the record. If possible, the monitor-computed beat labels were also displayed.

After examining the alarm label and surrounding waveforms, the annotator was asked to 

press one of four buttons: True, False, Reject, or Uncertain. The Reject label was used for 

records that were clearly fallacious (usually due to bugs in the monitor's data-exporting 

interface.) In order for an alarm to be included in the Challenge data set, it had to be 

independently reviewed by at least two annotators of whom a two-thirds majority had to 

agree that the alarm was either True or False.

3.2. Training and test data

From the set of 1,564 alarms meeting all of the above criteria, we randomly picked 1,250 to 

serve as training and test data for the Challenge (see table 1). The distribution of alarms was 

chosen to reflect the distribution of alarm types in the original data set (17% ASY, 11% 

EBR, 17% ETC, 47% VTA, 7% VFB) as well as to maintain the approximate true-to-false 

ratio for each alarm type. No single patient appeared in both the training and test sets, and no 

single manufacturer or hospital made up more than half of the records in either set.

Up to four signals were selected from each record: two ECG leads and up to two other 

signals, including ABP, PPG, or respiration. The public training set consisted of 375 “short” 

records, containing only the five minutes leading up to the alarm, and 375 “long” records, 

containing a further 30 seconds after the alarm. The hidden test set consisted of 250 “short” 

records (used only for Event 1) and 250 “long” records (used for both events.) Each record 

was labeled with the alarm type, and in the case of the training set, whether the alarm was 

true or false. The records did not include the monitor-computed beat fiducial points or heart 

rate.

4. Scoring

Participants were asked to submit their entries in the form of a ‘zip’ or ‘tar’ archive that 

included everything needed to compile and run their program on a GNU/Linux system, 

together with the results that they expected their program to produce for the records in the 

public training set. When an entry was uploaded, the scoring system would first attempt to 

compile the program and run it over a randomly selected subset of the training set; if this did 

not produce the expected results, evaluation stopped and the error messages were sent back 

to the submitter.

Once the program was successfully compiled and validated, it was then invoked for each 

record in the test set. (For the 250 “long” records, the program was invoked twice: once with 

the full record as input, and once with a truncated version.) If the program failed to produce 

output for a given record, it was treated as if it had classified that alarm as true.
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For each category, the entry's score was computed based on the number of true positives 
(true alarms classified as true), false positives (false alarms classified as true), true negatives, 

and false negatives. The scoring function was designed to treat false negatives – genuinely 

life-threatening events that the program considered unimportant – especially harshly, and 

was defined as:

5. Results of the Challenge

A total of 29 closed-source entries and 215 open-source entries were submitted in the 

Challenge in 2015. Table 3 provides a breakdown of the top scoring entries. A different 

contestant ranked highest in each separate alarm category, indicating that there was no best 

general algorithm. Interestingly, a simple majority vote of all the 38 competitors’ final 

entries gave scores of 60.15 in the real-time event and 62.41 in the retrospective event. These 

moderate performances, well below the top 10 algorithms, indicating that simple voting 

schemes do no yield an improved performance in this context, since the performance tail is 

long. A voting algorithm using the N=13 best performing final entries ranked by their score 

on the training data, provided the highest scores in both event 1 (84.26) and event 2 (87.04), 

although N=11 was sufficient to beat the best performance in either event. Figure 1 

illustrates the performance of a simple voting approach for both the retrospective and 

prospective parts of the challenge. Note that performance only degrades above 13 

algorithms.

6. Review of Articles in the Special Issue

A total of 13 articles were reviewed and revised in time to be accepted for this special issue. 

Most authors had originally entered the Challenge, and submitted updated versions of their 

algorithms, which should be made available by the authors through their open source 

licenses. The top reported results on the hidden test set for each alarm type were: ASY: 

97.4% (Plesinger et al. (2016)), EBR: 93.8%(Krasteva et al. (2015a)), ETC: 100.0% (Hoog 

Antink et al. (2016)), VFB: 88.7% (Rodrigues and Couto (2016)), and VTA: 76.7% (Kalidas 

and Tamil (2016)), yielding an average best of 91.2%.

