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Abstract: Location data are among the most widely used context data in context-aware and ubiquitous
computing applications. Many systems with distinct deployment costs and positioning accuracies
have been developed over the past decade for indoor positioning. The most useful method is focused
on the received signal strength and provides a set of signal transmission access points. However,
compiling a manual measuring Received Signal Strength (RSS) fingerprint database involves high
costs and thus is impractical in an online prediction environment. The system used in this study relied
on the Gaussian process method, which is a nonparametric model that can be characterized completely
by using the mean function and the covariance matrix. In addition, the Naive Bayes method was
used to verify and simplify the computation of precise predictions. The authors conducted several
experiments on simulated and real environments at Tianjin University. The experiments examined
distinct data size, different kernels, and accuracy. The results showed that the proposed method not
only can retain positioning accuracy but also can save computation time in location predictions.
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1. Introduction

Accurate, reliable, and real-time indoor positioning and position-based protocols and services
are required in future social applications. Through a mobile device, a positioning system can help
to determine its position and makes the position of the device available for position-based services
such as navigation and tracking or monitoring. The location information of devices or users could
considerably improve the performance of wireless network for network planning, network adaptation,
and load balancing. Generally, the indoor localization problem is resolved using standard, low-cost,
and already deployed infrastructure such as the strength database of received signals [1,2]. Instead of
spending resources in deploying dedicated infrastructure and collecting data procedure, the purpose
of indoor positioning study is to design and implement data fusion methods and algorithms using
existing infrastructure.

Generally, received signal strength (RSS)-based location fingerprinting is based on the principle
that each position has a unique set of signal values. When a system boots up, mobile devices receive
the unique RSS value of the system, and they search the fingerprinting database and identify the entry
that is most similar to the system unique RSS value as the estimated location. The main problem
of a typical RSS fingerprinting system is that the real RSS value at any location is easily affected by
the object (human or furniture inside the building) and multipath fading effects [3]. In other words,
the RSS fingerprint obtained at different periods of time need not match the previous fingerprint
stored in the database, leading to incorrect estimation results. Previous researchers have shown that
the fingerprinting localization method can achieve meter-level accuracy if the RSS signature map
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is not outdated. However, because of the dynamic nature of the radio channel and changes in the
surrounding environment, the RSS signature maps must be updated multiple times daily. That is,
the time and effort required to build the RSS signature map during the offline phase are the major
drawbacks of fingerprinting-based localization.

In addition, the challenges in deploying reliable and scalable fingerprinting localization systems
and facing user limits are also the barriers to reaching the accuracy required for use in commercial
applications. Many studies have prompted in the elimination of the times at gathering RSS signatures.
In [4], Haeberlen et al. demonstrated a system that allows for remarkably accurate localization
across an entire office building over 12,000 square meters in area; most notably, regarding the scale,
they localized a device to one of 510 cells in the building within seconds, yielding a success rate of
greater than 95%. Moreover, Bisio et al. designed an indoor localization scheme of targets by using
electromagnetic waves; this system was replaced by an offline phase in which the fingerprints in each
point of the area of interest were estimated by means of electromagnetic waves [5]. In [6], the authors
computed a position by considering the RSS measurements as a part of a random process, exploiting
the information present in the acquired signals. With the efforts to build an RSS signature map
having been reduced, the median error remains unacceptable for most practical indoor applications [7].
Furthermore, Zheng et al. utilized both the raw RSS values and their relation to construct a new stable
and robust fingerprint for indoor position, their results indicated that the RSS variance problem can be
solved without any manual calibration [8]. In this study, we developed a probabilistic framework for
handling sparse training data in fingerprinting localization. Specifically, the calibration effort and costs
of building the RSS signature map were reduced by modeling signal strength by using the advanced
Gaussian process (GP), and the troublesome of RSS signature map was enhanced in the online phase.

Supervised learning in the form of regression and classification is an important constituent of
statistics and machine learning, either for the analysis of data sets or as a subgoal of a more complex
problem [9]. Traditionally, parametric models have been used for this purpose. A possible advantage
also exists in the ease of interpretability; however, for complex data sets, simple parametric models may
lack expressive power. A GP is a nonparametric model that is characterized completely by its mean
function and covariance matrix [10]. A GP depends on several hyper parameters that can be estimated
using training measurements. In our study, we used the properties of the conditional probability of
a GP. The GP prior distribution was used for regression and predicting the RSS at locations with no
prior measurements, and the Naive Bayes algorithm was also used to derive the obtained conditional
Gaussian probability. We named the computation process Gaussian Process Plus. A major advantage
of using a GP-based predicator is that in addition to the mean estimate of the RSS, an estimation
of the variance is also produced, providing an indication of the uncertainty of the estimation [11].
The aforementioned process can be performed offline and generally must be performed only once.

Yiu et al. used Gaussian process regression (GPR) for received signal strength indication (RSSI)
prediction in order to solve indoor location problems [12]. Partial measurements were first taken from
the area of interest. They then used the Firefly algorithm to train and categorize the prior results
derived using GPR. The trained results were used to build a refined fingerprinting database for the
entire area of interest. The experiment showed that the GPR model could achieve a satisfactory result
in predicting the RSS of an area with no prior measures. However, according to Yiu et al., the ability to
expand the GPR model is restricted by the need to rebuild the fingerprinting database; in addition,
the flexibility in the computation of the GPR models was limited in their study. Thus, to retain the
flexibility of GP and increase the efficiency of indoor positioning, we proposed the Gaussian Process
Regression Plus (GPRP) method to solve the aforementioned limitations, and we tested the experiments
in both simulated and real environments.

