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Abstract

We explore the long-time behavior and equilibrium properties of a system of linear filaments 

growing through nucleated polymerisation. We show that the length distribution for breakable 

filaments evolves through two well defined limiting cases: first, a steady state distribution 

determined by the balance of breakage and elongation is reached; upon monomer depletion at the 

end of the growth phase, an equilibrium length distribution biased towards smaller filament 

fragments emerges. We furthermore compute the time evolution of the concentration of small 

oligomeric filament fragments. For frangible filaments, oligomers are present both at early times 

and at equilibrium, whereas in the absence of fragmentation, oligomers are only present in 

significant quantities at the beginning of the polymerisation reaction. Finally, we discuss the 

significance of these results for the biological consequences of filamentous protein aggregation.

I Introduction

The polymerisation of proteins into fibrillar structures is a type of behavior characteristic of 

many different systems, both in the context of functional[1–5] and aberrant biological 

pathways[6–20] in nature. In particular, aberrant protein aggregation is observed in relation 

with 50 or more disorders associated with formation of amyloid fibrils[14, 16, 21]. A key 

question characterising such linear growth phenomena is the size of the structures that are 

formed from the proteins, as this factor can influence the severity of disease or its rate of 

progression[22–28]. Nucleated polymerisation reactions yield filament populations with 

highly heterogeneous lengths[22, 29–32], a complexity due to the concurrent action of 

competing microscopic processes favoring either the lengthening or shortening of individual 

filaments in the ensemble. In this paper we focus on the behaviour of the size distribution of 

aggregates for long times, and explore the nature of the equilibrium distribution using 

numerical solutions to the master equation of filamentous growth, and obtain analytical 

results for many of the important limiting cases.

II Master Equation

The starting point for the analysis of the length distribution of filaments is given by the 

master equation describing the kinetics of breakable filament assembly. Letting f(t, j) denote 

the number of filaments of size j the master equation reads[32–36]:
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(1)

The condition f(t, j) = 0 is imposed for all j < nc, where nc ≥ 2 is the critical nucleus size for 

the filament growth; that is, all chains shorter than nc are unstable. The concentration of 

monomers in the system is m(t), and the last term in Eq. (1) represents the spontaneous 

formation of a growth nucleus of size j = nc. The dynamics of the system are defined by the 

rate constants k+ for elongation, koff for monomer dissociation from fibril ends, k− for 

fragmentation and kn for primary nucleation. Other processes, such as protein synthesis and 

degradation[32, 39] can be considered in this framework; here we focus on the intrinsic 

factors that govern the evolution of the aggregate population. This case corresponds to 

aggregation phenomena in vitro, or in vivo for cases where aggregate growth dominates the 

opposing contribution from degradation and results in the pathological deposition of 

aggregated proteins.

The behavior of the system for k− = 0 yields classical linear polymerisation that has been 

studied previously by Oosawa[1, 29] and is briefly discussed in section V. In order to 

provide a complete picture of the length distributions in nucleated polymerisation 

phenomena, in this paper we focus primarily on the other limiting case where filament 

fragmentation and elongation dominate the evolution of the length distribution and primary 

nucleation and monomer dissociation are of lesser importance. In this limit, the rate of 

production of filaments through nucleation, knm(∞)nc, is negligible in front of the rate of 

production of filaments through breakage k−[P(∞) − nc(nc − 1)M(∞)]. Similarly the rate of 

generation of free monomer from aggregates through direct dissociation 2koff P(∞) is taken 

to be negligible in front of the contribution from breakage through the creation of unstable 

filaments with a length smaller than the critical nucleus size k−nc(nc − 1)P(∞). Interestingly, 

(section III B), intermediate parameter ranges interpolate smoothly between the classical 

nucleated polymerisation results and the fragmentation dominated case.

III Filament Growth in a Closed System

A Principal Moments

In a closed system the total protein concentration in solution mtot = m(t) + ∑j j · f(t, j) is 

constant. Insights into the behavior of the system at long times t → ∞ can be obtained from 

considering average properties, such as the principal moments of the length distribution. 

From the master equation, the evolution of the principal moments[1, 37]
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(2)

have been shown to obey the differential equation [1, 32, 38, 39]:

(3)

(4)

To determine the equilibrium steady state values of P and M, the derivatives are set to zero. 

