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Abstract

The contribution of collections of rare sequence variations (or ‘variants’) to phenotypic expression 

has begun to receive considerable attention within the biomedical research community. However, 

the best way to capture the effects of rare variants in relevant statistical analysis models is an open 

question. In this paper we describe the application of a number of statistical methods for testing 

associations between rare variants in two genes to obesity. We consider the relative merits of the 

different methods as well as important implementation details, such as the leveraging of genomic 

annotations and determining p-values.
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1. Introduction

1.1. Rare variants and the ‘hidden heritability’ of complex traits

Genome wide association (GWA) studies have been pursued for many diseases and 

phenotypes. Although the results of these studies have been mixed, with some studies 

identifying more compelling associations than others, virtually all of these studies have 

resulted in the discovery of variants that collectively only explain a small fraction of the 

heritable component of the diseases and phenotypes they have considered [1]. This fact has 

not only raised important questions about the degree to which common variants, which are 

typically of focus in GWA studies, influence phenotypic expression, but also the best way to 

identify factors not detectable via current common-variant-based GWA study protocols [2] 

that contribute to a ‘hidden heritability’ behind phenotypic expression.

Recently it has been argued that collections of rare variants could contribute to phenotypic 

expression over-and-above common variants [3–4]. The intuition behind this argument is 

that although each rare variant may have a small overall effect on phenotypic expression, 

collectively these variants may have a moderate or even more pronounced effect [3–4]. 

Rapid developments in high-throughput DNA sequencing technologies are likely to facilitate 

searches for rare variants that may influence phenotypic expression, but are not the only item 

necessary for a successful study of rare variants. Also needed are appropriate study designs 

and subject sampling methods, data analysis methods, and ways of validating or 

conceptualizing the biological influence of multiple rare variants on phenotypic expression 

once they are found to be associated with a phenotype.

In this paper we describe a number of different statistical methods for testing the hypothesis 

that collections of rare variants are associated with a qualitative phenotype in a case/control 

sampling setting. These methods build off the notion of ‘collapsing’ a number of rare 

variants into a single set whose collective frequency is contrasted between case and control 

groups [5–6]. Many approaches involve regression or regression-like models in which 

dummy variables indicating the presence (i.e., individuals assigned a dummy variable value 

of 1.0) or absence (0.0) of a variant are used. For the collapsed set of variants, an individual 

is ultimately assigned a value of 1.0 if they have any of the rare variants among a larger set 

and 0.0 otherwise. This collapsed dummy variable can then be tested for association by 

testing the regression coefficient associated with the dummy variable [7]. Other regression 

approaches consider the effects of each individual variant, no matter how rare, as well as 

collapsed sets of variants [8]. We apply these and other methods to a case/control study of 

obesity and compare the results of the application of each. We also consider extensions of 

the proposed statistical analysis methods.

Before describing the data set, statistical methods, and the results of their application, 

however, we provide brief descriptions of two overarching frameworks for the study of the 

collective effects of rare variants on phenotypic expression: one leveraging functional 

genomic annotations and one considering the collective effects of variants in defined 

contiguous genomic regions.
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1.2. Collapsing variants based on functional annotations

Testing collections of rare variants for association to a phenotype requires some way of 

grouping or collapsing variants into a coherent set; i.e., defining the set whose collective 

frequency is tested for association. This can be approached by defining a set based on 

functional annotations associated with the genomic regions harboring the variants to be 

tested for association. For example, one could test the collective frequency differences of 

coding variants, non-synonymous coding variants, variants in known transcription factor 

binding sites, or conserved sites, between cases and controls. Such groupings could lead to 

easily interpreted biological associations but, ultimately, would only be as good and reliable 

as the annotations used.

1.3. Moving window analysis

An alternative to defining sets of collapsed variants based on functional genomic annotations 

is to consider all the variants in a genomic subregion defined by its size and test these 

variants for association. Such subregions could then be systematically tested over the entire 

genomic region of interest. By starting at one end of a genomic region of interest, testing 

variants within the ‘window’ defined by the subregion, and then moving the window to an 

adjacent subregion, testing that subregion, and continuing this process until the entire region 

is covered would provide a test of the hypothesis that some subregions within the broader 

region of interest harbor collections of variants associated with a phenotype. This moving 

window approach can be repeated with different window sizes, including overlapping 

windows, but at the cost of increased type I error due to the multiple tests.