The remainder of this manuscript is organized as follows: Section 2 reviews related studies
investigating the properties of RSSI for signal transmission, and the definitions of GP. Section 3 details
the GPRP measurement system used in the current study and describes the data analysis method.
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Section 4 presents the simulated and real experiments and discussion, and Section 5 offers conclusions
and recommendations for future research.

2. Preliminaries

2.1. RSS Fingerprint

RSS properties, which facilitate location fingerprinting, have been determined by many studies
examining indoor positioning systems. This research demonstrates that user orientation could cause
a variation of up to 5 dBm in the RSSI level [13,14]. At any location, the different orientations
of users and mobile devices with respect to the transmitter could cause the mean RSS value to
change. The modeling of the RSS-based location fingerprinting is essential for location determination
algorithms; examples of RSS-based location fingerprinting models are the probabilistic approach
model and preliminary analytical model [15]. Gaussian or lognormal distributions were used to model
the randomness of RSS. For example, [16] summarized in a large-scale measurement that most RSS
histograms could be fitted appropriately with Gaussian distributions but that few histograms could be
fitted with bimodal Gaussian distributions.

Current signal-based RSS location systems have two problems. First, a considerable manual
calibration effort is required to construct a radio map in the offline training phase; second,
the positioning accuracy changes with the environmental dynamics. Three dynamic factors observed
to change frequently over time in the environment are proposed in [17], including the presence of
people, relative humidity, and movement. These factors easily affect the radio signal propagating
from access points (APs) to mobile devices and are responsible for changes in positioning accuracy.
The results of the experiments conducted in a cafeteria showed that an RSS distribution at a fixed
location with a specified beacons was not constant with time (Figure 1). The RSS values calibrated
previously in the radio map may be outdated; this condition degrades positioning accuracy because of
the presence of people.

Sensors 2016, 16, 1193 3 of 17 

 

Section 4 presents the simulated and real experiments and discussion, and Section 5 offers conclusions 
and recommendations for future research. 

2. Preliminaries 

2.1. RSS Fingerprint 

RSS properties, which facilitate location fingerprinting, have been determined by many studies 
examining indoor positioning systems. This research demonstrates that user orientation could cause a 
variation of up to 5 dBm in the RSSI level [13,14]. At any location, the different orientations of users and 
mobile devices with respect to the transmitter could cause the mean RSS value to change. The modeling 
of the RSS-based location fingerprinting is essential for location determination algorithms; examples of 
RSS-based location fingerprinting models are the probabilistic approach model and preliminary 
analytical model [15]. Gaussian or lognormal distributions were used to model the randomness of RSS. 
For example, [16] summarized in a large-scale measurement that most RSS histograms could be fitted 
appropriately with Gaussian distributions but that few histograms could be fitted with bimodal 
Gaussian distributions. 

Current signal-based RSS location systems have two problems. First, a considerable manual 
calibration effort is required to construct a radio map in the offline training phase; second, the 
positioning accuracy changes with the environmental dynamics. Three dynamic factors observed to 
change frequently over time in the environment are proposed in [17], including the presence of people, 
relative humidity, and movement. These factors easily affect the radio signal propagating from access 
points (APs) to mobile devices and are responsible for changes in positioning accuracy. The results of 
the experiments conducted in a cafeteria showed that an RSS distribution at a fixed location with a 
specified beacons was not constant with time (Figure 1). The RSS values calibrated previously in the 
radio map may be outdated; this condition degrades positioning accuracy because of the presence of 
people. 

 
Figure 1. RSS distributions during different time periods in the cafeteria. 

Traditionally, an average RSS has been considered to be lognormally distributed according to a 
large-scale fading model. Such RSS is generally predictable and follows several standardized path 
loss models. 

The wall attenuation factor (WAF) model is useful for describing the slow-fading phenomenon 
and attenuation in signal propagation in indoor environments [18]. In this model, the attenuation 
factor is used to predict signal propagation behavior when walls are the main obstacle. The following 
equation shows how attenuation influences RSS: 

Figure 1. RSS distributions during different time periods in the cafeteria.

Traditionally, an average RSS has been considered to be lognormally distributed according to
a large-scale fading model. Such RSS is generally predictable and follows several standardized path
loss models.

The wall attenuation factor (WAF) model is useful for describing the slow-fading phenomenon
and attenuation in signal propagation in indoor environments [18]. In this model, the attenuation



Sensors 2016, 16, 1193 4 of 17

factor is used to predict signal propagation behavior when walls are the main obstacle. The following
equation shows how attenuation influences RSS:

P pdqdbm “ P pdoqdbm ´ 10ˆ nˆ log
ˆ

d
do

˙

´ nW ˆWAF (1)

where n indicates the rate of increase in signal attenuation with the propagation distance, P pdoq is the
RSS at a distance of reference point do, and d is the distance between the transmitter and the receiver.
Furthermore, nW is the number of obstacles (walls) between the transmitter and the receiver, and WAF
is the attenuation value resulting from the obstacles. In this equation, if nW is greater than a certain
constant C, the value of nW is considered to represent the number of walls at which the attenuation
factor stops influencing the signal. We can then use the constant value instead of nW. When we
select a subset of APs satisfying a certain property in our alternative set of fingerprint definitions,
we retrieve the corresponding position from the offline fingerprinting database by using the location
estimation algorithm. Generally, several methods are used for determining the nearest neighbor
location. For example, we can use the Euclidean distance:

Eucdist pS, Rq “
c

ÿn

i“1
ps´ riq

2

or the Mahalanobis distance:

Mahaldist pS, Rq “
b

pS´ RqTS´1 pS´ Rq

where S is the RSS value for the target location and R is the value closest to S in the fingerprinting database.

