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Abstract

Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases that 

limits nitric oxide bioavailability and can increase production of NOS derived reactive oxidative 

species. Increased plasma ADMA is a one of the strongest predictors of mortality in patients who 

have had a myocardial infarction or suffer from chronic left heart failure, and is also an 

independent risk factor for several other conditions that contribute to heart failure development, 

including hypertension, coronary artery disease/atherosclerosis, diabetes, and renal dysfunction. 

The enzyme responsible for ADMA degradation is dimethylarginine dimethylaminohydrolase-1 

(DDAH1). DDAH1 plays an important role in maintaining nitric oxide bioavailability and 

preserving cardiovascular function in the failing heart. Here, we examine mechanisms of abnormal 

NO production in heart failure, with particular focus on the role of ADMA and DDAH1.
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Introduction

Chronic Heart failure (CHF) is a condition in which the left heart is not able to pump out 

sufficient oxygen-rich blood into circulation to meet the body’s needs. The term “congestive 

heart failure” is often used interchangeably with “chronic left heart failure”. The common 

clinical symptoms of CHF include shortness of breath (dyspnea), excessive fatigue or 

reduced exercise capacity and swelling (edema) in legs and feet etc (32,45). The common 
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causes of CHF include prolonged high blood pressure (chronic hypertension), myocardial 

infarction (heart attack) after coronary artery disease, cardiac valve disease, idiopathic 

cardiomyopathy, myocarditis from inflammation, and congenital heart diseases etc (32,73). 

The prevalence of CHF patients is ~6.6 million adults in 2010, and it is projected that 

additional 3 million people will have CHF by 2030 (39). CHF is the leading cause of death 

in United States (83).

Nitric Oxide (NO) is an endogenously produced, locally acting gas that exerts multiple 

actions that help preserve cardiac function in the setting of CHF (17,47, 58,85). NO 

synthesis is catalyzed by a family of NO synthases (NOS), which use L-arginine as the 

substrate to produce NO and L-citrulline. In mammals, there are at least 3 NO synthases; 

endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). eNOS is most 

stongly expressed in vascular endothelial cells, while nNOS is predominant in neuronal cells 

and skeletal muscle, but both forms are expressed at lower levels in many cell types (17,47). 

iNOS is predominantly expressed in leukocytes under normal conditions, but it is also 

induced in various cells in response to inflammation or other stress signals. eNOS and nNOS 

produce NO in response to increased cytosolic Ca++ (Ca++-dependent NOS), while iNOS is 

constitutively active (17,47). NO produced by eNOS, the major isoform in the endothelium, 

plays a critical role in vascular tone by diffusing into adjacent smooth muscle cells (17,48). 

NO activates soluble guanylate cyclase, promoting cGMP production, subsequent activation 

of cGMP dependent protein kinase or Protein Kinase G (PKG). PKG phosphorylates a 

number of important intracellular targets that cause smooth muscle relaxation and increased 

blood flow (17,33,48). During heart failure, coronary or systemic vasodilatation in response 

to agonists or shear stress are attenuated, in part due to decreased vascular NO 

bioavailability (20,22). NO-cGMP signaling also modulates other vessel related functions 

including angiogenesis, vascular endothelial cell growth/proliferation, platelet aggregation, 

and injury repair. Importantly, reduced NO bioavailability contributes to hypertension, 

coronary disease, atherosclerosis, diabetes, and renal dysfunction, a group of risk factors that 

promote or exacerbate CHF. NO production is regulated by substrate L-arginine availability 

(17), NOS protein content and quality, NOS cellular and subcellular distribution, 

tetrahydrobiopterin (BH4, an essential cofactor for the dimerization of NOS) availability 

(17), endogenous NOS inhibitors asymmetric dimethylarginine (ADMA) and N-monomethy 

L-arginine (L-NMMA) (59,77), and the enzyme activity of dimethylarginine 

dimethylaminohydrolase-1 (DDAH1) (Figure 1) (44,77). ADMA and L-NMMA attenuate 

NO production by all NOS isoforms (15,16). Here we will briefly review the role of ADMA 

and DDAH1 in regulating cardiovascular NO production and heart failure development.