Each algorithm published in this issue is reviewed below according to four standard stages 

of algorithm function:

1. Pre-processing and signal conditioning

2. Beat detection

3. Beat classification

4. Alarm classification

The purpose of this standardized summary is to glimpse at a myriad of advanced approaches 

used by the competitors in a format that allows the reader to quickly identify both the 

commonalities and the originality of all the approaches. Finally, the last two articles in this 
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review (Tsimenidis and Murray (2016); Daluwatte et al. (2016)) did not attempt to reduce 

the number of false alarms, but rather provide some useful insights into the relationship 

between signal quality metrics and false alarm rates.

6.1. Ansari et al. (2016)

Ansari et al. (2016) proposed an algorithm that uses several beat detectors within each 

channel, followed by beat classification, and heuristics to determine the veracity of the 

alarm. The proposed algorithm operates on 16 seconds of worth of data prior to the alarm. 

The algorithm achieved a performance accuracy on the final test data-set of ASY: 86.4%, 

EBR: 79%, ETC: 93.9%, VFB: 61% VTA: 67.6%, yielding a total average of: 76.2%.

Preprocessing—The preprocessing steps consisted of re-sampling the signals to 125 Hz. 

The ECG signals were band-pass filtered between 0.5-40 Hz, while the pulsatile signals 

were band-pass filtered between 0.5-10 Hz. Baseline and trend estimation and subtraction 

was accomplished with a 250 point median filter. The authors also removed pacemaker 

activity by thresholding on the peak amplitude.

Beat Detection—Ansari et al. (2016) implemented 7 different QRS detectors for each 

ECG signal, and 3 peak detectors for each of the pressure signals. The fiducial points for all 

peaks were re-aligned by picking the maximum within 50 ms of the detected beat for ECG 

signals, and the maximum within 50 ms before or 1 second after the detected beat for the 

ABP or PPG signals. The outputs of all the 20 beat detectors were then fused by adding their 

binary outputs (with at least 1 beat under AS, at least 2 for other alarms).

Beat classification—ECG beat classification was performed for the VFB and VTA 

alarms only. The beat classifier was a decision tree that utilized features derived from the 

Stockwell Transform on a 200 ms window.

Alarm classification—A decision tree classifier was trained with five fold cross 

validation in order to determine the veracity of a beat. The final decision regarding the alarm 

veracity was made based on a set of heuristics.

6.2. Eerikäinen et al. (2016)

Eerikäinen et al. (2016) produced an algorithm that achieved a performance accuracy on the 

final test data-set of ASY: 89.2%, EBR: 71.5%, ETC: 99.1%, VFB: 81.8% VTA: 68.1%, 

yielding a total average of: 77.3% and a retrospective average of 81.5%.

Preprocessing—All signals were down-sampled to 125 Hz and the processing window 

length was optimized for each arrhythmia type (varying from 14 to 16 seconds prior to the 

alarm). Noise levels were estimated based on the power estimated from the regions in-

between beats.

Beat Detection—Beat detection on the ECG waveforms were performed using a QRS 

detector based on wavelets and auto-regressive modeling of the R-peak Rooijakkers et al. 

(2012). The pulsatile peaks were detected via the open source detector wabp.
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Alarm classification—A random forest classifier was trained for each of the five different 

types of alarms. The technique focused on comparing pairs of beats. Two beats were 

considered a match if they were within 100 ms of each other. Delays across channels were 

compensated for if the standard deviation of 10 consecutive beats was less than 5% of the 

mean delay. For the VTA and VFB alarms, only the F1 statistic between ECG leads was 

used, in addition to spectral purity indexes. An alarm with an F1 equal to zero was identified 

to be false.

6.3. Fallet et al. (2016)

Fallet et al. (2016) proposed an algorithm that detects beats in the ECG sand the pulsatile 

signals, provided their signal quality is good. The authors also use a spectral purity metric to 

aid on the classification of VTA and VFB alarms. The algorithm achieved a performance 

accuracy on the final test data-set was ASY: 84.2%, EBR: 82.4%, ETC: 86.9%, VFB: 87.1% 

VTA: 72.7%, yielding a total average of: 77.07% and an average on the retroactive category 

of 85.0%.

Preprocessing—The preprocessing stage for this algorithm consisted of 50 Hz power line 

noise removal. For the calculations of spectral purity indexes, the signal was down-sampled 

to 35 Hz and a 5-sample moving average filter was applied. The signal quality for the 

pulsatile waveforms was estimated through the ppgSQI and jSQI methods Clifford et al. 