2.2. Gaussian Process

The GPR is a new machine-learning method based on Bayesian theory and statistical learning
theory. It provides a flexible framework for probabilistic regression and is widely used to solve
high-dimension, small-sample, or nonlinear regression problems. From the view of the function space,
the GP defines a distribution over functions. GPs are the extension of multivariate Gaussian model
to the infinite-sized vector of real-valued variables. The GP is fully specified by a mean function and
a covariance function such as:

#

m pxq “ E r f pxqs
k
`

x
ˇ

ˇx1
˘

“ E rp f pxq ´m pxqq
`

f
`

x1
˘

´m
`

x1
˘˘‰ (2)

where x and x1εR are random variables [19]. The GP equation is f pxq „ gp
`

m pxq , k
`

x, x1
˘˘

.
For simplification, the mean function is usually set to zero in the data preprocessing stage.

Because the key assumption in GP modeling is that the data can be represented as a sample from
a multivariate Gaussian distribution, we can infer that:

«

x
x˚

ff

„ N

˜

0,

«

K KT
˚

K˚ K˚˚

ff¸

(3)

where T indicates matrix transposition. The function probability follows a Gaussian distribution,
and the conditional probability of x˚ |x can be computed as:

p px˚ |x q „ N
´

K˚K´1y, K˚˚K´1KT
˚

¯

(4)

The optimal estimation for x˚ is the mean of this distribution x˚ “ K˚K´1x [20,21], and the
uncertainty in the estimation is the variance var px˚q “ K˚˚ ´ K˚K´1KT

˚ . The aforementioned
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description indicates that the GPR is suitable for predicting unknown data with limited known
data. GPR is also the central idea used in this study.

Some works have used the GP to help generate a fingerprint database in the offline phase [22,23].
Ferris et al. demonstrated how to use the GP to generate likelihoods at locations for which no
calibration data were available, and proved that Gaussian regression could be applied successfully
to various localization problems [22]. Atia et al. [24]. considered using the GPR technique to bridge
the GPS outage; they ultimately obtained an 80% improvement in the position root square mean
error (RMSE). Richter et al. analyzed different GPR models for WLAN fingerprinting and provided
useful advice regarding GPR [22]. Cho et al. created a GPR-based radio map construction method for
surveying data that could obtain high accuracy and availability, though realistic data were rare [25].
These studies have proved that GPR is a viable means of improving positioning accuracy and releasing
the labor at collecting fingerprinting data.

2.3. Weight-RSS Propagation Model

For estimating and tracking the parameters of RSS propagation model in the indoor environment,
many studies employ adaptive Bayesian framework to cope with unpredictable, inter-calibration and
fading radio effects. However, these methods cannot drive the acceptable performance due to the
complex propagation phenomena in the radio transmission. In [8], Zheng et al. proposed weight-RSS,
a calibration-free solution to solve the RSS variance caused by device heterogeneity and complex
environmental factors. In Zheng’s system, their location can be estimated by matching all the RSS
values and the relation from the test device with all the entries of the fingerprint mapping results.

Assume that m APs are deployed in an indoor environment and the physical space of the indoor
environment is modeled as a finite space L = { l1 px1, y1q , l2 px2, y2q , . . . , ln pxn, ynqu [8]. RSS values of
all APs at the location li can be represented as follows:

Ri “
´

r1
i , r2

i , . . . , rq
i , . . . , rm

i

¯

and the weight-RSS of location li is defined as:

Dj “
!´

r1
i , s

´

r1
i

¯¯

,
´

r2
i , s

´

r2
i

¯¯

, . . . , prm
i , s prm

i qq
)

where sprj
iq is the index of rj

i after Ri was sorted as descending order. Accordingly, Zheng et al. assume
that the distance from the fingerprint map is Dtr (off line), and the distance from a test device is Dte

(on line). The weighting factor is computed as follows:

Ftr,te “ t fi| 1 ď i ď mu

and:

fi “ 1´
|s
´

rj
tr

¯

´ s
´

rj
te

¯

|

maxps
´

rj
tr

¯

´ s
´

rj
te

¯

q

Then the authors can derive the difference between distance from fingerprint map Dtr and from a
test device Dte is:

Dist pDtr, Dteq “

c

ÿm

j
fipr

j
tr ´ rj

teq
2

3. System Design

In [12], Yiu et al. used the trained GPR model to estimate the signature map of an area.
For optimizing hyper parameters in GPR, they proposed that the signature map be rebuilt; however,
inefficient computation restricted the flexibility of the Gaussian model. Thus, in our study, we focused
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on GPR system improvement and used the Naive Bayes algorithm to reduce the computation
complexity of the indoor positioning system, and retain the flexibility of the models of GP.

In Figure 2, we illustrate the proposed system framework and compares it with that of Yiu et al.
Firstly, our GPRP method and Yiu’s method created a discrete and partial RSS fingerprinting database
in the testing area. Accordingly, we all derived and tested several GP models for system computation.
The different GP models had distinct distribution functions and hyper parameters. However, Yiu et al.
proposed a method based on categorized and GP algorithms, and finished with the rebuilding of the
RSS fingerprinting database; by contrast, our GPRP method employed the Naive Bayes method to
select all the predicted location from the GP models, and the computation was more easily derived and
was less time-consuming. Furthermore, to stress the efficiency of our proposed method, in Figure 2,
the solid line indicates the training phase, and the blue dashed line indicates the testing phase. FLi was
derived as the final estimated location for each method. The less computation steps are needed in our
GPRP method.
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3.1. The Method of Gaussian Process Regression Plus

In our method, an offline RSS fingerprinting database must be built first. We assume that the
testing area has M reference points in locations Lr pr P t1, 2, ¨ ¨ ¨ , Muq. In the sampling phase, we collect
the RSS value at the rth reference point of N APs from 1 to jth times; that is:

APr “ tapr,1, apr,2, ¨ ¨ ¨ , apr,Nu

where:
apr,1 “ Mop

!

ap1
r,1, ap2

r,1, . . . , apj
r,1

)

q

Mo(.) is the mod function, which is used to derive the remainder of the division. apj
r,N is denoted

as the odd moment data at the rth reference point of N APs from 1 to jth times; by contrast, APr is the
filtering set of signal strength received at the rth reference point.