In the absence of nucleation, kn = 0, we identify[32]:

(5)

(6)

(7)

These equilibrium values correspond to stable node points of the dynamical system Eqs. (3), 

(4), whereas the trivial solution, M(0) = P(0) = 0, corresponds to an unstable saddle point. 

Eqs. (45), (6) and (7), are also to good approximation satisfied even for kn > 0 in a wide 

range of parameter space that is relevant to the analysis of experimental data. More formally, 

we note that for nc = 1, Eqs. (45), (6) and (7) are exactly verified. For nc > 1, substituting 

M(t) = mtot − m(t), a polynomial equation of order nc + 1 is found for m(∞) which must be 

solved. For example, for nc = 2, defining the dimensionless quantities µ = m(∞)/mtot, χn = 

kn/k+, χ− = k−/(2mtotk+), we obtain a cubic equation: 

 The exact solution to this cubic equation 

has the leading order terms for small 

 confirming the accuracy 

of Eq. (7) for values of kn such that 
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B Equilibrium Length Distribution

Using the values for the principal moments from the previous section, we can gain more 

detailed insight into the equilibrium length distribution of an ensemble of breakable 

filaments under the condition that the total mass in the system is conserved. Qualitatively, 

we expect the length distribution to be defined by a balance between filament fragmentation, 

leading to a shortening of filaments, and filament elongation which drives the length 

distribution towards a longer average value. At equilibrium, the number of fibrils created 

through fragmentation of long filaments into structures larger than the critical nucleus size is 

compensated by the destruction of filaments through fragmentation of short filaments to 

unstable structures smaller than the critical nucleus size which disintegrate into their 

component monomers.

At steady-state t = ∞, the left hand side of the master equation (1) is zero:

(8)

an expression which takes the form of a recursion relation for f(∞, j). In order to solve for 

f(∞, j) we may rewrite the relation as:

(9)

Eqs. (45) and (6) give m(∞) and P(∞). Substituting these into the master equation and 

rearranging yields:

(10)

This difference equation admits, as can be confirmed by direct substitution, the exact 

solution:

(11)

where (a)n is the Pochhammer symbol defined as (a)n = a(a + 1) … (a + n − 1) = Γ(a + n)/
Γ(a). Equivalently we may write:
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(12)

where the gamma function can be used instead of the factorials to provide a straightforward 

continuous extension. Eq. (12) describes the length distribution of a fragmenting filament 

system in closed form. Since this result is exact, it satisfies exactly 

Interestingly, Eq. (12), shows that the entire shape of the length distribution at long times, 

not just the average length, is defined solely by nc, and does not depend on the rate constants 

k+ or k−, which only serve to scale the long time length distribution by a constant factor.

In order to elucidate more clearly the functional form of the equilibrium length distribution 

given by Eq. (12), an approximation with a simpler functional form can be given by solving 

the differential equation which results from considering the difference equation Eq. (8) in 

the continuum limit:

(13)

(14)

where the lower limit of the integral has been chosen using the midpoint approximation. 

Substituting these expressions into Eq. (8) and differentiating with respect to j yields:

(15)

and expanding the final term in Eq. (15):

(16)

allows us to rewrite Eq. (15) as:

(17)

The general solution to this differential equation Eq. (17) is given, with arbitrary constants A 

and B, by:
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(18)

where  is the Dawson integral.

The second term in Eq. (18) does not contribute significantly for small nc, and decays 

quickly with j for large nc, affecting only the value of f(∞, j) around j = nc. Accordingly, to 

first approximation, we set B = 0 and fix A by the normalisation condition 

 These simplifications result in a length distribution in the form of a 

biased Gaussian distribution:

(19)

As a control for the quality of the approximations made in the derivation of Eq. (19), we 

compute the mean, µ, of the approximate continuum length distribution as:

(20)

A comparison of this result with the exact value from Eq. (7) indicates that Eq. (19) becomes 

exact for large nc, and it is expected that the continuum limit result Eq. (19) will become 

more accurate as nc increases. A comparison between numerically generated data, Eq. (19) 

and Eq. (12) is shown in Fig. 1. The continuum limit gives the correct form – a biased 

Gaussian function – and matches the exact solution well for large nc. An approximation of 

the length distribution which also accounts for the degradation of filaments has been put 

forward previously by [32] and the results from this approach in the limit of no degradation 

are also shown in Fig. 1 for comparison.