1.4. Accommodating other sources of variation and assessing statistical significance

In any test of genetic association there are a few things that need to be considered. For 

example, stratification issues need to be accommodated or controlled for. This can be done 

by ensuring that the subjects used in a study are matched for genetic background or the 

statistical test used is appropriately adjusted for potential stratification [9]. In addition, in 

order to assess the statistical significance of an association study involving multiple variants 

within a genomic region, appropriate control for multiple comparisons must be made [10]. 

Finally, accommodating covariate effects (e.g., gender, age, other genetic factors, ancestry 

information, etc.) in association analysis is important, but may not be trivial for many 

statistical models. Thus, gauging the ability of different statistical analysis models to 

accommodate covariates may be of particular importance in rare variant analysis settings.

2. Sequencing the MGLL and FAAH genes in obese and control individuals

2.1. DNA sequencing and sample selection

Genomic intervals covering two genes that encode the endocannabinoid metabolic enzymes, 

FAAH and MGLL, were sequenced in 289 individuals of European ancestry using the 

Illumina GA sequencer. Ancestry was determined using a panel of ancestry informative 

markers and individuals with an outlying genetic background were removed from the 

analysis. Sequencing was done using 36 base pair reads. The median coverage was 60X 

across the individuals sequenced. The program MAQ was used for alignment and variant 
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calling, resulting in 1410 high quality single nucleotide variants (SNVs; 228 in the FAAH 

gene and 1182 in the MGLL gene) which were used for association analysis. The sequenced 

regions were captured using long range PCR and represented a total of 188,270 nucleotides. 

The 289 individuals included 147 normal controls (Body Mass Index (BMI) <30) and 142 

extremely obese cases (BMI >40).

2.2. Genomic annotations, window definitions, and multiple comparisons

We leveraged genome annotations from the UCSC genome browser to identify sets of 

variants that reside in functionally-relevant regions of the genome. We identified sets of 

variants that reside within 5 different functional elements within the MGLL and FAAH 

genes: non synonymous SNVs (‘NS’), H3K27 acetylation sites, Fox2 interaction sites, 

Amidase protein domains, and all transcription factor binding sites (‘TFBS’). Variants 

within these elements were collapsed and tested for association with obesity. For the moving 

window analyses, we considered window sizes of 5 kb over the two genes. In order to 

accommodate multiple comparisons we identified the effective number of independent 

variants based on linkage disequilibrium (LD) using the method discussed by Nyholt [11]. 

This number provides a very rough approximation for the number of tests to be corrected for 

and was found to be 584 for our data. We assumed a nominal type I error rate of 0.05 in 

assessing statistical significance of variant associations, so our approximate multiple 

comparisons corrected p-value was 0.05/584 = 0.000086 (−log(p-value) = 4.06). Obviously, 

more sophisticated strategies for correcting for multiple comparisons, including possibly 

permuting cases and controls and repeating the entire moving window and functional 

annotation-based collapsed set analyses, need to be investigated.

3. Statistical methods for rare variant associations

We briefly describe 11 methods that can be used to test the hypothesis that collections of 

rare variants are associated with a phenotype. We also consider 9 high-dimensional 

regression and data mining procedures that can be used to simultaneously test the 

association of all individual variants, rare and common, as well as collapsed sets of variants. 

We did not consider covariates in these analyses. Space limitations preclude an in-depth 

discussion of each method so we provide references and only the main intuitions behind 

each method.

3.1. Single locus and general collapsed variant test-based methods

The following very brief descriptions of the methods we considered. Many of the papers 

describing these methods include discussions of possible extensions or alternative 

formulations of each method. We chose what we believe is the strategy that best represents 

the approaches described in those papers.

Single-locus tests (SL)—We considered the use of Fisher’s exact test to assess the 

association between each SNV and morbid obesity case/control status. We pursued single 

locus tests as a contrast for the multilocus-based collapsed variant tests since the power to 

detect an association involving a rare SNV is low.
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Li and Leal Collapsing Method (LL)—Li and Leal [6] proposed a collapsing method 

for testing for association with multiple rare variants. Briefly, the method collapses the 

genotype information across multiple (rare) variants into a single variable for each 

individual. This new variable can then be tested for association with a phenotype using a chi-

square test or the Fisher exact test. Given a collection of variants (grouped together based on 

function or position in a genomic region), we considered the subset of variants with a low 

minor allele frequency (MAF <0.02). Additionally, variants with virtually no difference in 

allele frequency between the cases and controls (Fisher test p-value >=0.6) were also 

removed. Using the remaining variants, a binary variable was defined for each individual as 

1 if the individual had the rare allele for any of the variants and 0 otherwise. Fisher’s exact 

test was used to compute the significance of the difference in allele frequency of this binary 

variable between the cases and controls. The p-value of the statistic was computed by 

permuting the case-control status of the individuals and determining the fraction of 

permutations for which the statistic was lower than or equal to the observed statistic.