When we attempt to predict the unknown position at the input of RSS values, we obtain a series
of RSS values AP˚ as follows:

AP˚ “ tap˚,1, ap˚,2, ¨ ¨ ¨ , ap˚,Nu

Because of the noises in our environment, we can coincide with the regression problem as
L pAP˚q “ f pAP˚q ` ν fort the simplification. The latent function f p.q describes the relationship
between the RSS and spatial coordinates. ν denotes the physical noise; the value would follow the
Gaussian distribution.
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Thus, the GP is defined as the function of the mean and covariance, which represent the principal
characteristic and structure of the model. In addition, the RSS value in location positioning can be
derived to the absolute distance; in our study, the authors derived the log-distance path-loss model as
the mean function; that is:

m pAP˚q “

řN
j“1 αj ˆ

´

Cj ´ ζj ˆ log
´

‖ AP˚,j ´ APS
˚,j ‖

¯

` εj

¯

řN
j“1 αj

(5)

where Cj is a constant value, AP˚,j is the collected online RSS value of unknown position ˚ at jth AP,
and APS

˚,j is the RSS value of jth AP at the source of unknown position ˚. αj represents the weight
of AP˚,j, which indicates the trustable degree of the AP. ζj represents the path-loss exponent of jth
AP, which is computed as the noise degree of jth AP. In our method, this value follows the Gaussian
distribution N

`

0,σ2
i
˘

; σi is the covariance of noises in our experiment. Accordingly, the covariance
function is defined as follows:

k pAP˚, APrq “ exp

¨

˝

řN
j“1 βj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
AP˚,j ´ APj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

řN
j“1 βj

˛

‚ (6)

where βj is computed as the weight of APj. To reduce the computation complexity, we derive the mod
function; that is, we use APm

r instead of APr in Equation (6).
The objective of our system is to predict the RSS value as fn pAP˚q for all two-dimensional inputs

x and y. To achieve this, the system models are defined as:

fn pAP˚q „ GP pm pAP˚q , k pAP˚, APrqq

That is, the GP models for the indoor positioning are divided into parts: one part is based on
the x and y coordinates of all training locations. Thus, we let Xn fi rx1, x2, . . . , xSs be a set of training
samples, where S represents the number of training coordinate data; then:

Sx “ tpx1, yn px1qq , px2, yn px2qq , . . . pxS, yn pxSqqu

and:
Sy “ tpxn py1q , y1q , pxn py2q , y2q , . . . pxn pySq , ySqu

are the S-dimensional column vectors containing the RSS measurements from all training locations.
Accordingly, we define the GP model to predict location as follows:

fx pAP˚q “
řN

j“1αjˆpCj´ζjˆlogp||AP˚,j´AP˚,jS||q`εjq
řN

j“1αj

` exp

˜

řN
j“1βj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
AP˚,j´APj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

řN
j“1βj

¸

: xε t1, 2, ¨ ¨ ¨ , wu
(7)

and:

fy pAP˚q “
řN

j“1αjˆpCj´ζjˆlogp||AP˚,j´AP˚,jS||q`εjq
řN

j“1αj

` exp

˜

řN
j“1βj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
AP˚,j´APj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

řN
j“1βj

¸

: yε t1, 2, ¨ ¨ ¨ , hu
(8)

We use the hyper parameter vector θ fi rC,α, ε,βs to optimize our GP model; different parameters
would influence the estimated results. In our experiments, we trained hyper parameters by training
the data Sx and Sy.
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The GPR has many kernels, some of which are listed in Tables 1 and 2. The performance of the
GPR was validated using the different sets of mean and covariance kernel functions. The variances
were examined in our experiments.

Table 1. Summary of several commonly-used mean functions [26].

Mean Function Equation Expression

Zero 0
Constant A;

`

xˆ x1 ` σ2
0
˘p

Linear αx` b
Poly řN

i α
ixN´i

Table 2. Summary of several commonly-used covariance functions [26].

Covariance Function Equation Expression

Constant σ2
0

Linear řD
d“1 σ

2
dxdx1d;

`

xˆ x1 ` σ2
0
˘p

Polynomial exp p´r ˆ2{ p2lˆ2qq
Exponential exp p´r{lq

Rational quadratic p1` r ˆ2{ p2αl̂2 qqˆp´αq

Figure 3 presents the results from the GPR model of Equations (7) and (8); the red line reflects
the GPR model with six values of Sy, which was the location predicted by the model with the fixed
y coordinate. These two red start lines indicated the barriers of the upper and lower covariance values,
one cycles red line tracked the change path of the mean values. Besides, the blue line reflects the GPR
model with Sx, and with the fixed x coordinate. Two blue start lines and one cycles blue line are represented
the same things as red lines. This figure reveals that possible predicting results are barrier inside the
covariance lines, and the x and y locations with those derived positions are intersected inside these areas.
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3.2. Naive Bayesian Location Model

Our proposed system derived the positions x and y with Sx and Sy individually, sometimes, Sx and
Sy have multiple solutions. To combine these results, our system employed the Naive Bayesian model.
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Bayes’ theorem is a simple mathematical formula used for calculating conditional probabilities. If E is
a random experiment and B, A1, A2, ¨ ¨ ¨ , An are events in E, then the following conditions are met:

(1) P pAiq ą 0, i “ 1, 2, ¨ ¨ ¨ , n,
(2) Events A1, A2, ¨ ¨ ¨ , An are partitioned by the sample space; their values are independent of

each other,
(3) P pBq ą 0.