The ratio of the standard deviation, σ, to the mean, µ, of the equilibrium length distribution 

may also be calculated from Eq. (19) in terms of the error function:

(21)
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which is consistent with our previous analytical result[40] that the equilibrium ratio between 

the standard deviation and the mean filament length in a system of constant mass is 

independent of the rate constants and approximately equal to 

It is interesting to note that in the domain where the continuum approximation Eq. (19) is 

valid, the presence of a finite but small dissociation rate koff > 0 does not, to first 

approximation, modify the length distribution. Indeed the equilibrium monomer 

concentration analogous to Eq. (45) becomes[40]:

(22)

such that the terms involving koff cancel in the master equation:

(23)

(24)

In the continuum limit the second line in Eq.(24) vanishes and therefore we recover Eq. (19) 

even when koff > 0.

The continuum limit becomes less accurate for increasing koff as shown in Fig. 2. 

Furthermore, it can be seen from Fig. 2 that the action of koff broadens the distribution and 

shifts the mean to a larger length value. Qualitatively, this change can be understood as the 

terms proportional to koff in Eq. (24), f(j + 1) + f(j − 1) − 2f(j), represent a discrete 

Laplacian, which describes a diffusion-like process acting to broaden the length distribution.

IV Filament Growth Under Constant Monomer Concentration

A Principal moments

In the previous section we derived the length distribution of a closed filament system at 

equilibrium for t → ∞. A qualitative picture for the evolution of the length distribution at 

earlier times can be provided by noting that as long as the total mass concentration of fibrils 

M(t) is much smaller than the concentration of available monomer m(t) = mtot − M(t) ≈ mtot, 
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this latter quantity is approximately constant in time. In this section we therefore focus on 

the growth of filaments in a constant concentration of precursor monomers. Such a situation 

might arise also, for example, in vivo when biosynthesis and degradation are in balance. In 

this case, the principal moments, which we label Pe(t) and Me(t), obey linear moment 

equations [1, 32, 38, 39]:

(25)

(26)

with the constants defined as:

(27)

and

(28)

The long time limiting forms are, thus, given by:

(29)

(30)

and the average length Le = Me/Pe tends to a constant value that depends only on the ratio of 

the elongation and fragmentation rates and not on the nucleation rate or on the critical 

nucleus size:

(31)

B Stationary length distribution

As long as there is a constant supply of monomers, the number of breakable filaments 

increases exponentially, as described by Eq. (29), and we have ∂tPe = κPe(t). If the length 
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distribution approaches a form which does not change over time, we must also have ∂tf(t, j) 
= αf (t, j) for a constant α for all values of j; as Pe(t) = ∑j f(t, j) this condition can only be 

satisfied if α = κ and the (time independent) distribution sought is:

(32)

The master equation Eq. (8) can be rewritten for ρ(j) to yield:

(33)

In order to explore how the form of this length distribution compares to the result obtained 

for the case of conserved mass in section III, we again consider the continuum limit via the 

approximations Eqs. (13), (14) and (16). Defining the dimensionless constant ξ:

(34)

results in a differential equation with the form:

(35)

This expression is formally analogous to Eq. (17) obtained for systems with conserved total 

mass. Contrary to the case of constant mass, however, the individual rate constants enter the 

differential equation. Using the same arguments as above, a normalised solution satisfying 

 is given by:

(36)

The mean length, µ, can be evaluated as a consistency check:

(37)

a result which agrees with the exact result in Eq. (31) in the limit ξ ≫ nc; as nc is of order 

unity and ξ, giving the ratio between the elongation and breakage processes is typically ξ » 

1 in order for long filaments to be present in the system, the approximation ξ ≫ nc is likely 

to be accurate for most cases of practical interest. Fig. 3 shows this result in comparison to 
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the numerical solution. As expected, the continuum limit is seen to become slightly less 

accurate as nc increases.