NO/cGMP/PKG signaling and CHF development

In addition to the well-established role of NO-cGMP signaling in maintaining normal 

cardiovascular function, NO protects against cardiac remodeling and dysfunction under 

stress conditions such as aging (65), myocardial infarction, and pressure overload (58,85). 

For example, progressive cardiomyocyte hypertrophy, interstitial fibrosis, left ventricular 

dilation and dysfunction that develops in the surviving tissue after myocardial infarction, are 

exacerbated in eNOS KO mice as compared to wild type mice (85), while transgenic mice 

over-expressing eNOS are protected from myocardial infarct-induced left ventricular 
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remodeling, cardiac death, and the development of CHF (29,58,85). eNOS KO also was 

shown to exacerbate left ventricular dysfunction in response to increase of systemic pressure 

overload produced by aortic banding (58,84), while cardiomyocyte-restricted restoration of 

eNOS (over-expressing eNOS in eNOS KO mice) reversed the exacerbated aortic banding-

induced ventricular remodeling in eNOS KO mice (13), indicating an important role of NO 

in maintaining cardiomyocyte function. Over-expression of eNOS also attenuated 

myocardial infarction induced compensatory hypertrophy and left ventricular failure in 

comparison to wild type mice (56). The protective effects of NOS signaling are largely 

attributed to cGMP production and activation of PKG, which targets several proteins 

involved in cardiac contractility, hypertrophy and remodeling.

Besides promoting cGMP production, NO modulates cardiovascular function by promoting 

post-translational modification of proteins via S-nitrosylation. For instance, S-nitrosylation 

of L-type calcium channels reduces ventricular arrhythmias and mortality in mice after 

myocardial infarction (12), while S-nitrosylation of the ryanodine receptor can reduce 

diastolic calcium leak (37). S-nitrosylation also regulates G-protein coupled receptor 

signaling (42) and the stability of PDE5 (107), an enzyme that degrades cGMP to exacerbate 

heart failure development (70). Thus, NOS influences cardiac signaling and adaptation to 

stress through both the NO-cGMP pathway and NO dependent S-nitrosylation.

While eNOS and nNOS activity are generally considered cardioprotective, iNOS expression 

can be detrimental (14,38,114). This is likely due to unmitigated production of NO and 

superoxides by iNOS uncoupling (6,111,114) resulting in peroxynitrite formation in the 

inflammatory setting of heart failure and resulting tissue damage (38,78,114). Excessive NO 

may also promote apoptosis (38) or cardiomyocyte dysfunction (14) through aberrant S-

nitrosylation. In addition, under certain conditions, such as oxidative stress (117), when 

levels of the cofactor tetrahydrobiopterin is limited, or when bioavailability of L-arginine is 

insufficient, the normally protective effects of NOS signaling can be derailed by NOS 

“uncoupling”. Under optimal conditions, NOS bound to the co-factor tetrahydrobiopterin 

forms a homodimer and produces NO using L-arginine as the substrate. In absence of 

tetrahydrobiopterin, which may be limited under oxidative stress conditions, NOS becomes 

uncoupled, and NOS monomers produce superoxide rather than NO. We found that both 

iNOS and eNOS monomers were increased in failing hearts from wild type mice in response 

to TAC, and this was associated with increased myocardial superoxide production (114). 

Furthermore, iNOS gene deficiency or the selective iNOS inhibitor 1400W protected the 

heart against TAC-induced left ventricular failure and oxidative stress (114).