Therefore, P pAi |Bq “
PpAiˆBq

PpBq “
PpAiqPpB|Ai q

řn
j“1 PpAiqPpB|Aj q

, i “ 1, 2, ¨ ¨ ¨ , n. This equation can be proved

using the conditional probability theorem and total probability theorem [27].
Bayesian Decision Theory is built on Bayesian probabilities, which enable us to assert a prior

belief in a data point coming from a certain class [28]. This theory is used as a classifier such as the
Naive Bayesian classifier, which can classify rapidly and accurately [29,30]. According to our proposed
method, RSS values transmitted from APs were all independent, and our proposed GPR model derived
some predicted candidate sets of Sx and Sy. To reduce the possible sets, the Naive Bayesian positioning
method was used to combine and derive the most satisfactory results. The Naive Bayesian positioning
method is detailed as follows:

(1) The sample space is divided by Sx and Sy, and events in the sample spaces are represented as
Li “ pxi, yiq, which is the place derived from the proposed GPR method.

(2) The prior probability P pLiq is computed as:

P pAP̊ |Li q “ P pAP1, AP2, ¨ ¨ ¨ , APn |Li q “

n
ÿ

j“1

P
`

APj |Li
˘

(9)

(3) The posterior probability is computed as:

P pLi | AP̊ q “
P pAP̊ |Li q

P pAP̊ q
“

P pAP̊ |Li qP pLiq
řn

j“1 P
`

AP̊
ˇ

ˇLj
˘

P
`

Lj
˘ (10)

Accordingly, the final estimation location is defined as:

Li : P pLi | AP̊ q “ max pP pLi | AP̊ qq

and if P pLi | AP̊ q is equal to zero, x and y are selected as follows:

P pAP̊ |xi q “ P pAP1, AP1, ¨ ¨ ¨ , APn |xi q “
źn

j“1
P
`

APj |xi
˘

(11)

and:
P pxi |AP̊ q “

P pAP̊ |xi q

P pAP̊ q
“

P pAP̊ |xi qP pxiq
řn

j“1 P
`

AP̊
ˇ

ˇxj
˘

P
`

xj
˘ (12)

then:

P pyi |AP̊ q “
P pAP̊ |yi q

P pAP̊ q
“

P pAP̊ |yqP pyiq
řn

j“1 P
`

AP̊
ˇ

ˇyj
˘

P
`

yj
˘ (13)

(4) The final location and error between the estimate positions are computed as follows:

P pxi |AP̊ q “ max pP pxi | AP̊ qq , P pyi |AP̊ q “ max pP pyi | AP̊ qq

and:
P pyi |AP̊ q “ max pP pyi | AP̊ qq , P pxi |AP̊ q “ max pP pxi | AP̊ qq



Sensors 2016, 16, 1193 10 of 17

We then define the real location as TLi and FLi “
 `

xi, yi
˘(

, and the RMSE is derived as:

Error “
2

d

řN
i“1 pTLi ´ FLiq

2

N
(14)

4. Experiments and Discussion

4.1. Experiment Environment Initialization

In this section, we conducted experiments in two environments. One involved simulated
experiments programmed using Matlab 2015. The other environment was the physical experiment,
the area of which included four beacons deployed on the corner of a square area that was 30 m ˆ 30 m.
In the simulation experiment, the signal was smooth; thus, the RSS energy declined gradually from the
source; thus, the received energy could be predicted easily according to the distance from the source.
However, the physical experiment was performed on the second floor in the 55th office building of
Tianjin University. It was approximately a 7 m ˆ 15 m area (Figure 3). The area was a typical building
hall with some pillars in each corner of the area and was relatively open in the center, with people able
to walk around freely. Four Bluetooth transmitters were placed in the corner of the area to ensure the
signal full coverage of the testing area.

The testing area was divided into 54 locations for area measurements. The locations are marked by
black dots in Figure 4. The four Bluetooth transmitters are marked by the red dots. For receiving online
RSS data, we employed a Samsung Note 3 as the data collector in the testing area. Each Bluetooth
transmitter was designed to transmit 100 signals per second, and our system collected 20 samples
in each location; 15 signals were for system training, and five signals were for localization testing.
In addition, we applied our GPRP method with the mod function to avoid potential overfitting
problems through a single signal measurement.
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4.2. The Effect of the Different Training Data Size

For the purpose of reducing the burden of the RSS data collection in the offline phase in this
experiment, the authors attempted to find a balance between using limited training data and increasing
the localization accuracy in the emulation environment. Figure 5 shows the cumulative distribution
function (CDF) of the localization error for different training dataset sizes. We tested distinct 30%, 60%,
and 90% data sizes to evaluate the performance of our proposed method. The results showed that
larger training datasets achieve more satisfactory results than do smaller training datasets. The average
error rates were 2.98, 2.69, and 2.45 m for the 30%, 60%, and 90% size of datasets, respectively (Figure 5).
Comparing to the 2.41 m error rate of whole dataset, we can tell that the performance is acceptable at
the saving almost half training time, but only increasing 0.11 times of the error rate.Sensors 2016, 16, 1193 11 of 17 
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4.3. Effect on Different GPR Kernel