(2015).

Beat Detection—The QRS component of the ECG signal was detected through a 

morphological analysis approach with an adaptive approach from Yazdani and Vesin (2014). 

Beat detection on the pulsatile signals was performed using the algorithm proposed by 

Arberet et al. (2013). The heart rate time series was then derived through a multi-channel 

oscillator based adaptive frequency tracking algorithm.

Beat classification—The spectral purity index Sörnmo and Laguna (2005); Goncharova 

and Barlow (1990) was used a feature to distinguish between normal, ventricular 

tachycardia, ventricular flutter/fibrillatory arrhythmia (the index was expected to be higher 

for abnormal rhythms).

Alarm classification—A set of heuristics rules was developed for the final alarm 

classification. In the case of the ASYS alarm, the algorithm applied majority voting based on 

the heart rate series from individual ECG and pulsatile channels. The pulsatile channels were 

only used if the quality was above a certain threshold. A linear discriminant analysis 

classifier was used for the retrospective event to corroborate the ECG output, but again, only 

if the pulsatile signal quality was sufficiently high. If the pulsatile quality was low, a set of 

heuristic thresholds was applied to the minimum heart rate from the last five consecutive 

beats using 16 seconds before and five seconds after the alarm. The extreme tachycardia 

alarm only used pulsatile waveforms: if the quality was good, the alarm was checked against 

the pulsatile rate, else it defaulted to true. Ventricular flutter/fibrillatory alarms were checked 

through the maximum average spectral purity index calculation over a 3 second window, and 

no pulsatile information was used. Finally, ventricular tachycardia alarms used a set of 
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heuristic rules encompassing pulsatile waveform heart-rate series, as well as current versus 

previous values of the ECG spectral purity indexes.

6.4. Hoog Antink et al. (2016)

The algorithm proposed by Hoog Antink et al. (2016) used 16 seconds of data prior to the 

alarm event. The algorithm achieved a performance accuracy on the final test data-set of 

ASY: 76.7%, EBR: 74.2%, ETC: 100%, VFB: 72.8% VTA: 71.5%, yielding a total average 

of: 78.2% and retrospective average of 74.4%.

Preprocessing—The pre-processing steps for this algorithm included re-sampling of the 

signals to 100 Hz, band-pass filtering with a pass-band region of 1-30 Hz. The signals were 

also normalized to zero mean and unit variance using statistics calculated on 5-minutes of 

data prior to the alarm.

Beat Detection—Beat detection was achieved through the Bayesian fusion of several 

inter-beat interval estimators that rely on self-similarity: lag adaptive short-time auto-

correlation, average magnitude difference function, and maximum amplitude pairs Brüser et 

al. (2013). A quality metric based on the reliability of the fused estimates was derived from 

the peak height to area of the fused similarity curve.

Alarm classification—The classifiers chosen for the alarm validation included binary 

classification trees, regularized linear discriminant analysis, a support vector machine, and a 

random forest. The authors utilized a combination of both alarm specific and global 

classifiers (i.e, classifiers trained to detect a general false alarm). Their final choices were 

linear discriminant analysis for EBR, VFB, and VTA, a binary classifier for ETC, and a 

random forest model for ASY. A superset of 88 features was developed from: 24 beat-to-

beat interval statistics and correlogram analysis of interval time series. From this superset, 

subsets were selected according to alarm types.

6.5. Kalidas and Tamil (2016)

The algorithm proposed by Kalidas and Tamil (2016) used 10 seconds of data prior to the 

alarm. The algorithm achieved a performance accuracy on the final test data-set of ASY: 

80.7%, EBR: 71.7%, ETC: 99.1%, VFB: 74.1% VTA: 76.7%, yielding a total average of: 

79.4% and retrospective average of 80.2%.

Preprocessing—Baseline wander was estimated with a low-pass filter with a 1 Hz cuto 

and then subtracted from original signal. Flat line artifact was detected by testing for 

identical sample values in 2 second windows. ‘Zig-zag’ artifacts were detected by testing for 

alternating positive and negative slopes in consecutive samples over 2 second periods.

