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Abstract

Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease 

mechanisms and providing potential biomarkers and drug candidates to improve clinical care for 

AD. However, due to the complexity of LOAD, including pathological heterogeneity and disease 

polygenicity, extracting actionable guidance from LOAD genetics has been challenging. Past 

attempts to summarize the effects of LOAD-associated genetic variants have used pathway 

analysis and collections of small-scale experiments to hypothesize functional convergence across 

several variants. In this review, we discuss how the study of molecular, cellular and brain networks 

provides additional information on the effect of LOAD-associated genetic variants. We then 

discuss emerging combinations of omic data types in multiscale models, which provide a more 

comprehensive representation of the effect of LOAD-associated genetic variants at multiple 

biophysical scales. Further, we highlight the clinical potential of mechanistically coupling genetic 

variants and disease phenotypes with multiscale brain models.

Introduction

Alzheimer disease (AD) is a common1, progressive2, lethal neurodegenerative disorder3. No 

preventative or curative treatment exists for this disease with high emotional4 and 

economic5,6 costs. In the USA, the prevalence of AD is expected to triple by 20507, but the 

global ramifications are even larger, as at that time, the majority of cases will occur in 

Competing interests statement
The authors declare no competing interests

HHS Public Access
Author manuscript
Nat Rev Neurol. Author manuscript; available in PMC 2017 January 01.

Published in final edited form as:
Nat Rev Neurol. 2016 July ; 12(7): 413–427. doi:10.1038/nrneurol.2016.84.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



developing countries1. Genetic factors explain most of the variation in the risk of AD8, 

especially in familial AD (a rare form of the disease with early onset), in which most genetic 
variants relate to amyloid-β (Aβ) processing9,10. However, no single genetic, lifestyle or 

environmental factor is sufficient to predict late-onset AD (LOAD) with clinically relevant 

certainty11. Variants have been detected in more than 20 genes, and are involved in a wide 

range of functions including metabolism, inflammation, synaptic activity and intracellular 

trafficking12. Functional effects of these genetic variants have been observed across multiple 

cell types and on processes such as intracellular signalling, cell morphology and regional 

brain connectivity, which span several physiological scales. However, the identification of 

LOAD variants has not yet led to preventative treatments or provided clinical guidance for 

carriers of specific AD-associated genetic variants.

Previous work on AD genetics has demonstrated the utility of grouping disease-associated 

variants into canonical pathways13-16. However, manually curated pathways and scientific 

literature are incomplete, can lack disease specificity, and can reflect historical biases17-19. 

Network-based approaches (Box 1), comprise complementary methods to identify the 

function of genetic variants and the basis of AD pathology, by mapping them onto the 

interactions between the components of various biological systems20,21. This framework 

facilitates the use of recent omics datasets and primary data from cohorts of individuals with 

AD to explore the effects of AD genetic variants.

In this review, we focus on how molecular networks provide a functional context for genetic 

risk variants in AD, and their potential for personalized diagnosis and disease stratification. 

We first consider ongoing efforts to identify genetic variants and current assessments of their 

role in AD pathology. Then, we examine network approaches to understand the function of 

AD variants, both at the molecular and whole-brain neuroimaging levels. Finally, we 

consider how multiscale models might bridge the gap between the effects of AD-associated 

variants at the molecular level and their function at the level of the brain, which could 

enhance the clinical relevance of genetic variants.

Early genetic findings in AD

The Aβ hypothesis and APOE variants

Early genetic findings reported large effect sizes of genetic variants occurring in a group of 

genes that encode interacting proteins involved in Aβ processing. The resulting amyloid 
hypothesis profoundly influenced the direction of studies designed to prevent AD or modify 

the course of the disease14,22. Although these findings have been applied to understanding 

LOAD, they were obtained in the context of familial Alzheimer disease (which is typically 

early-onset), with the discovery of mutations in the genes APP23, PSEN1 and PSEN224,25, 
and of relatively common AD-associated alleles of APOE, which encodes a protein that 

physically interacts with Aβ and tau, and can substantially increase risk of LOAD26. The 

amyloid hypothesis has dominated the field for decades, and continues to be the major 

influence on clinical trials27.

Several trials of Aβ modulators are ongoing. For example, the Alzheimer's Prevention 

Initiative launched two clinical trials to evaluate the effects of early anti-amyloid treatment 
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in populations at risk of AD — a large familial group in Columbia with early-onset AD 

driven by PSEN1 mutations28, and in individuals with homozygous APOE ε4 alleles. 

Similarly, the Dominantly Inherited Alzheimer's Network (DIAN) study selected 

participants from approximately 500 families carrying dominant mutations in APP, PSEN1 
or PSEN2 and is testing the effect of Aβ modulators29. Pioglitazone, a PPAR-γ agonist that 

is already approved and in widespread use for the treatment of type 2 diabetes, is also being 

tested for efficacy in preventing AD in people with specific APOE–TOMM40 haplotypes30. 

These trials, and many others, represent ongoing high levels of investment in the amyloid 

hypothesis.

Since the US government began tracking AD clinical trials consistently in 2002, more than 

400 clinical trials have tested more than 200 compounds27, of which only Memantine 

showed a mild reduction in symptoms31,32. Half of these trials involved Aβ-related therapies 

and failed to improve cognition in patients with AD, even when they significantly reduced 

Aβ levels33-36. These results could have been expected given that after the onset of overt 

cognitive impairment, increasing Aβ levels are only weakly correlated with further 

impairment in cognitive function37-39. Thus, therapeutic intervention in the early stages of 

LOAD might be required for Aβ-targeted therapies to show efficacy, a concept being tested 

in the ongoing trials in individuals with mild cognitive impairment (MCI)33 or high-risk 

asymptomatic participants40. It should be noted, however, that long-term administration of 

expensive agents, with potentially severe adverse effects, warrants careful ethical 

consideration, as AD-associated brain changes begin a decade or longer before AD-related 

cognitive decline29,41,42, and many individuals with moderate AD neuropathology do not 

have cognitive impairement37,43.