To test location estimation accuracy with different GPR kernels, 30% of the 54 reference locations
in the training area (black dots in Figure 2) were selected in this experiment; resets were used for the
testing. The GPR was the kernel we adopted in our proposed GPRP method described in Section 3.1.
In addition, we compared the derived results with different GPR kernels, it is the CL kernel, the CL
kernel was found to be in Section 3.1 too. The CL kernel is based on the constant mean and linear
covariance kernel; Tables 1 and 2 show the equation. The popular reason of using CL kernel is because
of the simplified computation. The results show that our proposed GPRP method outperformed the
CL kernel (Figure 6). Table 3 summarizes the overall results, which reveal that the estimation accuracy
of the GPRP method was acceptable, especially inside the 4-m area. The average computation times
were 42.80 and 43.81 s for the CL and our proposed method, respectively. The accumulative accuracy
of our proposed model was much higher than that of the CL method, though the computation time
was only increased by approximately 2%.

Table 3. Localization results in testing area.

RMSE (m) 1 m 2 m 3 m 6 m

GPRP method 2.28 33.33% 57.41% 62.96% 92.59%
CL method 2.78 27.79% 42.59% 55.56% 90.74%
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4.4. Performance Evaluation of GPRP

To check the obstacle effects on the signal transmission in these simulations, we tested the signal
transmission on several situations; one situation was tested using the same environment with different
obstacles, and the other situation was tested robustly by the different obstacles.

4.4.1. GPRP Robustness on Location Accuracy Testing

According to Equation (1), the WAF is defined as the obstacle factor, which is used to represent
the obstacle effects on the RSS. Figure 7a shows the optimal situation with receiving signals;
the distribution is displayed as the cyclic shape. In addition, Figure 7b–d indicate strength mapping,
with WAF of 1.1, 3.2, and 6.4, respectively These values were indicated as light, medium, and heavy
crowds in the environment. According to these pictures, we can observe that the WAF affects the
simulation environment.
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To test the robustness, the validation was performed according to the changing environment.
Thus, the WAF value was changed on the offline training and online testing. We defined four different
environments in Table 4. These four environments were represented by the same offline training
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and dynamic online testing with light, medium, heavy, and super heavy crowds. Figure 8 shows
that the GPRP method could adjust to the dynamic environments in terms of acceptable accuracy.
For example, we can observe that the accuracy decrease to less than 10%, even in the light-crowd
training to heavy-crowd testing.Sensors 2016, 16, 1193 13 of 17 
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Table 4. Robustness testing for four different environment.

ID for Testing Environment WAF for Off-Line Training WAF for On-Line Testing

E1 0.2 0.2
E2 0.2 0.3
E3 0.2 0.5
E4 0.2 1
E5 0.2 2

4.5. Localization Accuracy on Different Environments

In these experiments, we evaluated our system performance in two different environments:
simulated and field. In the environment of the field experiment, the location examined was the second
floor of the 55th building of Tianjin University. For all the experiments, we adopted 30% data for
training and 70% data for testing. Firstly, we compared three methods for the general fingerprinting
database: our proposed GPRP, the method of Yiu [12], general fingerprinting (FP), and Weight-RSS by
Zheng et al. [8]. The FP and Zheng methods are all based on the RSS location system, which is required
to build an RSS mapping database of an entire area. Both the computation time and the database
preparation are bottlenecks in the system execution.

Accordingly, we employed our proposed method in the actual environment. The area was divided
into 6 ˆ 9 blocks. Every block was approximately 1.4 m long and 1.2 m wide. All the experiments
were carried out by using 30% data for training and 70% data for training. About the FP and Zheng
method, we need to build the fingerprint database, it took 54 ˆ 10 s = 540 s to accomplish, FP method
took another 1 s to predict the online location, and Zheng method took more time (2 s) to predict.
Furthermore, Yiu method and our proposed method were selected 0.3 percent samples to build the
training database, the computation time was 54ˆ 0.3ˆ 10 s = 160 s to construct the basement. However,
according to our description in Section 2, Yiu’s method cost average 25 s to train the GPR model, 75 s to
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train parameters in the model, and 46 s to rebuild the fingerprinting database on the average. Overall,
Yiu’s method would spend about 307 s to finish the prediction. Besides, when our proposed method
built the fingerprint database, we only needed 25 s to train the GPRP model, after that, the offline
prediction would cost about 125 s to complete this procedure. Overall, our proposed method only
cost 205 s to predict the online position on the average. Table 5 showed all the data for these four
methods. According to the comparing results in the Table 5, the results reveal that the computation
time would be extended with the sampling size of fingerprint database, because the procedure of
RSS value re-mapping to the position was changeable. Our proposed method not only can save
the computation time of building the RSS fingerprint database, but also can remain the accuracy of
online prediction.

Table 5. Total performance of four comparison methods.