Beat Detection—The Pan and Tompkins (1985) algorithm was used to detected QRS 

complexes in the ECG signal. Pulsatile peaks were detected through first order 

differentiation.
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Alarm classification—No pulsatile signal information was used for VFB and VTA 

arrhythmia alarms. For each alarm type, an individual support vector machine and set of 

heuristics was developed. The features used into these classifiers included the ECG-derived 

heart rate, and PPG-derived heart rate if morphology was considered valid (excluding the 

VFB and VTA alarms). The VFB and VTA alarms also included an additional set of features 

related to the power spectra of the ECG waveforms.

6.6. Krasteva et al. (2016)

The algorithm proposed by Krasteva et al. (2016) used 3-7.5 second windows prior to the 

alarm event, with the specific duration tuned for the each alarm type. The algorithm 

achieved a performance accuracy on the final test data-set of ASY: 88.0%, EBR: 93.8%, 

ETC: 90.7%, VFB: 72.7% VTA: 72.6%, yielding a total average of: 80.0%.

Preprocessing—The ECG channels were fused to form two data streams: a magnitude 

(second norm) and a velocity (second norm of the first order derivative). The ECG signal 

quality was estimated using 3 frequency bands on 4s interval windows: high frequency was 

used to estimate spikes from artifacts and pacemakers, medium frequency range was used to 

estimate the signal level and power line interference (with intra-beat temporal statistics used 

to estimate power line noise level), and the low frequency band was used to estimate 

baseline wander. Pulsatile signals were low-pass filtered with a 1 Hz cut-off. The pulsatile 

signal quality was estimated with a periodicity index, and mean peak-to-peak amplitude 

values.

Beat Detection—A nonlinear filtering approach, with adaptively updated upper and lower 

thresholds, was used for QRS detection. The beat detector had a conventional refractory 

period of 150 ms.

Beat classification—A beat classifier was developed for supra-ventricular and ventricular 

ectopic beats. A decision tree model was also used, based on features that included: 

information from template correlation matching, beat morphology features, and RR statistics 

Krasteva et al. (2014, 2015a).

Alarm classification—The alarm classification algorithm used a set of heuristic rules 

based on heart rate, dominant frequency for ventricular rate, phase space area from both the 

ECG magnitude and velocity, and pulsatile quality metrics.

6.7. Liu et al. (2016)

Liu et al. (2016) proposed an algorithm which processed 60 seconds of data prior to the 

alarm event. The algorithm achieved a performance accuracy on the final test data-set of 

ASY: 88.7%, EBR: 77.7%, ETC: 89.9%, VFB: 67.7% VTA: 61.0%, yielding a total average 

of: 71.6% and retrospective average of 75.9%.

Preprocessing—The ECG and pulsatile signals were band-pass filtered with the pass-

band frequency region of 5-40 Hz for the ECGs and a pass-band frequency region of 5-35 

Hz for the pulsatile waveforms.
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Beat Detection—The authors developed an ECG R wave detection algorithm that used the 

average maximum amplitude from 6 non-overlapping segments. Pulsatile beats were 

detected via wabp . The final detected beats were validated based on intra- and inter-channel 

verification of the detected beats along with a set of rules involving the number of detected 

beats, R amplitude, and distance metrics between the heart rate time series.

Beat classification—A set of heuristics were applied to classify beats. The features 

included: morphology analysis based on correlation against template, the ratio between 

changed beats and total beats in segment, QRS width, and maximum heart rate.

Alarm classification—A set of decision rules was applied to channels that passed a data 

quality check (if the result of the test failed, the alarm was set to false). The features used for 

the second classification step included number of valid feature points, heart rate, and 

maximum heart rate at current analysis window.

6.8. Plesinger et al. (2016)

Plesinger et al. (2016) developed an algorithm that used information across multiple 

channels and sought to detect regions contaminated by artifacts. The algorithm achieved a 

performance accuracy on the final test data-set was ASY: 97.4%, EBR: 83.5%, ETC: 87.8%, 

VFB: 80.3% VTA: 75.0%, yielding a total average of: 81.6% and a retrospective average of 

84.9%.