Interestingly, the ratio of the standard deviation, σ, to the mean, µ, can also be determined 

from Eq. (36) in terms of an error function:

(38)

which is consistent with our more general analytical result[40] that the ratio between the 

standard deviation and mean of the filament length distribution in a system of constant 

monomer concentration is constant and equal approximately to  throughout the 

reaction time course.

The results for the behavior in the long-time limit both in the case of constant monomer 

concentration Eq. (36) and in the case of mass conservation Eq. (19) allow an understanding 

to be developed of the full time evolution of the length distribution of filaments growing in a 

closed system conserving total mass. Considering that the monomer concentration is 

approximately constant at a value mtot at early times in the polymerisation reaction, even for 

closed systems, we expect that the length distribution will first develop approximately into 

the biased Gaussian found as the equilibrium behavior for this case, given by Eq. (36), 

before shifting at later times into the substantially narrower biased Gaussian describing the 

equilibrium behavior of the constant mass case given in Eq. (19). Numerical evaluation of 

the master equation verifies this conclusion, and strikingly shows the evolution of the length 

distribution from the steady state behavior of constant monomer systems at early times to the 

equilibrium behavior of closed systems at late times as illustrated in Fig. 4.

V Comparison with Infrangible Filament Systems

The development of the length distribution in the case of infrangible filaments has been 

studied by Oosawa[1, 29]. It has been shown[1, 29] that the length distribution initially 

develops into a Poisson distribution in the time taken for the monomer-polymer equilibrium 

to be established, before relaxing over a longer timescale, in a diffusion-like process, into a 

(decaying) exponential distribution. In particular this equilibrium length distribution 

emerging for long times has been shown[1, 29] to take the form:

(39)

where m(∞) is the equilibrium concentration of soluble monomer, for which a derivation is 

sketched in the Appendix. There is no peak in this equilibrium length distribution, and 

Oosawa comments in his textbook[1]: “in polymers growing one-dimensionally, length 
distributions having a sharp maximum cannot be realized as a true equilibrium”. This time 

evolution of the length distribution in the absence of fragmentation is shown in Fig. 5. In 
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contrast to the Poisson-to-exponential evolution seen in the case of nucleated 

polymerisation, introducing the phenomenon of filament breakage fundamentally alters both 

the evolution and the equilibrium result, and as we have shown, can lead to true equilibrium 

length distributions having a sharp maximum. A qualitative picture for why Oosawa’s 

argument for the lack of a maximum in the distribution breaks down in the presence of 

filament fragmentation can be provided by considering the fact that the master equation for 

nucleated polymerisation satisfies detailed balance at equilibrium, whereas with breakage 

only balance is required, allowing thereby the emergence of a length distribution described 

by a biased Gaussian. It is also interesting to note that the approach to equilibrium is also 

significantly faster when breakage processes operate. Instead of the Poisson to exponential 

development, the distribution now moves from one biased Gaussian form to another.

In contrast to fragmentation, secondary processes that create structures of a single size will 

generally lead to a distribution of the exponential type. For example, a monomer-dependent 

secondary process that creates new structures of a critical size n2 through nucleation on the 

surface of existing structures[8] results in an additional term of the form 

in the master equation. If the term describing monomer dependent secondary nucleation is 

included in the master equations, the equilibrium length distribution is identical to Eq. (39) 

with the replacement  in the prefactor for n2 = 

nc. In general, on mechanistic grounds, it is plausible to suppose n2 ≈ nc and therefore the 

distribution can still be expected to be of a qualitatively similar form as long as both nucleus 

sizes are approximately equal.

It is interesting to note that in some cases further processes, not explicitly described by the 

master equation studied in this paper, can affect the length distribution at equilibrium and the 

time that is taken for the system to reach equilibrium. In particular, for some systems there is 

evidence for the lateral association of individual filaments at late stages of the growth 

process to form higher order assemblies[41, 42]. Such an assembly is likely to result in a 

substantially lower fragmentation rate of the resulting larger diameter compound filaments 

than that observed for the individual filaments and could substantially increase the time 

taken to reach equilibrium, and therefore other mechanisms such as monomer exchange 

from filament ends could become dominant for determining the length distribution in such a 

system for long times.