Regardless of the actual source, the continued failure of trials that evaluate AD treatments is 

disconcerting, in light of the large and increasing public health burden of the disease7. While 

these trials testify to the strength of the early findings on genetic perturbations of the APP 
processing in AD, this approach is still strongly tied to scientific advances made three 

decades ago, as opposed to incorporating more-recent genetic findings. It might therefore be 

helpful to use existing genetics findings and novel ‘omics’ technologies to uncover the 

disease mechanisms of AD and identify novel therapeutic targets.

Genome-wide association studies

After the early work on variants in early-onset AD, genetic research shifted towards the 

identification of AD-associated variants that have weak effects or are very rare. To date, 

GWAS have identified more than 20 genetic variants that influence the risk of AD12,44,45. 

Although these studies have provided insights into possible pathophysiological mechanisms 

of AD14,15,22, AD- associated variants that are rare or that have a weak effect are 

challenging to use in prognosis46,47, as their associated disease risk is much less than that of 

APOE variants, even when the variants are considered in aggregate48. These findings raise 

the question of how the identification of a wide range of variants can contribute to a coherent 

theory of AD pathology. In the past two years, whole exome or targeted sequencing 

studies49-51 have discovered rare variants that increase the risk of AD more strongly than do 
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common variants (certain TREM2 variants are on par with the odds ratio of APOE ε4 

variants).

Ongoing whole-genome sequencing projects, such as the Alzheimer's Disease Sequencing 

Project will continue to identify susceptibility loci in AD; however, the overall scientific 

returns of hunting for genetic variants are diminishing relative to the increasing size of the 

projects52. Gaining insight into the multigenic and multifactorial disease mechanisms in AD 

requires methods that go well beyond simple genotype–phenotype models. We must now 

start to scientifically consider and understand many genes, many phenotypes, and the 

interactions between them. This nascent third stage of AD genetics, the main focus of this 

review, uses systems biology methods that emphasize how variants interact and how their 

effects propagate through networks of molecular and brain circuit interactions, which span 

biophysical scales.

Molecular interactions in AD

Epistatic regulation of AD

The effect of the interaction between genetic variants might help explain the gap between the 

high heritability of AD and the weak effect of genetic variants48. Epistasis, which can 

consist of synergistic or dyssynergistic gene–gene interactions, is the simplest form of 

multigene interaction and is related to phenotypes53,54 or disease status55-57. As described 

below, the combinatorial nature of epistasis may be useful in accounting for the personalized 

molecular basis for AD risk in a given patient58. Incorporating epistatic interactions to 

understand AD heritability provides a direct connection between traditional additive genetics 

(GWAS) and the large-scale molecular-interaction networks described in the following 

sections.

Early attempts to find epistasis in AD were largely hypothesis-driven, and only a minority of 

the proposed epistatic interactions were replicated59. Given the large burden associated to 

multiple testing and the large sample size necessary to detect genetic interactions, most 

studies have been focused on detecting interactions between marginally associated variants, 

and primarily found effects between such variants and APOE haplotypes60. However, certain 

gene–gene interactions can be associated with AD even if neither locus is independently 

associated with the disease61,62. Considering all possible combinations of variants produces 

a high multiple testing burden, which is magnified when examining multiple phenotypes, 

such as the volume of multiple brain regions. Therefore, some studies have opted for a 

middle ground: they limited epistasis testing to pairs of genes in the same functional 

pathways, and found epistasis for hippocampal atrophy63 and temporal lobe volume64.

Edgetic effects

Genetic variation that alters the affinity of specific protein–protein interactions(the edges 

between proteins in a network diagram), as opposed to all the interactions of a given protein, 

are referred to as ‘edgetic’ effects65. Edgetic interactions are based on protein binding 

information, in contrast to the epistatic effects mentioned above, which are primarily 

statistical interactions, whose physical basis may be unclear. Edgetic alterations resulting 
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from genetic variants can be identified experimentally or predicted by high-resolution, three-

dimensional models of protein structure and protein–protein interactions (FIG. 1a)66. This 

concept is helpful to associate specific alterations in protein interactions with disease states. 

For example, pleiotropic effects can sometimes be explained by alterations of distinct 

protein interfaces of a single protein: each interface affects distinct partners and triggers 

distinct phenotypes67. In the context of Mendelian disorders, disease-associated genetic 

variants are likely to result in edgetic effects68. Whether this edgetic framework can be 

applied to study the effects of AD genetic variants is unclear.

Targeted sequencing or exome sequencing efforts carried out in the past few years have 

identified coding variants in ABCA7, ADAM10, BIN1, CD2AP, CLU, CR1, EPHA1, 

MS4A4A/MS4A6A, PICALM, PLD3, SORL1 and TREM2 that are associated with late-

onset AD49,50,69,70, in addition to the familial AD variants in PSEN1/2 and APP. Thus it is 

likely that, as whole-genome sequencing becomes more common, person-specific coding 

variants might also be mapped edgetically to generate detailed individual molecular 

networks –a process that is already possible for several thousand proteins with known 

structures (FIG. 1a)66.

Network-based approaches to AD genetics

Aggregating a collection of epistatic or edgetic interactions to identify specific disease 

mechanisms is still challenging, owing to missing information about how they affect specific 

cellular systems or neuronal activity. Therefore, alternative network-based approaches (Box 

1) leverage large-scale molecular networks to help identify coherent biological functions. 

The structure of these molecular networks contains information that is useful to determine 

the function of biological systems. For instance, molecules involved in a particular 

biological function tend to be densely and mutually connected71-74. Network approaches are 

different from pathway analysis: they can provide tissue-specific and disease-specific 

information from the latest omic technologies, and are not limited by the state of knowledge 

about canonical pathways. In some cases, network-based approaches intersect with the study 

of AD-associated genetic variants, but we also review select cases outside of AD, which 

involve principles or practical approaches that could be useful in characterizing the function 

of AD variants.