Madsen and Browning Method (MB)—We implemented the groupwise association test 

described by Madsen and Browning [12]. Given a group of variants, this method tests for the 

presence of an excess of rare SNVs in the cases as compared to the controls. Each SNV is 

given a weight based on its minor allele frequency in the controls. A score is calculated for 

each individual using the individual genotypes and the weights of each variant. The sum of 

ranks of scores of the cases is used as the statistic (similar to Wilcoxon rank test). We 

computed the p-value for each statistic using a maximum of 1000 permutations. The test was 

performed using the ‘general disease’ model described by Madsen and Browning [12]. This 

model only allows for the analysis of rare variants and does not accommodate the effects of 

common variants.

Subset Selection Method (SS)—Recently, Bhatia et al. [13] have proposed an extension 

of the Collapsing method of Li and Leal. Instead of collapsing across all rare variants in a 

set, the method searches for a subset of variants which maximally discriminate between the 

cases and controls. The method described by Bhatia et al. [13] uses a greedy algorithm to 

identify a subset of variants for which their collective occurrence or union has a large 

difference in frequency between the case and control individuals. This model only allows for 

the analysis of rare variations (MAF < 0.02) and does not accommodate the effects of 

common variations. Fisher’s exact test was used to assess the significance of sets of variants 

at any point in the search for the optimal set.

Distance-based diversity (Dis)—Distances between the diploid sequences of all pairs 

of individuals in the study were calculated as one minus the identity-by-state similarity 

across the variant loci in a set. The dispersion of (i.e., variation among) the sequences within 

and between case and control groups was then compared using the ‘betadisper’ function of 

the ‘vegan’ package (version 1.17–0) in the R computing environment [14]. This function 

essentially implements Anderson’s [15] PERMDISP2 procedure for the analysis of 

multivariate homogeneity of group dispersions [15]. Tests of the hypothesis that there is 

greater diversity among the cases or controls was assessed empirically via a permutation test 

implemented in the function ‘permutest’ in the PERMDISP2 package.
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Omnibus haplotype frequency test (PHap)—We considered the omnibus haplotype 

test strategy outlined by Fallin et al. [16] and Zhao et al. [17] and implemented in PLINK 

[18] for sets of variants in contiguous regions. This approach essentially tests the hypothesis 

that haplotype frequency profiles are equal between cases and controls, where the 

haplotypes harbor the variants of interest.

Power-based diversity statistic Gst (Div)—We tested the hypothesis that for any set 

of variants the cases and controls would differ in terms of the diversity they exhibited across 

those variants. To conduct an appropriate test of this hypothesis, we implemented the 

procedure for assessing population differentiation based on the measure Gst described in 

equation 8 of Jost [19].

Sequence similarity statistic leveraging MDMR (Sim)—We considered the use of 

the multivariate distance matrix regression (MDMR) and Generalized Analysis of Molecular 

Variance (GAMOVA) approaches discussed by Wessel et al. [20] and Nievergelt et al. [21] 

to test the hypothesis that the multilocus genotype profiles encompassing a set of variant loci 

exhibited by the cases were more similar amongst themselves than with the controls. 

Distances between pairs of sequences were calculated by subtracting the average value of 

identity-by-state similarity across loci in each window from one. The approach was 

implemented by O. Libiger and M. Zapala in Python (script available at http://

polymorphism.scripps.edu/~cabney/). Permutation tests were used to assess statistical 

significance of any differences in similarity.

Ridge regression (Ridge)—We used ridge regression to test the hypothesis that 

individual variants and collapsed sets of variants (made into a dummy variable, as described 

in section 1.1 above) were associated with obesity level. We used the approach outlined by 

Malo et al. [22] for this analysis. The method of Hoerl, Kennard, and Baldwin [23] was used 

to estimate the ridge parameter.

Logic regression (Logic)—We also considered logic regression to identify combinations 

of variants that were associated with obesity. We used the implementation of logic regression 

that is available in the R computing environment package ‘LogReg’ [24]. We fit two logic 

trees and performed a null-model permutation test to assess significance of the association 

between identified sets of variants and case/control status.