Simulated Experiments Field Experiments

Time Cost (s) Average Error (m) Time Cost (s) Average Error (m)

FingerPrint (FP) 4201 1.46 541 2.34
Yiu method [12] 1385 4.88 307 3.09

Zheng method [8] 4203 1.6 542 2.93
GPRP 1395 1.82 205 2.28

In this experiment of physical area, we compared four methods for the general fingerprinting
database: our method GPRP, the method of Yiu, the method of Zheng, and fingerprinting (FP).
The graph (Figure 9) below showed all the comparison. The average errors were 2.28, 2.34, 3.09 and
2.93 m for our proposed GPRP method, the FP method, the Yiu method, and Zheng method respectively.
The combination of graph and table showed that our proposed method can retain accuracy and reduce
computation time in the simulated localization system.
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In the simulation area, when we compared our method to the FP method, the results showed that
the performance of our method was almost the same as that of the FP method (Figure 10); however,
our method required only half the computation time of the FP method. This advantage was based on
the saving of comparing process from the lookup table. In addition, the Yiu method had the partial
advantage of flexibility, though it had the longest computation time of all three methods. The average
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errors were 1.82, 1.46, 4.88, 7.2 and 1.6 m for our proposed GPRP method, the FP method, the Yiu
method, and Zheng method respectively. The cumulative error rate at 3 m was 0.87, 0.90, 0.34 and
0.85 for the GPRP method, the FP method, the Yiu method and Zheng method, respectively. Overall,
the current results still revealed that our proposed method can retain accuracy and reduce computation
time in the simulated localization system.Sensors 2016, 16, 1193 15 of 17 
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5. Conclusions

Generally, the main challenge in RSS-based location positioning is the high sensitivity of the
technique to environmental changes. Variations in RSS measurement reduce estimation accuracy.
In other words, if the radio propagation signal strength were correlated with the distance between
the transmitter and the receiver, location determination would be a trivial problem. However,
the relationship between these two parameters is dynamic rather than straightforward. Hence, many
methods have been proposed for obtaining location predictions when the position of the receiver
is changing. One such basic method is using a fingerprinting database, which involves straight
computation for RSS signal collection. Both time consumption and searching from the lookup table
database are bottlenecks in this method.

In this study, we proposed the GPRP method for adapting the flexibility of the GP and determining
the location by using the simplified computation of the Naive Bayes method. Both computation time and
efficiency can be improved using this method. In our experiments, we tested our method by examining
the 55th building of Tianjin University in both a simulated and physical environment. The experiments
considered distinct data size, different kernels, and accuracy testing. The results showed that our
proposed method can ensure accuracy and reduce computation time in location prediction.

Acknowledgments: This work is supported by the project of Tianjin Science and Technology—Algorithms and
applications of big data (No. 13ZCZDGX01099), and the establishment, demonstration and popularization of
Internet-based Cloud Platform on the intelligent management of chronic diseases (No. 15ZXHLSY00420).

Author Contributions: In this study, Chung-Ming Own, Zhaopeng Meng and Kehan Liu conceived and designed
the researches; Kehan Liu performed the experiments; Chung-Ming Own and Kehan Liu analyzed the data;
Chung-Ming Own and Zhaopeng Meng wrote the paper. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2016, 16, 1193 16 of 17

References

1. Own, C.-M.; Meng, Z.; Liu, K. Handling neighbor discovery and rendezvous consistency with weighted
quorum-based approach. Sensors 2015, 15, 22364–22377. [CrossRef] [PubMed]

2. Skalar, B. Rayleigh fading channels in mobile digital communication system part 1: Characterization.
IEEE Commun. Mag. 1997, 35, 136–146. [CrossRef]

3. Yilmaz, H.B.; Tugcu, T. Location estimation-based radio environment map construction in fading channels.
Wirel. Commun. Mob. Comput. 2015, 15, 561–570. [CrossRef]

4. Haeberlen, A.; Flannery, E.; Ladd, A.M.; Rudys, A.; Wallach, D.S.; Kavraki, L.E. Practical robust localization
over large-scale 802.11 wireless networks. Int. Conf. Mob. Comput. Netw. 2016. [CrossRef]

5. Bisio, I.; Cerruti, M.; Lavagetto, F.; Marchese, M.; Pastorino, M.; Randazzo, A. A trainingless wifi fingerprint
positioning approach over mobile devices. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 832–835. [CrossRef]

6. Bisio, I.; Lavagetto, F.; Marchese, M.; Sciarrone, A. Smart probabilistic fingerprinting for WiFi-based indoor
positioning with mobile devices. Pervasive Mob. Comput. 2016. in press. [CrossRef]

7. Hossain, A.K.M.; Soh, W.-S. A survey of calibration-free indoor positioning systems. Comput. Commun. 2015,
66, 1–13. [CrossRef]

8. Zheng, Z.; Chen, Y.; He, T.; Sun, L.; Chen, D. Feature learning for fingerprint-based positioning in indoor
environment. Int. J. Distrib. Sens. Netw. 2015, 2015, 1–11. [CrossRef]

9. Xu, C.; Tao, W.; Feng, Z.; Meng, Z. Robust visual tracking via online multiple instance learning with fisher
information. Pattern Recognit. 2015, 48, 3917–3926. [CrossRef]

10. Xu, C.; Feng, Z.; Meng, Z. Affective experience modeling based on interactive synergetic dependence in big
data. Future Gener. Comput. Syst. 2016, 54, 507–517. [CrossRef]

11. Bekkali, A.; Masuo, T.; Tominaga, T. Gaussian processes for learning-based indoor localization. In Proceedings
of the IEEE International Conference on Signal Processing, Communications and Computing, Xi’an China,
14–16 September 2011; pp. 1–6.

12. Yiu, S.; Yang, K. Gaussian process assisted fingerprinting localization. IEEE Internet Things J. 2015. [CrossRef]
13. Youssef, M.; Agrawala, A. The Horus location determination system. Wirel. Netw. 2008, 14, 357–374.

[CrossRef]
14. Nurminen, H.; Talvitie, J.; Ali-Loytty, S.; Muller, P.; Lohan, E.S.; Piche, R.; Renfors, M. Statistical path loss

parameter estimation and positioning using RSS measures in indoor wireless networks, positioning using
RSS measurements in indoor wireless networks. In Proceedings of the International Conference on Indoor
Positioning and Indoor Navigation, New South Wales Sydney, Australia, 13–15 November 2012; pp. 1–9.