Coexpression networks

Coexpression-based networks (FIG. 1a, b, Box 2) are a common type of data-driven 

network, in which links represent the strength of gene–gene correlations. These links 

between genes can be generated by many mechanisms such as microRNAs, cell-type 

specificity, chromosome conformation, epigenetics and cell type proportions, that regulate 

gene expression21. Correlation links between genes are therefore useful in the context of 

disease: clusters of coexpressed genes can be a proxy for alterations in gene expression 

regulatory mechanisms, and the level of coexpressed genes can be matched to disease 

phenotypes to prioritize certain molecular systems for follow-up experiments. Advantages of 

the coexpression-analysis approach include coherence with genetic findings, potential tissue-

specificity and greater robustness than univariate or single–gene approaches.
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Genetic integration—Genetic variants that interact in protein–protein interaction (PPI) 

networks (Box 2) and tend to be coexpressed have been identified in AD75, autism76 and 

schizophrenia77. In autism, the coherence between coexpression and PPIs has been used to 

filter for molecular systems enriched in de novo mutations, in autistic individuals78.

Tissue specificity—Obtaining tissue-specificity and building coexpression networks in 

tissues relevant to disease can be crucial for the identification of relevant and accurate 

coexpression networks in neurological disorders79-81. The Genotype-Tissue Expression 

project (GTEx) consortium was created to make tissue-specific data more accessible by 

generating transcriptomic profiles of a large number of human tissues, with plans to examine 

the genetic effects of the tissue context82,83.

Robustness—Patterns of gene coexpression in human CA1 and CA3 were compared to 

disease progression and pathology to prioritize disease-associated molecular systems84. 

These coexpression clusters were identified without using genetic information per se; 

however, they showed coherence with subsequent coexpression, genetic and experimental 

studies, in terms of the TYROBP–TREM2 signalling cascade85,86.

Network-based stratification

Network-based patient stratification, an approach utilized in oncology, provides a clear 

example of how molecular interaction networks can aggregate diverse genetic effects to 

uncover disease mechanisms that are relevant to personalized treatment87. Briefly, genes 

carrying disease-linked variants were located in publically-available PPI networks (Box 2). 

Variants carried by patients with similar prognoses were mostly found in genes that were 

located in certain areas of the PPI network87. Thus, the protein-protein interaction network 

can be used to stratify patients and to highlight candidate disease mechanisms that involve 

molecules in the affected area of the network. Drug–target interactions can also be included 

in these networks to enhance their clinical utility: such networks would enable the 

identification of drugs that target the specific regions of a network that are affected in a 

particular person88. Although in AD, the effects of individual genetic variants are relatively 

small, network-based stratification is an example of how genetic variation can be aggregated 

in a clinically relevant manner. Applications of this tool to large cancer cohorts89 has 

provided a roadmap for how molecular networks could be helpful in identifying 

personalized mechanisms of AD, especially as whole-genome sequencing becomes 

commonplace. Similar approaches have been utilized in schizophrenia77 and autism76 to 

find network regions enriched in disease-associated mutations, though such approaches have 

yet to be applied to AD.

Analysis of directed networks

To estimate the effects of disease-associated variants, the studies cited thus far utilized 

undirected networks, such as coexpression networks or PPI's, in which elements are 

connected by links without specific direction that would imply causality. Combining the 

genetic analysis of pathological variants with gene expression data provides a causal basis 

for expression changes, which can be used to infer directed networks90. Previously, the use 
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of directed networks required large computing clusters, but the CINDERellA has enabled 

researchers to infer disease-specific directed networks using standard hardware91.

A previous generation of the directed/causal network approach was applied to microarray 

and single nucleotide polymorphism (SNP) data obtained from tissue samples of the 

prefrontal cortices of 549 healthy individuals and individuals with AD92. This approach, 

which included the analysis of expression quantitative trait loci (eQTLs), implicated 

TYROBP (which encodes part of a microglial membrane receptor complex) as an upstream 

node in an AD-associated network of several hundred genes related to multiple immune 

subsystems, including previous AD susceptibility genes identified from GWAS CD33, 

MS4A4A, MS4A6A and TREM2.

Disease state-specific networks

Many network studies were carried out with the assumption that networks generated from 

datasets in control/healthy systems are sufficiently similar to networks found in the disease 

state; however, pathological processes or responses to disease can alter network structure. 

For example, certain gene–gene correlations might only be observed in disease-state data 

(differential coexpression)93,94. Traditional differential expression analysis might not detect 

cases of differential coexpression because gene–gene correlations can be altered without 

changes in the average expression level of the two genes21. Differential coexpression has 

been observed between several molecular systems when comparing control to AD gene 

expression patterns92,95 and between PSEN1 and groups of genes highly expressed in 

oligodendrocyte and microglia, when comparing mouse and human coexpression patterns96. 

However, it is challenging to collect samples of ’true’ control-state or disease-state 

networks, as the phenotypic variability in AD is a continuum and AD pathology can be 

present long before the onset of clinical signs and symptoms97. A hybrid approach, which 

requires the presence of both clinical and pathological manifestations of the disease to 

establish an AD diagnosis, might lead to the loss of information on the unique molecular 

basis of the different –but related– phenotypic aspects of AD98.

Neuropathological studies of AD variants

A fundamental assumption of AD case–control GWAS is that persons can be meaningfully 

classified according to observable clinical behaviour and accepted definitions of the disease. 

However, many individuals who are classified as ‘cognitively normal’ harbour AD, infarcts 

and Lewy bodies99, and many individuals who are clinically diagnosed with AD are affected 

by other pathologies100 (Box 3). This inaccuracy in disease status and the many comorbid 

(yet typically unmeasured) conditions present in older populations reduce statistical power 

and places practical limits on the effectiveness of case–control studies of AD. By conducting 

GWAS on AD endophenotypes (such as neuropathological and neuroimaging features), it is 

possible to reduce the effect of confounding factors associated with subclinical disease and 

comorbid conditions, and to increase statistical power with quantitative outcomes101. The 

ultimate goal of this approach is to compile these partially overlapping genetic signatures 

into a more robust description of AD.
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Collecting neuropathological data is onerous, but such efforts are leading to the 

identification of novel loci associated with different types of AD and their related 

neuropathological features98,102. GWAS on common age-related neurodegenerative 

disorders, such as hippocampal sclerosis and cerebral amyloid angiopathy, have identified 

loci involved in each pathology, half of which are also found via case–control AD GWAS 98. 