Preprocessing—The preprocessing step for this algorithm started with the detection of 

artifacts based on the temporal statistics of the signal under analysis. Noise and pacemaker 

activity were estimated based on spectral content of the 50-70Hz frequency band. The 

pulsatile signals were low passed filtered with cut-off frequency at either 5 or 20 Hz. The 

following time windows prior to the alarm event were used to process the alarm data: ASY= 

14s, EBR=16s, ETC=14s, VFB=13s, VTA=10s.

Beat Detection—The ECG QRS detection was based on an analysis of Fourier and Hilbert 

Transform derived envelopes, with a 110 ms refractory period between detection. Pulsatile 

based beat detection was evaluated on estimated temporal slope values.

Beat classification—Beat classification was performed using spectral features and 

descriptive residue statistics over 120 ms and 500 ms windows.

Alarm classification—The alarm classification stage for the ASY, VTA, and VFB alarms 

included using the count of invalid features obtained during the preprocessing stage 

described above. Additional features included statistics for the RR series obtained from 

multiple channels. The sum of the invalid areas had to be zero in order for the algorithm to 

accept the RR series as a regular rhythm for the specific channel. Finally, a set of heuristic 

rules was applied based on the derived RR series and the invalid region statistics.
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6.9. Rodrigues and Couto (2016)

Rodrigues and Couto (2016) proposed an algorithm that uses two open-source beat detectors 

on the ECG waveforms as well as wabp on the pulsatile signals. The authors also performed 

beat classification based on the phase of the R wave in the ECG signals. The algorithm 

achieved a performance accuracy on the final test data-set of ASY: 83.6%, EBR: 71.4%, 

ETC: 99.1%, VFB: 88.7% VTA: 61.4%, yielding a total average of: 74.2% and a 

retrospective average of 74.4%.

Preprocessing—All signals were re-sampled to 125 Hz, and the ECG waveforms were 

processed for pacemaker detection and removal. Baseline noise was removed by first 

estimating it with a 125 sample median filter, followed by subtraction from the original 

signal. Flat signal regions were identified by thresholding on low variance over 2 second 

windows.

Beat Detection—ECG QRS detection was performed using gqrs and osea software 

packages Hamilton (2002). The beats on the pulsatile signals were detected with the wabp 
software. The authors developed their own specific beat detectors for ventricular fibrillation 

beats by fitting a parabola on 125 ms windows. Following the method of Li et al. (2008), a 

quality index was developed based on the fraction of matched beats from gqrs and the osea 
software packages Hamilton (2002) on the ECG channels.

For pulsatile signals, the quality was estimated using the morphology of consecutive beats 

estimated from correlation and dynamic time warp analysis, per Li and Clifford (2012). The 

detected beats were fused based on quality indexes and a tolerance window of 150 ms. 

Pulsatile beats were compensated with a delay estimated from initial detections.

Beat classification—Beat classification was based on a set of heuristics modified from 

the osea software packageHamilton (2002). These set of rules included statistics derived 

from inter-beat interval and QRS duration. Rodrigues and Couto (2016) also developed a 

four-category feature, termed ‘polarity’ that characterized the different types of phases of the 

R wave into: positive, negative, positive-negative, negative-positive (the last two 

representing biphasic R waves).

Alarm classification—Alarm classification was calculated from a set of decision rules 

based on signal quality, but with priority weight given to ECG signals.

6.10. Sadr et al. (2016)

Sadr et al. (2016) proposed an algorithm that uses features and processing specific 

arrhythmias being tested. The algorithm achieved a performance accuracy on the final test 

data-set was ASY: 82.4%, EBR: 71.13%, ETC: 99.1%, VFB: 65.5% VTA: 68.0%, yielding a 

total average of: 69.9% and a total average on the retrospective event of 74.0%.

Preprocessing—Baseline removal was performed by first estimating the baseline 

component through median filtering and then subtracting this baseline component from the 

original signal.
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Beat Detection—A Hilbert Transform based QRS detector based used for estimating the 

ECG beats Benitez et al. (2001). The wabp algorithm was used to detect the peaks on the 

ABP and PPG waveforms, and a quantile algorithm was also used to locate peaks on the 

PPG waveform.

Alarm classification—The alarm verification was performed on a 16 second window of 

data prior to the alarm. For all of the alarms with the exception of VTA, the alarm data 

streams had to pass four signal quality checks in order to be deemed a true alarm, otherwise 

they were tagged as being false. Pulsatile signal information was not used for the ETC and 

VTA alarms. The classification also consisted of decision trees based on several extracted 

features customized to each alarm type, including: threshold crossing intervals, auto-

correlation function values, complexity measures, and QRS template parameters.