Set based analysis (PSet)—We considered variant set-based tests similar in orientation 

to Fisher’s combined p-values methodology [25]. We use the method implemented in the 

PLINK software package for this analysis [18]. PLINK default parameters were used 

throughout the analysis. Statistical significance was assessed via a permutation test.

3.2. High-dimensional regression methods

As noted, we also considered the analysis of the data using high-dimensional regression and 

data mining procedures. These procedures could essentially consider all the variants, both in 

isolation or in collapsed sets, as predictors of the phenotype and were not used in moving 

window analyses.
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Lasso (L)—We considered the use of Lasso-based regression [26] using ‘bridge’ regression 

with the penalty parameter set to 1.0 and all other parameters set to their default value [27], 

as implemented in the ‘gpsbridge’ function of the R/GPS interface developed by Jerome 

Friedman for the R computing environment [14]. 10-fold cross validation was performed to 

select the best model.

Generalized path seeking regression (GPS)—We employed ‘bridge’ regression with 

all parameters set to their default value [27]), as implemented in the ‘gpsbridge’ function of 

the R/GPS interface developed by Jerome Friedman for the R computing environment [14]. 

10-fold cross validation was performed to select the optimal model and penalty value.

Stepwise Regression (SR)—We performed stepwise linear model selection via the 

Akaike Information Criterion (AIC) for choosing associated variants and collapsed variant 

sets using the function ‘stepAIC’ from the package ‘MASS’ developed for the R computing 

environment [14].

Classification and regression trees (SPM-CART)—We considered the CART 

method originally described by Breiman et al. [28] and implemented in the Salford systems 

data mining software suite (http://salford-systems.com/) to identify predictors of obesity.

Multiple adaptive regression trees (SPM-TreeNet)—We also used the TreeNet 

procedure originaly described by Friedman et al. [29] and implemented in the Salford 

systems data mining software suite (http://salford-systems.com/).

Multivariate adaptive regression splines (SPM-MARS)—We implemented the 

MARS procedure originally developed by Friedman [30] and implemented in the Salford 

systems data mining software suite (http://salford-systems.com/).

Random Forests (SPM-RF)—We explored the use of the Random Forests procedure 

introduced by Breiman [31] and implemented in the Salford systems data mining software 

suite (http://salford-systems.com/).

Conjunctive rule learner (Weka CRL)—We considered the conjunctive rule learner 

algorithm as described by Witten and Frank [32] and implemented in Weka [33] with no 

ranking.

Representative tree (Weka REPTree)—We used the representative tree algorithm as 

described by Witten and Frank [32] and implemented in Weka [33].

4. Results

4.1. Collapsed variants based on functional annotations

We first considered the significance of the difference of variants within the five functional 

elements derived from annotations for the FAAH and MGLL genes discussed in section 2.2. 

Table 4.1 provides the p-values associated with 10 multilocus data analysis methods 

described in section 3.1 (we did not consider single locus analyses here). From Table 4.1 it 
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can be seen that, with the exception of an analysis of collapsed variants within all 

transcription factor binding sites (the ‘TFBS’ column in Table 4.1) for the MGLL gene, 

there is not consistent evidence for association among the different methods.

4.2. Moving window analysis

We considered the application of the 11 different analysis methods to a moving window 

analysis of the MGLL and FAAH genes. The analysis explored adjacent windows of size 

5000 bases for the both the MGLL and FAAH genes. The −log(p-value) computed for each 

test is plotted on the y-axis of Figure 4.2 against the midpoint of each window. The different 

panels (i.e., contour plots) reflect different analysis methods, which are, from bottom to top: 

standard single locus analysis using Fisher’s exact test (SL); Li and Leal’s [6] method (LL); 

the Madsen and Browning [12] weighted average statistic (MB); the optimal subset selection 

method [13]; SS); the sequence distance-based diversity statistic based on the method of 

Anderson [15] (Dis); the sequence diversity statistic based on the power statistic of Jost [19] 

(Div); the sequence similarity based statistic discussed by Wessel et al. [20] and Nievergelt 

et al. [21] (Sim); the ridge regression statistic [22]) (Ridge); the Logic Regression [24]) 

statistic (Logic); the omnibus haplotype frequency test implemented in the PLINK software 

package [16–18] (Phap); and the set based analysis method implemented in the PLINK 

software package [18] (Pset). As noted in section 2.2, a −log(p-value) of 4.06 provide some 

correction for an overall multiple comparisons type I error rate of 0.05. It does not appear 

that any of the windows produces a −log(p-value) that would be significant after multiple 

comparisons corrections. In addition, many of the contour plots do not appear to track 

together, suggesting that the various data analysis methods do not produce correlated test 

statistics or evidence for association. Although there is some suggestion of consistency of a 

signal in the ‘rightmost’ region of the MGLL gene, its significance is debatable. Similar 

conclusions were drawn from the analysis of the FAAH gene (data not shown).