Combining genetic data with detailed neuropathological phenotypes has the advantage of 

placing the genetic variants in the context of a particular pathophysiological process. 

Moreover, this approach has identified loci that are not found by traditional GWAS, and that 

contribute to pathologies associated with AD dementia.

Insights from AD networks neuroimaging

Genetics shape brain structure, connectivity and function103. Alterations in various brain 

regions have been linked to AD104, with canonical sites of early AD-associated effects in the 

hippocampal region105,106. To understand how AD affects macroscopic brain structures and 

brain dynamics on a global scale that is relevant to cognitive functions, some neuroimaging 

efforts have adopted a network–based approach107-109. This work is based on the 

observation that the networks of the healthy brain must simultaneously achieve two 

objectives, which can appear opposed. On one hand, brain networks must support functional 

specialization, which requires some isolated modules or clusters; on the other hand, brain 

networks must support coordination and information flow between diverse systems, which 

requires the existence of short-cut paths between modules110,111. Healthy brain networks 

generally exhibit a balance of high modularity (locality) and short path lengths (integration) 

to support perceptual and cognitive processing107,109,112,113. In the field of network 

neuroimaging, AD pathogenesis has been characterized as an imbalance between modular 

and integrative processes (described below).

Balancing local and global functions

When a network simultaneously supports modular function (local clusters) as well as 

integration (a short average path length between nodes), it is said to have a ‘small world’ 

(SW) organization114(FIG. 1c). The extent of SW organization in brain networks is 

heritable115,116, and predictive of AD status117,118 and progression119. Moreover, changes to 

the SW balance can be detected prior to neurodegeneration or cognitive decline in people 

with elevated brain amyloid levels120.

In AD, changes in SW organization can arise from changes in the shortest average path 

between nodes and/or changes to the clustering coefficient121,122(FIG. 1c). These changes, 

which may be due to amyloid accumulation in the hub regions of the brain123, can be 

visualized with several imaging methods, including functional MRI (fMRI)121,124, 

magnetoencephalography125 , EEG124 and structural imaging122,126. Importantly, although 

the presence of short paths in networks has been associated with cognitive function in 

healthy cohorts112,127, specific cognitive deficits in AD have not been conclusively linked to 

this metric. Cohort studies have shown that the alteration of brain networks in MCI is 

generally less severe than in AD118; however, some individuals with MCI can show 

Gaiteri et al. Page 8

Nat Rev Neurol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



selectively increased connectivity as a potential compensatory mechanism124,128,129 (FIG. 

1c).

Critical nodes: hubs and rich clubs

Brain region connectivity has implications for the location and propagation of AD 

pathology. For instance, ’hubs’ are regions with many connections to other regions, and 

changes in hubs are implicated in multiple brain disorders130. Hubs are preferentially 

affected in AD, potentially owing to unique metabolic demands or cellular processes in these 

regions131,132. A large study comprising patients with MCI and AD showed decreased 

global integration and decreased interconnections mediated by hubs within the default mode 

network (DMN)133 (FIG. 1c). Brain hubs that are densely coupled to each other are termed a 

‘rich club’134. Damage to rich club nodes could be especially disruptive to brain function, as 

they are the intersection point for many paths that link distal regions135. Consistent with this 

hypothesis, the connectivity of rich club nodes is affected in APOE ε4 carriers136, and 

alterations of hub connectivity are correlated with cognitive performance in patients with 

AD137. However, connectivity of rich club brain regions could be more strongly altered in 

early-onset AD and frontotemporal dementia than in LOAD138,139.

Network changes linked to AD genetics

Global and local brain network changes are associated with AD diagnosis, but few studies 

have examined the effects of AD-associated genomic variants on brain networks, 

independently of diagnosis. Most of the studies focusing on APOE ε4 carriers versus non-

carriers have found alterations of the DMN140-142, and of the SW integration-modularity 

balance143, with studies of all APOE alleles pointing towards additional subnetworks, the 

activation of which is influenced by genetics144. These changes take place years before the 

onset of AD140, are stable through mid-life145, and might be associated with decreased 

connectivity and metabolism in the DMN in AD146-148. Similar effects on the DMN are seen 

in the form of familial AD that results from mutations in genes involved in Aβ 
processing149. Although an AD-associated CLU variant has also been shown to correlate 

with brain structural path lengths in healthy individuals150, most genetic studies on brain 

networks in AD have focused on APOE, rather than other recent AD GWAS hits. It is 

unclear if this is due to historical effects or reflects truly larger effects of APOE alleles on 

brain network structure.

Challenges and next steps

As mentioned above, an imbalance of modularity and integration is regularly reported in 

individuals with AD. However, the features that drive the imbalance varies across studies 

and methods. Many (but not all151-153) imaging studies have found increased path length in 

AD brain networks121,122,154-157, in particular, the studies that measured structural 

connectivity networks. By contrast the other component of SW networks – clustering 

coefficient – is decreased in AD in some studies125,151,152,158,159 and, increased in 

others126,157,160. Differences in imaging modalities, network connectivity normalization in 

the context of neurodegeneration, or intrinsic limitations of the resting-state paradigm might 

be responsible for this range of results.
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Although inferred functional brain networks are constrained by underlying structural 

connections161; the correspondence of structural and functional networks is not 

straightforward162: and all networks should not be expected to show identical effects in AD. 

This confounding factor is exacerbated by variations in cohort characteristics, and by the 

effects of haemodynamics and arousal, which are difficult to control in clinical 

neuroimaging settings163,164. Guidelines are emerging for optimal data preprocessing165, 

which should improve the consistency and replicability of network characterizations in AD. 