6.11. Zong et al. (2016)

Zong et al. (2016) is unique in that it proposed an algorithm based on pulsatile waveform 

features. The algorithm was developed and tested using the MIMIC II database Saeed et al. 

(2011) rather than the Challenge data, and was not open sourced.

Preprocessing—Pulsatile signals were low-pass filtered with cuto set to 16 Hz, and a 

signal quality estimate was obtained using the technique described in Zong et al. (2004).

Beat Detection—Beat detection was performed with the pulsatile signals using wabp and 

with a forced detection after a period of 2 seconds from the last detected pulse.

Beat classification—The pulsatile beats were classified based on the abnormality index 

from Sun et al. (2006)

Alarm classification—The alarm classification was achieved using features from 

pulsatile signals that included: pulse-to-pulse interval, amplitude, maximum slope, signal 

quality, and rhythm. The classifier was developed based on set of heuristic rules specific to 

each alarm type.

6.12. Daluwatte et al. (2016)

The focus of this article was on developing a better understanding between signal quality 

and false alarms. The authors developed arrhythmia specific quality indexes, and 

investigated if existing quality indexes can distinguish between true alarms versus noise. 

Two humans annotated each ECG signal 10s prior to the alarm as either of high or low 

quality. Disagreements were not included in the analysis. The authors used 18 signal quality 

indexes from existing literature, and selected the top three algorithms from ROC analysis on 

the manually annotated data-set. The ECG beats were detected using the U3 transform 

Paoletti and Marchesi (2006).

6.13. Tsimenidis and Murray (2016)

The article by Tsimenidis and Murray (2016) investigated the relationship between ECG 

quality and false alarms. The authors investigated the signal quality of ECG leads 8 seconds 
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prior to the alarm event. They broke the analysis down into three frequency bands: low 

frequency from 0.1-1 Hz, mid frequency from 10-20 Hz, and high frequency from 20-40 Hz. 

The ECG's major power spectrum component was expected to be located mostly from 1-10 

Hz. The authors report that the power on all the three frequencies was significantly greater 

for a false alarm versus a true alarm.

7. Conclusions

In summary, the PhysioNet/Computing in Cardiology Challenge 2015 provided several key 

additions to the field of false alarm suppression in critical care. First we note that for the top 

performing entrants, it was the VTA alarm that proved the hardest to classify accurately. 

This is partly because, at low heart rates, the signal becomes ‘more normal looking’ in the 

other signals. This was previously noted in Aboukhalil et al. (2008). To-date, there has been 

little to address this issue, although the current challenge has made a move towards this. 

Second, we note that retrospective scores were generally higher than ‘real-time’ scores, with 

the highest performing retrospective approach only suppressing 1% of the true alarms, while 

80% of the false alarms were suppressed. Although debatable, this may be acceptable as a 

clinical algorithm if a 30 second window were acceptable. We suggest that this may spur a 

re-consideration of the AAMI guidelines for maximum alarm latency. Third, we note that 

voting algorithms together can produce superior results to even the best algorithm. Such an 

approach can also lead to a more robust implementation, although it may be significantly 

more computationally intensive. It is also important to note that too many naive voters (more 

than 13 in the case of the 2015 Challenge) can reduce the accuracy of the label or answer. In 

Zhu et al. (2014) and Zhu et al. (2015) a voting system for algorithm (and human) 

annotations of physiological data was described, which incorporates both the physiology and 

the individual annotator's accuracy as a function of objective features (such as signal quality) 

to produce a weighted voting scheme to guarantee that all voters added extra information. 

We suggest that such approaches will become ever more important as computational power 

becomes increasingly less expensive. We also note that this means that all competitors in the 

Challenge added something to the final answer!

