Table 6.
The classification accuracy based on training functions [98].
| Training | Stop | Regression | Time | Classification Rate | Hidden | |||
|---|---|---|---|---|---|---|---|---|
| Function | Epochs | Elapsed | Training | Validation | Test | Overall | Neurons | |
| Levenberg marquardt |
15 | 0.8597 | 1.047 | 88.6 | 83.3 | 90 | 88 | 10 |
| 18 | 0.87251 | 0.921 | 94.3 | 66.7 | 80 | 88 | ||
| 16 | 0.87401 | 0.8721 | 88.7 | 90.3 | 90.3 | 89.2 | ||
| Average | 0.86874 | 0.947 | 90.533 | 80.1 | 86.767 | 88.4 | ||
| 33 | 0.85706 | 2.797 | 91.4 | 70 | 83.3 | 87 | 20 | |
| 14 | 0.85508 | 1.218 | 90 | 80 | 86.7 | 88 | ||
| 12 | 0.84772 | 1.094 | 92.9 | 76.7 | 83.3 | 89 | ||
| Average | 0.853287 | 1.703 | 91.433 | 75.567 | 84.433 | 88 | ||
| 16 | 0.86112 | 2.36 | 92.1 | 80 | 76.7 | 88 | 30 | |
| 11 | 0.85018 | 1.703 | 91.4 | 90 | 73.3 | 88.5 | ||
| 14 | 0.85192 | 2.125 | 89.3 | 76.7 | 83.3 | 86.5 | ||
| Average | 0.854107 | 2.0627 | 90.933 | 82.233 | 77.767 | 87.667 | ||
| Scaled Conjugate Gradient |
37 | 0.7819 | 0.703 | 80.7 | 83.3 | 83.3 | 82.43 | 10 |
| 27 | 0.7632 | 0.685 | 78.2 | 86 | 74.5 | 79.57 | ||
| 32 | 0.7904 | 0.823 | 82.4 | 71.9 | 79.4 | 77.9 | ||
| Average | 0.77917 | 0.737 | 80.433 | 80.4 | 79.067 | 79.9 | ||
| 31 | 0.802 | 0.797 | 78.6 | 90 | 82.7 | 83.77 | 20 | |
| 35 | 0.8153 | 1.252 | 79 | 87.3 | 78.1 | 81.47 | ||
| 34 | 0.79842 | 1.063 | 84.3 | 76.7 | 80 | 80.33 | ||
| Average | 0.80524 | 1.037 | 80.633 | 84.667 | 80.267 | 81.86 | ||
| 34 | 0.80767 | 2.457 | 83.6 | 83.3 | 86.7 | 84.53 | 30 | |
| 28 | 0.79215 | 1.073 | 81.2 | 72.1 | 69.5 | 74.27 | ||
| 31 | 0.82531 | 1.352 | 86.6 | 76.5 | 78.8 | 80.63 | ||
| Average | 0.80837 | 1.627 | 80.433 | 80.4 | 79.067 | 79.9 | ||