Neuroimaging studies sometimes treat brain networks to be static; however, dynamic 

functional connectivity studies suggest that resting-state networks are a blurred 

representation of transiently activated regional subnetworks107,166-168. Considering these 

network fluctuations in disease states169-171 may resolve discrepancies among studies that 

have assumed a constant network architecture171.

To truly characterize the multiscale processes that are affected in AD, it is crucial to develop 

network signatures that go beyond the measurement of the SW balance172. This can be done 

by identifying specific network systems (e.g. configurations of DMN interactions) that are 

associated with functions (e.g. spatial episodic memory) that can be behaviourally assayed in 

individuals at risk of AD. This way, the ‘function’ of a particular functional network can be 

connected more directly to a behavioural phenotype of AD. Finally, as we discuss in the next 

section, it is crucial that the next generation of network signatures are derived from 

biologically constrained multiscale models of AD pathology.

Multiscale models of AD

To date, studies have typically examined the effects of AD genetics on molecular networks 

(FIG. 1a) or on large-scale brain networks (FIG. 1c). Those two perspectives are missing a 

description of how the molecular effects of AD-associated variants translate into structural 

brain changes, which in turn can represent cognitive decline in AD. Describing how 

molecular and brain networks are mechanistically coupled together may help to reduce false 

positives in drug development, as the molecular assays to test drugs could be linked to brain 

activity measures that are closer to clinical-level effects. Similarly, brain connectivity and 

neuroimaging findings are generally described in a manner that is uncoupled from molecular 

activity. Coupling brain connectivity to molecular properties provides an experimentally 

tractable basis to address changes in disease.

Multiscale models help to fill the gap between the effects of genetic variants on molecular 

networks and brain networks173,174. These models go beyond typical imaging-genetics 

approaches, and can be useful in identifying which molecular and cellular features have an 

effect on a given tissue or have clinical-level properties, such as patterns of fMRI 

connectivity that are associated with cognitive function. A concrete example of a neuronal 

property that could be well-represented by multiscale models is long-term potentiation 

(LTP) of synapses, which is triggered by the coincident presynaptic input with large 

postsynaptic depolarization. While initiation of LTP is rapid, the gene expression, 

translation, and cytoskeletal rearrangement it entails are relatively slow. In the context of 

AD, a multiscale model could include the experimentally observed effects of AD-associated 

variants on cellular processes (e.g. the effects of amyloid on LTP), which are then ‘scaled 
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up’ into larger and more realistic brain networks, through computational simulations (Fig. 

2)175-178.

Potential to complement AD research

Multiscale models are particularly important for AD because the effects of the disease on 

executive control and memory can be realistically represented by whole-brain models109,179, 

whereas therapies are generally developed at the molecular level. These models have the 

potential to rapidly identify specific molecular properties that exert the strongest effects on 

the clinical readout180,181,182; thus, they are valuable in silico tools to understand drug 

mechanisms of action and to evaluate the molecular systems affected by an individual's 

genetics. The potential use of multiscale models should not be perceived as a replacement 

for experimental work; it is rather a way of aggregating and extracting the implications of 

experimental results. Such models are necessary given the diverse systems involved in AD 

pathology, its decades-long prodrome, and the lack of sufficiently predictive animal 

models183-185.

Presently, network models of AD typically operate on a single physical scale, and ignore 

other spatial scales and the temporal component entirely186. Whereas multiscale models are 

rapidly developing in other areas of neuroscience180,187-190, they are only starting to be 

utilized in AD191. Therefore, we examine below how multiscale modelling in other diseases 

and biological systems can enable realistic and rapid examination of the effect of AD genetic 

variants, in a way that is useful for clinical progress. In particular, two bridges between 

scales are likely to be essential for multiscale models of AD to become useful in a 

preclinical setting: gene– electrophysiology coupling, and neuron–tissue coupling.

Gene expression and neuronal activity

Both gene expression and electrophysiology studies have a strong influence on AD research. 

Integrating these approaches in a multiscale model would have conceptual and practical 

benefits for the development of AD therapeutics, as cell membranes are very accessible to 

drugs and can be mathematically modeled in great detail and are essential to brain function. 

Few studies describe the feedback between gene expression and electrophysiology in a 

manner than enables predictive multiscale models of AD. Nonetheless, a study of the 

suprachiasmatic nucleus (SCN)192 exemplified the potential of combining gene expression 

and neuronal activity into a unified multiscale model, which can be used to simulate 

neuronal activity under many different physiological conditions. The cellular aspects 

included in the simulations span a range of temporal and physical scales (from smallest to 

largest): intracellular calcium levels, circadian genes expression, ion channels, intracellular 

neuropeptides and synaptic connectivity. All of these components of the model were 

mathematically coupled with interacting differential equations to represent the relationships 

observed experimentally. This simulation was helpful for reconciling long-standing 

experimental differences observed between results obtained in various laboratories on the 

effect of γ-aminobutyric acid (GABA) on SCN activity. This example illustrates the 

complete lifecycle of multiscale models: the association of gene expression to systems-level 

phenomena, such as neurotransmission and circadian activity, resulting in testable 

hypotheses that are examined experimentally193. Increasing the use of CRISPR, optigenetics 
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and single-cell RNAseq or ATACseq will facilitate experiments to simultaneously measure 

relationships between gene expression and electrophysiological activity in closely controlled 

systems. Such experiments are prime sources for the components of multiscale gene–

electrophysiology models applicable to AD.

Neuron-tissue coupling

In the process of scaling the effect of genetic variants to the level of whole-brain activity, a 

second major bridge across physiological scales is between single neuron properties and 

large-scale networks, that model the activity of millions of neurons194-196. Simulations of 

large-scale networks can include different excitatory and inhibitory cell types, with their 

respective ion channel conductances, connected with realistic columnar and inter-regional 

patterns (FIG. 2b). Far more information is available to generate this aspect of the multiscale 

model, than is available to model the effects of genetic variants. A key challenge is therefore 

to determine the useful level of biological detail in simulations196. Simulated neuronal 

activity can be linked to brain imaging studies by pooling the activity of groups of neurons 

to represent different brain regions (FIG. 2c)194. Such whole-brain networks show dynamic 

response patterns that are associated with perceptual and memory processes, and are helpful 

to understand the interplay between chemical, structural and functional aspects of 

neurological diseases, as demonstrated in recent multiscale models of schizophrenia197. 