Finally we note some limitations of the competition. A larger database is needed with more 

patients, longer recordings, more leads and abnormalities (such as arrhythmias). We intend 

to work with industry and researchers alike to enhance the Challenge database in all these 

areas and would be grateful for continued contributions of data and source code, which we 

will post together with all the open source algorithms and annotated data from the 2015 

PhysioNet/Computing in Cardiology Challenge. The latter can be found on PhysioNet's 

website at http://physionet.org/challenge/2015.
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Figure 1. 
Performance of voting algorithms as a function of number of algorithms for both the real 

time and retrospective events. Algorithms were chosen by ranking them in descending order 

of score on the training data, and the test data score was reported (to prevent over-estimation 

of the score). Equal weights were given to all algorithms and a tied, absent or no vote was 

treated as ‘true’.
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Table 1

Types of alarms and signals used in the Challenge. Each of the N records included two ECG channels.

Training (N=750) Test (N=500)

False True False True

ASY 100 20 90 12

EBR 45 45 38 26

ETC 8 131 5 68

VTA 253 90 176 45

VFB 52 6 34 6

PPG 227 178 158 83

ABP 59 63 58 39

Both 172 51 127 35

Total 458 292 343 157
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Table 2

Final scores for the top 9 entrants in both events (real-time and retrospective) ranked by overall real-time 

score, the three example algorithms provided and a voting approach.

Event 1 (Real-time) Event 2 (Retrospective)

Entrant TPR TNR Score TPR TNR Score

Plesinger et al. (2015) 92% 88% 81.39 95% 88% 84.96

Kalidas and Tamil (2015) 94% 82% 79.44 94% 86% 81.85

Krasteva et al. (2015b) 
* 93% 83%

79.41
* 93% 84%

79.56
*

Couto et al. (2015) 89% 91% 79.02 88% 92% 78.28

Fallet et al. (2015) 94% 77% 76.11 99% 80% 85.04

Hoog Antink and Leonhardt (2015) 93% 77% 75.55 90% 82% 75.18

Eerikäinen et al. (2015) 90% 82% 75.54 89% 85% 75.52

Ansari et al. (2015) 89% 84% 74.48 89% 87% 76.57

Liu et al. (2015) 89% 79% 71.68 93% 78% 75.91

Example Algorithm 1 76% 44% 41.41 73% 46% 40.83

Example Algorithm 2 86% 38% 45.07 84% 38% 44.37

Example Algorithm 3 64% 76% 45.59 61% 77% 47.35

Voting Algorithm (N=11) 94% 87% 82.78 94% 93% 86.67

Voting Algorithm (N=13) 94% 90% 84.26 94% 94 % 87.04

Best performances of competition entrants are in bold. TPR = fraction of true alarms correctly classified; TNR = fraction of false alarms correctly 
classified.

*
denotes an unofficial (“closed-source”) entry. Underlined scores are the highest unofficial scores in the table.
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Table 3

Performances of the competitors in both events (real-time and retrospective) ranked by overall real-time score 

during the follow-up phase (Spring 2016).

Real-time Retrospective

Authors TPR TNR Score TPR TNR Score

Plesinger et al. (2016) 93% 87% 81.62 (81.39) 95% 88% 84.96

Krasteva et al. (2016) 92% 87%
80.07 (79.41

*
)

93% 88%
81.75 (79.56

*
)

Kalidas and Tamil (2016) 94% 82% 79.44 94% 86% 80.29 (81.85)

Hoog Antink et al. (2016) 95% 78% 78.20 (75.55) 93% 76% 74.45 (75.18)

Eerikäinen et al. (2016) 93% 80% 77.39 (75.54) 95% 83% 81.58 (75.52)

Fallet et al. (2016) 95% 76% 77.07 (76.11) 99% 80% 85.04

Ansari et al. (2016) 89% 85% 76.23 (74.48) 88% 84% 73.40 (76.57)

Rodrigues and Couto (2016) 92% 78% 74.28 (79.02) 92% 78% 74.46 (78.28)

Liu et al. (2016) 89% 79% 71.68 93% 78% 75.91

Sadr et al. (2016) 95% 65% 69.92 98% 66% 74.03

Tsimenidis and Murray (2016) 92% 66% 67.88 92% 69% 68.71

Daluwatte et al. (2016) - -

Zong et al. (2016) - -

Best performances are in bold. TPR = fraction of true alarms correctly classified; TNR = fraction of false alarms correctly classified. Numbers in 
the parentheses are the score of competition entrants if they are different with those in the follow-up phase.

*
denotes an unofficial (“closed-source”) entry.
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