4.3. Correlations between statistics

We assessed the correlations between the test statistics obtained over the moving window 

analyses of the two genes. We did not include single locus analyses or the set (Pset) and 

haplotype analysis (Phap) methods implemented in PLINK as part of this analysis. This 

provides some indication as to whether or not the different statistical methods are capturing 

the same signals. Table 4.3 provides the Spearman non-parametric correlation coefficients 

between the test statistics computed over the windows.

The shaded cells within Table 4.3 reflect significant correlations (p<0.05). It should be 

recognized that the majority of test statistics computed in the window-based analyses are not 

themselves statistically significant. Therefore, the value of the test statistics that went into 

the calculation of the correlations may reflect noise which clearly will affect the correlation 

strength between the test statistics. Despite this, some of the test statistics do exhibit 

correlations and therefore may be essentially capturing the same types of collective effects. 

For example, Ridge and Logic regression are highly correlated, as are the subset selection 

(SS) and Li and Leal’s [6]; (LL) method. Many methods are not correlated, suggesting that 

they may either suffer from flaws, have low power, or are more powerful to detect different 

types of effects. Obviously, simulation studies could be used to sort this out.
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4.4. High-dimensional regression analysis

We also considered the use of the nine high-dimensional regression and data mining 

procedures listed in section 3.2, as well as the ridge regression procedure discussed in 

section 3.1, to simultaneously evaluate the association of each SNV, rare and common, in 

addition to the 10 collapsed sets of variants within each of the two genes described in 

sections 1.2 and 4.1 to obesity. The various procedures tested are designed to identify the 

minimal set of factors that are predictive of a dependent variable and hence may have an 

ability to capture or identify variants causally associated with obesity. Table 4.4 lists the five 

most significant factors identified from the 10 different procedures in addition to providing 

the adjusted R-squared and the root mean squared error characterizing the fit of the model 

that includes those 5 factors. Note that individual SNVs are denoted by a number (e.g., 166) 

and the gene within which they reside (MGLL or FAAH) whereas collapsed sets of variants 

are denoted by their labels as defined in section 1.2. From Table 4.4 it can be seen that 

although some factors appear in the list of five factors for different methods (e.g., individual 

SNV 166 appears on the list for ridge regression (RR), the Lasso (L), and the GPS method, 

most of the factors identified for any method are unique to that method or just a few of the 

methods. This suggests that the different methods are likely to disagree about which factors 

are the most strongly associated with a phenotype. This may be a function of the purpose 

and design of these methods, which is for making reliable predictions and not necessarily 

detecting the strongest associations among a large set of potential predictors.

5. Conclusions and Future Directions

Studies investigating the role of rare variants in phenotypic expression and disease 

susceptibility will be pursued routinely in the not-so-distant future as sequencing 

technologies improve in efficiency. The ability to exploit these technologies will depend 

critically on an ability to assemble and organize sequence data as well as an ability to draw 

reliable inferences concerning the statistical (and biological) significance of differences in 

combinations of sequence variants between individuals with and without a particular 

phenotype. We have considered a number of different approaches for relating collections of 

rare sequence variants to a phenotype. We compared these methods on actual sequence data 

obtained from two genes in a study of morbidly obese and control subjects. Some of these 

methods (e.g., Logic, MDMR, Dis) are computationally intensive, which may complicate 

their utility in very large studies. Although we did not find overwhelming evidence for an 

association with obesity, our studies suggest that different analysis methods, not surprisingly, 

do not necessarily agree on the strength of associations.