Although these models cannot yet be used to model the effect of genetic variants, they 

already contain downstream components of genetic effects, such as intracellular 

components, detailed neuronal morphology and connectivity, which, together, reproduce 

fMRI features associated with memory198 and cognition179. As such multiscale models 

begin to incorporate disease-specific effects, including genetics, they will become useful in 
silico screening tools for AD cellular interventions.

Roadmap to multiscale models of AD

Here, we specify the components of one of the possible multiscale models of AD and we 

provide one possible roadmap (FIG. 2) for scaling the effects of AD genetic variants up to 

the level of whole-brain models195,199-201. First, the effect of AD-associated variants on the 

electrophysiological and morphological features of neurons (either directly or via other cell 

types) can be assessed either by changes in ion channel populations or by fitting the 

observed electrophysiological recordings to mathematical models of neuronal activity202 

(FIG. 2a). This strategy is helpful for bypassing some details of the intracellular signaling 

that transduces the effects of variants to membrane properties. In the second stage of 

multiscale modelling, the spiking and network activity of models with and without genetic 

variants (FIG. 2b) can be connected to each other with the desired level of detail, mainly 

limited by computational power. In sufficiently large numbers or with approximations of the 

average activity of large numbers of neurons, these computational models can generate a 

reasonable approximation of the whole-brain dynamics observed in resting-state fMRI 

studies194 (FIG. 2c).

Practical challenges

Challenges in the implementation of multiscale models that incorporate the effects of AD-

associated genetic variants include identifying the exact location of the relevant variant, 
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which can often fall in noncoding regions203, and the fact that some AD-associated genetic 

variants, particularly those that affect non-neuronal cell types, may not have known synaptic 

effects. The analysis of epigenetic information can narrow the size of the relevant 

locus204,205. The epigenetic resources to localize AD-associated variants are limited, but 

they are rapidly expanding206,207 and becoming more relevant to brain cell types208. The 

effects of non-coding AD-associated variants can be assessed by creating cell lines each with 

a mutation in different subregions of the locus, and evaluating the effects of those mutations 

in electrophysiological and cell imaging experiments. Effects observed in these experiments 

can be included in neuronal models of disease and compared with output of control-state 

models, or with the effects of other variants. Regarding variants that affect non-neuronal cell 

types, the effects of such cell types on neurons can be included in neuronal simulations. For 

example, certain TREM2 variants are associated with AD and activation of TREM2 
signaling in microglia can lead to decreased neurite length. Such effects can be included in 

neuronal models, which are, in turn, components of whole-brain models.

Conceptual challenges

Ambitious modelling projects, such as multiscale modelling of the effects of disease-

associated variants (FIG. 2), are sometimes dismissed because genes, cells and brain 

networks have some important properties that are not yet measured, and that can lead to 

variable results209. Indeed, the absence of constraining data is a challenge for modeling 

efforts in many domains of biology, and has no easy solution. However large-scale and 

multiscale models have yielded useful insights in several areas of biology, including whole-

cell modeling210, cancer177, cardiology176,178, immunology175 and 

neuroscience190,192,211,212. Moreover, the data required to constrain multiscale models is 

rapidly accumulating as part of the data-heavy, multicontinental collaboration initiatives led 

by private and public funders213-215, such as the large-scale coordination of open science for 

target discovery in the Accelerating Medicines Partnership for Alzheimer Disease (AMP-

AD). A particular advantage of multiscale models is that they remain constrained by a large 

set of results (FIG. 2): for example, fMRI data can be used to constrain the model 

parameters of cellular membranes by comparing the output of the model in ‘healthy’ and 

‘disease’ states to actual healthy fMRI, EEG or magnetoencephalography results. Finally, we 

emphasize that these models do not attempt to copy the brain in all of its complexity. The 

goal is to simplify the real system, to distill some of its core functions with sufficient 

accuracy to predict the behavior of the real system in some limited setting196,216. In this 

light, multiscale modelling is simply a more quantitative and systematic approach to the 

general scientific endeavour — one which explicitly couples different experimental 

programs, rather than leaving their interaction to chance.

Conclusions

The past decade of AD genetic discoveries has been marked by the search for coherence 

among disease-associated variants with weak effects and functional diversity. Concurrently, 

omic technologies and neuroimaging have produced detailed descriptions of molecular and 

brain networks. These trends of diverse genetic findings and biological networks are 

converging in studies of large AD cohorts, which shed light on the functional roles of AD-
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associated variants and point towards convergent functions of such variants. At the 

molecular level, several types of molecular interactions including epistasis, protein–protein 

interactions and gene coexpression, define the intricate relationships between variants and 

genome-wide molecular systems. Measurements of differential coexpression and edgetic 

changes allow the identification of networks that only exist in the disease state, and these 

novel interaction structures may be crucial for understanding pathogenesis. The effects of 

individual and combinations of AD-associated genetic variants can also be observed on 

structural and functional brain connectivity patterns. These show that some variants affect 

the integration–segregation balance of brain networks, which is critical for perceptual and 

cognitive function. However, identifying how variants alter brain connectivity patterns 

entails understanding their effects on cell morphology and electrophysiology, and creating 

integrated multiscale models to capture their full effects on brain microcircuits and regional 

connectivity.

While molecular and brain networks are the most complete description of the biological 

processes altered in patients with AD to date, they are still incomplete, potentially biased, 

and represent a static picture of the disease. Advancing to the point where network tools can 

generate a dynamic, multiscale description of Alzheimer's that is sufficiently accurate to 

provide personalized diagnosis or screen potential therapeutic targets involves challenges in 

computational infrastructure, omics data acquisition and the social organization of science. 