VI Evolution of Oligomer Occupancy

There is increasing interest in the evolution of the population of small aggregated species, 

known as oligomers, as they are believed to play an important biological role in protein 

aggregation disorders[23–28]. In general the structures of smaller aggregates can differ from 

those found in longer fibrils, a further degree of freedom which could be included in the 

master equation. In this paper, however, we use the unmodified master equation to 

investigate the population of small aggregates, and the time evolution of this population, in 

the presence and absence of filament breakage.

Prior to deriving analytical results further below, we examine the oligomer populations 

based on numerical solutions to the master equation. The evolution of the number of small 
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species, as a fraction of the total number of fibrils, is shown from numerical calculations in 

Panel A of Fig. 6 for the cases with breakage, and for comparison for the case without 

breakage in Panel B. In both cases, at early times all fibrils are small and as time progresses, 

these fibrils grow and the fractional oligomer occupancy decreases. In the case without 

breakage, the occupancy drops to very close to the eventual equilibrium level in the time 

taken for monomer-polymer equilibrium and then equilibrates over a long time scale with 

only a very small increase in oligomer occupancy. The final state is characterised by the 

majority of the aggregated material being in larger fibrils rather than small oligomers. In 

contrast, when breakage is present, oligomer states are re-populated after the monomer-

polymer equilibrium is reached as larger fibrils begin to break-up, and the equilibrium state 

shows that most aggregated material can be in oligomers as opposed to larger fibrils.

Analytical expressions for the equilibrium values of the oligomer populations, Polig, may be 

found by integrating the population distributions. If the maximum oligomer size is denoted 

nmax, then for the case with breakage using Eq. (19) we obtain at equilibrium the result:

(40)

In the converse limit, in the absence of breakage in a system including a monomer 

dissociation rate koff, we obtain using Eq. (39) the form:

(41)

In addition, by making use of the result for the case of breakable filaments that the 

distribution at an early time corresponds to that found in the presence of a constant monomer 

concentration, the corresponding early time limit oligomer population can be found from Eq. 

(36) as the closed form expression:

(42)

From these results, Eqs. (40), (42), (41), it is expected that in general the fractional oligomer 

population begins at unity. For frangible filaments, it then falls to the value given by Eq. (42) 

before rising to the value given by Eq. (40), whereas in the case without breakage the 
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population falls and remains at around the value given by Eq. (41). The evolution of the 

respective cases with respect to these analytical limits is shown in Fig. 6. These results 

highlight the importance of filament fragmentation in the production of small oligomers. It is 

interesting to speculate that filament fragmentation could therefore be an important factor in 

the generation of low molecular weight toxic aggregates in protein aggregation 

disorders[23–28]. In agreement with this idea, it has been observed that strains of prion 

aggregates with lower stabilities and therefore likely larger fragmentation rates have a 

tendency to be more infectious[43, 44] and result in higher toxicity[45] to the host organism 

than strains in which fibers are highly stable.

VII Conclusion

In this paper we have used the master equation of filament assembly to study the length 

distribution. We have shown that the classical result of Oosawa for the absence of a 

maximum in the aggregate length distribution at equilibrium does not hold for breakable 

filaments. Furthermore we have shown that the time evolution of the length of breakable 

filaments evolves through two key stages: first the growth proceeds to a length which is 

determined by the elongation and breakage rates of the filament system and which is 

typically many orders of magnitude larger than the equilibrium length. In a second slower 

step, the length distribution shifts towards smaller sizes once the monomer pool is depleted 

and growth stops, finally to reach an equilibrium length which is solely defined by the 

critical nucleus size.

Appendix

For a filament system that undergoes primary nucleation, elongation and depolymerisation, 

the equilibrium length distribution emerging for long times has been shown[1, 29] to take 

the form:

(43)

We now derive an expression that relates the long time soluble monomer concentration, 

m(∞) to the total monomer concentration, mtot, and the kinetic parameters, k+ and kn. We 

note immediately that for kn = 0, f (j, ∞) = 0 ∀j implying m(∞) = mtot. In other cases, an 

expression for m(∞) may be derived from Eq. (43) by noting:

(44)

Differentiating the well-known expression for the sum of a geometric series 

 yields the result 

which may be used to evaluate the right-hand side of Eq. (44) to yield:

Cohen et al. Page 13

J Chem Phys. Author manuscript; available in PMC 2016 September 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(45)

Eq. (45) is a polynomial equation of order nc + 1 for m(∞), which may in general only be 

solved analytically for nc ≤ 3. Oosawa presented[1] a solution to the special case kn = 2k+ 

and nc = 2 for which the cubic terms cancel and we are left with a simple quadratic equation 

for m(∞).