This raises important questions as to why this is so and whether or not some statistical 

methods may be more powerful for detecting certain types of association over other 

approaches. In addition, if it is the case that one or another of the proposed methods is better 

at picking up a certain type of association signal (e.g., most methods are likely to be better 

for detecting multiple independent acting variants whereas a few, such as similarity based 

methods [20], may be better at detecting synergistically-acting variants) then a researcher 

might consider analyzing their data with different analysis methods and possibly different 

window sizes. This in turn raises questions about false positive rates due to the use of 
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multiple analysis methods and the pursuit of multiple comparisons. In addition, the 

robustness of the methods to outliers, their level accuracy, ultimate power in various settings, 

and their ability to accommodate covariates all need to be explored. Many of these questions 

can be addressed by exploring both the theoretical derivation of different methods as well as 

their behavior in contrived, simulated data settings [34]. Such activity will be crucial if 

progress is to be made in understanding the contribution of rare variants to the genetic basis 

of complex phenotypes.
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Figure 4.2. 
Moving window analysis of the MGLL gene using 11 different methods. Note that the y axis 

provides the −log(p-value) for the association for all variants in the 5 kb window whose 

midpoint is given on the x axis.
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Table 4.4

Top 5 chosen genomic predictors of obesity for different regression analysis methods.

RR L GPS SR SPM-CART

166 (MGLL) 166 (MGLL) 166 (MGLL) 124 (FAAH) 1036 (MGLL)

677 (MGLL) 677 (MGLL) 677 (MGLL) 8 (FAAH) 1009 (MGLL)

581 (MGLL) 76 (MGLL) 76 (MGLL) 136 (FAAH) H3K27 (MGLL)

76 (MGLL) 581 (MGLL) 428 (MGLL) 223 (FAAH) 1136 (MGLL)

90 (FAAH) 90 (FAAH) 90 (FAAH) 200 (FAAH) H3K27 (FAAH)

adj. R2: 0.008 adj. R2: 0.008 adj. R2: 0.011 adj. R2: <0 adj. R2: 0.066

RSE: 10.56 RSE: 10.56 RSE: 10.54 RSE: 10.62 RSE: 10.25

SPM-TreeNet SPM-MARS SPM-RF Weka CRL Weka REPT

H3K27 (MGLL) 1036 (MGLL) H3K27 (MGLL) 1058 (MGLL) 1036 (MGLL)

H3K27 (FAAH) 1009 (MGLL) 1036 (MGLL) H3K27 (MGLL)

1036 (MGLL) 654 (MGLL) 634 (MGLL) 56 (FAAH)

1136 (MGLL) H3K27 (FAAH) 210 (MGLL)

1009 (MGLL) 632 (MGLL) 173 (FAAH)

adj. R2: 0.066 adj. R2: 0.076 adj. R2: 0.038 adj. R2: 0.033 adj. R2: 0.025

RSE: 10.25 RSE: 10.19 RSE: 10.4 RSE: 10.43 RSE: 10.47

Pac Symp Biocomput. Author manuscript; available in PMC 2016 September 09.


	Abstract
	1. Introduction
	1.1. Rare variants and the ‘hidden heritability’ of complex traits
	1.2. Collapsing variants based on functional annotations
	1.3. Moving window analysis
	1.4. Accommodating other sources of variation and assessing statistical significance

	2. Sequencing the MGLL and FAAH genes in obese and control individuals
	2.1. DNA sequencing and sample selection
	2.2. Genomic annotations, window definitions, and multiple comparisons

	3. Statistical methods for rare variant associations
	3.1. Single locus and general collapsed variant test-based methods
	Single-locus tests (SL)
	Li and Leal Collapsing Method (LL)
	Madsen and Browning Method (MB)
	Subset Selection Method (SS)
	Distance-based diversity (Dis)
	Omnibus haplotype frequency test (PHap)
	Power-based diversity statistic Gst (Div)
	Sequence similarity statistic leveraging MDMR (Sim)
	Ridge regression (Ridge)
	Logic regression (Logic)
	Set based analysis (PSet)

	3.2. High-dimensional regression methods
	Lasso (L)
	Generalized path seeking regression (GPS)
	Stepwise Regression (SR)
	Classification and regression trees (SPM-CART)
	Multiple adaptive regression trees (SPM-TreeNet)
	Multivariate adaptive regression splines (SPM-MARS)
	Random Forests (SPM-RF)
	Conjunctive rule learner (Weka CRL)
	Representative tree (Weka REPTree)


	4. Results
	4.1. Collapsed variants based on functional annotations
	4.2. Moving window analysis
	4.3. Correlations between statistics
	4.4. High-dimensional regression analysis

	5. Conclusions and Future Directions
	References
	Figure 4.2
	Table 4.1
	Table 4.3
	Table 4.4