Specifically, building multiscale models requires openness and novel collaborations among 

groups of investigators, breaking out from traditional academic boundaries, to become more 

aligned with patterns of molecular interactions217,218. While daunting, such coordination 

between researchers is possible, as demonstrated by the centralized efforts to annotate 

genome-wide metabolic networks219.
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Glossary

Amyloid precursor protein (APP)
Gene that encodes the amyloid-β precursor protein, which is cleaved to form amyloid-β 
peptides; presenilin (PSEN1, PSEN2) mutations promote the cleavage of APP into plaque-

forming peptide type.

APOE
Dosage of the ε4 allele APOE, which encodes the apolipoprotein E, is the strongest genetic 

risk factor for late-onset Alzheimer disease; APOE interacts with amyloid-β to influence 

plaque aggregation

Amyloid hypothesis
Proposal according to which the root cause of Alzheimer disease is the accumulation of 

amyloid-β, with nuances around sufficiency and form of amyloid-β responsible for 

pathogenesis
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Clustering coefficient
Measure of modularity around a network node. Number of connections among neighbors of 

a node, divided by the maximum possible number of connections among those neighbors

Cognitive reserve
Tolerance and adaptation to neuropathology, in part attributed to genetic and life-style 

associated factors such as education and social activity, and their neural correlates

Directed networks (directed graphs)
Networks where elements are connected by links with a specific direction that represents an 

asymmetric temporal or transfer function

Genetic variants
Insertion, deletion or alternative coding of DNA

Late-onset (sporadic) Alzheimer Disease (LOAD)
In contrast to early-onset Alzheimer disease, this is the most common form of the 

neurodegenerative disease, typically diagnosed clinically after age 65 and definitively 

diagnosed post-mortem. LOAD is associated with functionally diverse, weak genetic 

variants

Multiscale modelling
Mathematical or conceptual models that couple processes that occur on a varying range of 

physical or temporal scales, which are typically studied in isolation

Peroxisome proliferator-activated receptor gamma (PPAR-γ)
Component of a nuclear receptor complex, which includes the retinoid X receptor. This 

complex is activated endogenously by fatty acids and leads to transcription of APOE, among 

other genes

Pleiotropy
When a single gene or variants of that gene can contribute to two or more ‘non-related’ 

phenotypes

Small-world network
Networks in which most nodes are connected by a small number of hops, yet form relatively 

isolated (modular) clusters
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Key points

• Genetic findings in late-onset Alzheimer disease (AD) have not yet 

resulted in strategies to prevent or treat AD

• Examining the position of genes carrying disease-associated variants in 

large-scale molecular networks can help identify coherent disease 

mechanisms

• Not all network approaches are equal: recent approaches involve 

networks that are directed (with causal links), and specific to the tissue 

and disease-state

• AD and AD-associated genetic variants decrease efficiency of 

information transfer in the brain connectome, which can be quantified 

by measuring structural and functional patterns in brain networks

• Building multiscale models of the effects of AD-associated genetic 

variants with large neuronal simulations is now feasible and will be 

useful to understand the effects of such variants and to screen 

therapeutics in silico
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Box 1| Network-analysis approaches

Over the past decade, the term “network analysis’ has been used to refer to a variety of 

analytical approaches to analyze genomics data. By considering many relationships 

among biological entities simultaneously, network analyses shift the assumptions from a 

one–to–one genotype–phenotype mapping to a many–to–many mapping, which better 

accommodates the complexity of both the genetic basis and the phenotypic expression of 

chronic diseases. In this approach, networks (known as weighted graphs in Computer 

Science and Mathematics) provide a generic framework to represent relationships or links 

between a set of entities which, in the context of genomic analysis can be 

molecules53,66,220, cells221-224, tissues225-227, or organisms228-230. Network-based 

approaches utilize one or more large knowledge sources to describe the functional 

relationships between units. These networks are most commonly utilized in the 

‘interpretation’ phase of a genome-wide analysis, to look for functional enrichment 

among the top hits. Increasingly, molecular networks have also been used during the 

discovery phase of genomic experiments (as with the NetWas approach81) to identify 

novel genes or mechanisms associated with diseases. Two main sources of data can be 

used to construct gene networks: literature-curated interactions from low-throughput 

experiments, and high-throughput datasets that measure gene expression (and/or activity) 

across a large set of individuals or conditions. These two sources vary in false positive 

rates, coverage, prior knowledge, and context-specificity. The meaning of a link in a 

molecular network can vary depending on the type of network: links can be physical links 

between molecules, represent signal transduction such as phosphorylation, or consist of 

statistical inferences derived from primary data, without specifying a particular 

mechanism of interaction, or involve unmeasured intermediaries. The connectivity in 

several types of networks has been used to provide context for Alzheimer disease (AD) 

variants (guilt by association) or to identify molecules and mechanisms associated with 

AD.
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Box 2| Common types of biological networks

Protein–protein interaction networks

• Protein interaction networks compile experimentally tested or predicted 

physical binding affinities between proteins

• Tissue-specific protein interactions can be obtained experimentally via 

yeast two-hybrid or affinity purification–mass spectroscopy 

approaches, or identified in non-tissue-specific databases, using tissue-

specific gene expression signatures231

• Disease-associated genetic variants can lead to edgetic changes that 

alter specific protein–protein physical binding interactions

• The use of databases such as HINT232 and H2-II-14233 could help 

avoiding the historical publication bias that can be linked to protein 

interactions generated in small-scale experiments

Coexpression networks

• Coexpression networks represent the links, or gene–gene correlations, 

between genes that have similar expression patterns which can reflect 

common regulatory mechanisms

• The biological bases of coexpression links are diverse and include 

coregulation via chromatin conformation, transcription factors, 

epigenetics, noncoding RNAs and cell-type variation21

• Analysis of samples from multiple tissues can uncover differential gene 

expression between cell types and brain regions

• Coexpression relationships can be utilized even with small samples 

sizes, with databases such as COEXPRESdb234 and GeneMANIA220, 

to find genes coexpressed with gene sets of interest

• Coexpression relationships can be specific to the tissue or the disease 

state

Causal networks — directed networks that predict signal propagation

 Inference of causal networks that contain directed links typically require hundreds of ܀

samples and/or multilevel ‘omics’ data

• Inference of directionality is statistically difficult: accuracy decreases 

as the number of network nodes increases

• Ideal data sources for these networks include microarray or RNAseq 

time-series experiments and systematic perturbation data, which are 

rarely available for brain tissue

• Expression quantitative trait loci (eQTLs) are useful to generate 

directed networks, especially in inbred populations in which the single 

nucleotide polymorphism–to–gene coupling is strong
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• Toolboxes to extract directed networks from gene expression data, or 

expression and genetics data, are now publically available91
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Box 3| Cognitive ability and reserve