The general behaviour of m(∞) as a function of the total monomer concentration mtot may 

be examined without formally inverting Eq. (45). It may be shown by differentiation and 

inversion that:

(46)

which in conjunction with the trivial result  describes the behaviour for low 

total monomer concentration. In addition, from Eq. (45), the limit as the total monomer 

concentration becomes large is given by:

(47)

such that the long time soluble monomer concentration tends to a constant as the total 

monomer concentration becomes large (mtot ≫ koff/k+). Therefore, for small positive kn → 
0, the solution to Eq. (45). must tend towards:

(48)

Higher values of kn lead to a less abrupt transition between the limits where m(∞) = mtot 

and m(∞) = koff /k+. Interestingly for kn = 0 we have already seen that the solution is given 

always by m(∞) = mtot, implying that the long time free monomer concentration, m(∞), is 

discontinuous in kn as kn → 0.
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Fig. 1. 
Comparison of solutions to the problem of length distributions for frangible filaments in a 

closed system. The black dots are calculated numerically from the recursion relation, Eq. 

(8), while the red continuous line is from the exact solution Eq. (12). The blue dashed line is 

the continuum limit solution from Eq. (19). The green line shows the solution given by 

Pöoschel et al. [32] when setting the clearance rate to zero.
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Fig. 2. 
Effect of the depolymerisation rate koff. A shows a small depolymerisation rate in a 

fragmentation dominated case, 2koff < nc(nc − 1)k−. B shows the effect of increasing 

depolymerisation rates to broaden and shift the length distribution towards larger lengths 

that is described in the main text. The depolymerisation rates are given as percentages of 

k+mtot. The red solid line is the exact solution neglecting the depolymerisation rate and 

primary nucleation Eq. (12); the blue dashed line is the continuum approximation Eq. (19). 

The kinetic parameters are: 

Cohen et al. Page 18

J Chem Phys. Author manuscript; available in PMC 2016 September 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 3. 
Length distribution in the long time limit for increasing nc in the case of constant monomer 

concentration. The black dots are calculated numerically from the recursion relation, Eq. 

(33), while the blue dashed line is the continuum limit solution from Eq. (36). The 

parameters used mtot = 1µM, k+ = 1 · 104M−1s−1, k− = 2 · 10−7s−1, giving ξ = 105. The green 

line shows the solution given by Pöschel et al. [32] when setting the clearance rate to zero.
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Fig. 4. 
Time evolution of the fibril length distribution in the constant mass case. The black dots are 

calculated numerically from the master equation Eq. (1). The blue dashed line is the 

predicted continuum equilibrium length distribution for the constant monomer case given in 

Eq. (36). The red line is the predicted continuum equilibrium length distribution for the 

constant mass given in Eq. (19). The parameters used are mtot = 1µM, k+ = 1 · 104M−1s−1, 

k− = 2 · 10−6s−1, kn = 0, nc = 8, M(0) = 0.01µM, P(0) = 0.001µM. The mass loss from the 

system in the numerical solution, due to solving a finite number of equations, is zero to 

within machine precision.
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Fig. 5. 
Evolution of the fibril length distribution in a system with depolymerisation from the ends of 

fibrils but no breakage. A shows earlier times, and B shows later times. The kinetic 

parameters used are mtot = 1µM, k+ = 1 · 104M−1s−1, koff = (2/3)mtot k+ s−1, nc = 8, 

 M(0) = P(0) = 0.
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Fig. 6. 
Evolution of the oligomer population up to size nmax = 20 as a fraction of total fibril 

population. Panel A shows the case with breakage and Panel B the case without breakage but 

with an off-rate. The black dashed lines are the analytically predicted equilibrium values 

from Eqs. (40) and (41). The red dashed line is the early time analytical prediction from Eq. 

(42). The kinetic parameters used are the same as those in Fig. 4 and Fig. 5 respectively.
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