15. Small, J.; Smailagic, A.; Siewiorek, D.P. Determining User Location for Context Aware Computing through the
Use of a Wireless Lan Infrastructure. Available online: http://www-2.cs.cmu.ed/~aura/docdir/small00.pdf
(accessed on 26 March 2016).

16. Zhou, J.; Chu, K.M.; Ng, J.K.-Y. Providing location services within a radio cellar network using ellipse
propagation model. Int. Conf. Adv. Intell. Netw. Appl. 2005, 1, 559–564.

17. Chen, Y.-C.; Chiang, J.-R.; Chu, H.-H.; Huang, P.; Tsui, A. Sensor-assisted wifi indoor location system
for adapting to environmental dynamics. In Proceedings of the 8th ACM International Symposium on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, Montreal, QC, Canada, 10–13 October
2005; pp. 118–125.

18. Xie, Y.; Wang, Y.; Nallanathan, A.; Wang, L. An improved K-nearest-neighbor indoor localization method
based on spearman distance. IEEE Signal Process. Lett. 2016, 23, 351–355. [CrossRef]

19. Chang, Q.; Li, Q.; Shi, Z.; Chen, W.; Wang, W. Scalable indoor localization via mobile crowdsourcing and
gaussian process. Sensors 2016. [CrossRef] [PubMed]

20. Larios, D.F.; Barbancho, J.; Molina, F.J. Locating sensors with fuzzy logic algorithms. In Proceedings of
the IEEE Workshop on Computational Intelligence and Sensor Technology, Paris, France, 11–15 April 2011;
pp. 57–64.

21. Atia, M.M.; Noureldin, A.; Korenberg, M.J. Dynamic online-calibrated radio maps for indoor positioning in
wireless local area networks. IEEE Trans. Mob. Comput. 2013, 12, 1774–1787. [CrossRef]

22. Farid, Z.; Nordin, R.; Ismail, M. Recent advances in wireless indoor localization techniques and system.
J. Comput. Netw. Commun. 2013. [CrossRef]

http://dx.doi.org/10.3390/s150922364
http://www.ncbi.nlm.nih.gov/pubmed/26404297
http://dx.doi.org/10.1109/35.620535
http://dx.doi.org/10.1002/wcm.2367
http://dx.doi.org/10.1145/1023720.1023728
http://dx.doi.org/10.1109/LAWP.2014.2316973
http://dx.doi.org/10.1016/j.pmcj.2016.02.001
http://dx.doi.org/10.1016/j.comcom.2015.03.001
http://dx.doi.org/10.1155/2015/452590
http://dx.doi.org/10.1016/j.patcog.2015.06.004
http://dx.doi.org/10.1016/j.future.2015.02.008
http://dx.doi.org/10.1109/JIOT.2015.2481932
http://dx.doi.org/10.1007/s11276-006-0725-7
http://www-2.cs.cmu.ed/~aura/docdir/small00.pdf
http://dx.doi.org/10.1109/LSP.2016.2519607
http://dx.doi.org/10.3390/s16030381
http://www.ncbi.nlm.nih.gov/pubmed/26999139
http://dx.doi.org/10.1109/TMC.2012.143
http://dx.doi.org/10.1155/2013/185138


Sensors 2016, 16, 1193 17 of 17

23. Ciurana, M.; Cugno, S.; Barceló-Arroyo, F. WLAN indoor positioning based on TOA with two reference
points. In Proceedings of the 2007 4th Workshop on Positioning, Navigation and Communication, Hannover,
Germany, 22 March 2007; pp. 23–28.

24. Krishnakumar, A.S.; Krishnan, P. The theory and practice of signal strength-based location estimation.
In Proceedings of the IEEE International Conference on Collaborative Computing: Networking, Applications
and Worksharing, San Jose, CA, USA, 19–22 December 2005; pp. 1–10.

25. Diono, M.; Rachmana, N. Indoor positioning system based on received signal strength (RSS) fingerprinting.
In Proceedings of the 8th International Conference on IEEE Telecommunication Systems Services and
Applications (TSSA), Kuta, Indonesia, 23–24 October 2014.

26. Ounpraseuth, S.T. Gaussian Processes for Machine Learning. J. Am. Stat. Assoc. 2008, 103. [CrossRef]
27. Stephen, M. Thomas Bayes’s bayesian inference. J. R. Stat. Soc. 1982, 145, 250–258.
28. Alpaydin, E. Bayesian decision theory. Bayesian Anal. Uncertain. Econ. Theory 2014, 11, 47–59.
29. Qiong, W.; Garrity, G.M.; Tiedje, J.M. Naive Bayesian classifier for rapid assignment of rRNA sequences into

the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267.
30. Lin, Y.P.; Chen, Z.P.; Yang, X.L. Mail filtering based on the risk minimization Bayesian algorithm.

In Proceedings of the 6th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, FL,
USA, 14–18 July 2002; pp. 282–285.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1198/jasa.2008.s219
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Preliminaries 
	RSS Fingerprint 
	Gaussian Process 
	Weight-RSS Propagation Model 

	System Design 
	The Method of Gaussian Process Regression Plus 
	Naive Bayesian Location Model 

	Experiments and Discussion 
	Experiment Environment Initialization 
	The Effect of the Different Training Data Size 
	Effect on Different GPR Kernel 
	Performance Evaluation of GPRP 
	GPRP Robustness on Location Accuracy Testing 

	Localization Accuracy on Different Environments 

	Conclusions 