Baseline cognitive function and decline in cognitive function in non-demented 

individuals are affected by genetics235,236, several neuropathologies97, and lifestyle 

factors, such as social237 and physical238 activity and life-long cognitive activity239,240. 

Similarly, in the population with Alzheimer disease (AD), the level of cognitive function 

is influenced by lifestyle factors (including education and occupation241,242, and disease-

related decline243). However, classic AD pathology explains less than a third of the 

variance of cognitive decline38. Furthermore, many individuals presenting with AD 

neuropathology still maintain adequate cognitive function37,99. The concept of cognitive 
reserve has been proposed to help explain this difference between predicted and actual 

cognitive decline242,244. This disconnection between pathological indices and cognitive 

function is a strong motivation to study the genetic basis of cognitive function and 

cognitive decline seen in AD.

High cognitive function in midlife can be considered a component of cognitive reserve, 

as it can delay AD diagnosis 245,246. Twin studies indicate that cognitive function has a 

substantial genetic component247. For example, out of 13 single nucleotide 

polymorphisms associated with general cognitive function , four (TOMM40, APOE, 

MEF2C and ABCG1) have been consistently implicated in AD 248, and others were 

associated with the rate of cognitive decline (CR1)249, episodic memory (PICALM)250 

and working memory performance tasks (BIN1)251. The most consistent finding, by far, 

was the association of APOE with various cognitive phenotypes and the rate of cognitive 

decline with age252,253. However, some of this overlap in the genetic bases of cognitive 

function and that of AD-associated dementia might be due to the fact that decline in 

cognitive ability can occur naturally with time or with AD.
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Figure 1. Effects of Alzheimer disease genetic variants on molecular networks and global brain 
topology
A. The phenotypic effects of Alzheimer disease (AD)-associated genetic variants are exerted 

through several types of molecular networks (here extracted from GeneMANIA), or even 

alter their structure. For example, some AD-associated SORL1 mutations (blue dots) are 

predicted to affect specific interaction interfaces (edgetic effects). The effects of genetic 

variants on molecular networks, in turn, influence processes at higher physiological scales 

(cellular morphology, cell–cell interactions and tissue morphology) that ultimately affect 
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global brain structure. B. Each type of molecular network is prone to different types of 

biases: in canonical pathways, most links are centred around APP, PSEN1/2 and APOE, 

potentially reflecting historical interest in those genes; in coexpression analyses and other 

high-throughput networks, links between genes carrying AD-associated variants are more 

evenly distributed. C. The functional and structural connectivity of brain networks seen in 

patients with AD or with mild cognitive impairment (MCI) shows stereotypical changes, in 

part attributable to the collective effect of AD-associated variants. The circular networks are 

conceptual representations of small-world brain networks (green zone), which can gain links 

(pink links in MCI) or lose links (dashed links in AD and MCI), according to disease status. 

Generally, AD brains are characterized by less efficient and less globally integrated 

networks, which are seen as a parallel for cognitive dysfunction.
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Figure 2. Components of a multiscale model of the effects of genetic variants
A. The direct and indirect effects of Alzheimer disease (AD)-associated genetic variants on 

neurons can be assessed experimentally in gene editing-based and/or stem cell-based disease 

models. The resulting patterns of activity can be fitted to mathematical neuronal models —

the building blocks of larger microcircuits and brain region models. B. Connectivity between 

and within brain regions, such as different cortical layers (L1, L2/3, L4) and other structures, 

including components of the thalamus can be extracted from human and other primate brain 

tissue (top left). This information can be combined with cellular parameters, such as cell 

Gaiteri et al. Page 36

Nat Rev Neurol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



morphology and connectivity, that can be measured by electron microscopy (EM), and inter-

regional parameters that can be measured by diffusion spectrum imaging (DSI), to generate 

detailed realistic connectivity matrices (top right). Such matrices establish a synaptic 

connection among dynamic neuron models (a), from which spontaneous or evoked activity 

can be simulated (spike raster plots at the bottom). The effects of AD variants on network 

activity can be observed by comparing neuronal network models that do or do not 

incorporate the effects of AD variants. C. The model activity in various brain regions, with 

or without AD variants, can be temporally smoothed to provide an output analogous to 

functional MRI (fMRI) data, which can then be compared with published studies. The 

actions of various drugs or molecular interventions can also quickly be examined at this 

level — a level much closer to a cognitive phenotype — which may be helpful in screening 

potential therapies.

Gaiteri et al. Page 37

Nat Rev Neurol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Early genetic findings in AD
	The Aβ hypothesis and APOE variants
	Genome-wide association studies

	Molecular interactions in AD
	Epistatic regulation of AD
	Edgetic effects

	Network-based approaches to AD genetics
	Coexpression networks
	Genetic integration
	Tissue specificity
	Robustness

	Network-based stratification
	Analysis of directed networks
	Disease state-specific networks

	Neuropathological studies of AD variants
	Insights from AD networks neuroimaging
	Balancing local and global functions
	Critical nodes: hubs and rich clubs
	Network changes linked to AD genetics
	Challenges and next steps

	Multiscale models of AD
	Potential to complement AD research
	Gene expression and neuronal activity
	Neuron-tissue coupling
	Roadmap to multiscale models of AD
	Practical challenges
	Conceptual challenges

	Conclusions
	References
	Figure 1
	Figure 2