Because NO signaling is often impaired in CHF, strategies to promote cGMP production by 

pharmacological activation of guanylate cyclase (27,36) or blocking cGMP degradation 

using cGMP specific phosphodiesterase inhibitors are being examined as potential 

treatments for CHF (61,70,67,95). While promising results have been obtained through these 

strategies in animal models, success of these approaches in human trials has been mixed or 

unknown (11,66). Identification and targeting of NO/cGMP/PKG signal pathway may lead 

to new treatments for CHF.
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Cellular and subcellular localization of eNOS and DDAH1

Because NO diffusion distance is quite limited, the cellular and subcellular distribution of 

eNOS are important for NO signaling. eNOS is predominantly expressed in vascular 

endothelial cells, so that the level of eNOS expression in a particular tissue is often related to 

its vascularity. In the heart, eNOS is not only expressed in vascular endothelial cells, but is 

also expressed on sarcolemma of cardiomyocytes (17,34). In vascular endothelial cells, 

eNOS is mainly localized to the plasma membrane and Golgi complexes (35,69,89). 

Interestingly, the activity of eNOS located at cell membrane is higher than eNOS distributed 

in Golgi, nucleus and mitochondria (50,55,89,116). The plasma membrane localization of 

eNOS facilitates diffusion of NO into adjacent smooth muscle cells to regulate vascular tone. 

In cardiomyocytes, eNOS is predominantly localized to caveolae on the sarcolemma, and 

also found on Golgi complexes(7,34,114), while nNOS is localized to the sarcoplasmic 

reticulum. DDAH1, the critical enzyme for ADMA and L-NMMA degradation, is highly 

abundant in tissues with high nNOS expression such as brain, in tissue removing ADMA 

(such as kidney, and liver), and in tissues with high eNOS expression (such as lung) 

(43,101). At least in the heart, the cellular distribution of DDAH1 is similar to eNOS (20). 

The subcellular distribution of DDAH1 in vascular endothelial cells is not clear, but the 

subcellular distribution of DDAH1 in cardiomyocytes is similar to subcellular localization of 

eNOS (20). The similar cellular and subcellular distribution of DDAH1 and eNOS in the 

heart may facilitate compartmentalized NO production at the plasma membrane of 

endothelial cells and cardiomyocytes, and also improve overall cardiac NO bioavailability.

Effect of ADMA and L-NMMA on CHF and the common causes of CHF

Endogenous NOS inhibitors ADMA and L-NMMA compete with L-arginine for NOS 

binding to attenuate NO production (15). As ADMA is more abundant than L-NMMA, most 

of the studies have focused on the physiological or pathological effects of ADMA in various 

biological or clinical conditions. By preventing L-arginine binding to NOS, ADMA not only 

reduces NO formation, but can also promote superoxide formation, similar to L-arginine 

depletion.

Importantly, ADMA levels are strongly associated with CHF (Figure 2) (31,40,99,112) and 

the common causes for CHF (Figure 3). For examples, accumulation of ADMA occurs in 

hypertension (92), coronary disease (8,76,88,91), cardiac valve disease (2), idiopathic 

cardiomyopathy (3), congenital heart diseases (103), renal failure (54), diabetes (4,67), and 

atrial fibrillation (18,19) (Figure 3). Elevated plasma ADMA levels are associated with an 

increased risk for developing angina pectoris, myocardial infarction or cardiac death (9,10). 

Plasma ADMA level is the strongest predictor of mortality in patients after myocardial 

infarction (76,88), and a strong and independent predictor of all-cause mortality in the 

community (9). In addition, studies have shown that infusion of ADMA results in reduced 

endothelium-dependent coronary vasodilation in pacing induced heart failure dogs (23) and 

in mice (44) a decrease of cardiac output in normal human subjects (1), and hypertension in 

mice (44,63). Together, chronic ADMA accumulation may either exacerbate CHF 

development directly or exacerbate CHF development through increase of cardiovascular 
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risk factors such as hypertension, diabetes, atherosclerosis, coronary disease and renal failue 

as summarized in Figure 3.

Because plasma levels of L-arginine far exceed the levels of plasma ADMA, it has been 

suggested that ADMA may be a feature of cardiovascular diseases, but does not reach 

sufficient levels to compete with L-arginine and inhibit NOS. However, ADMA appears to 

accumulate within cells to a concentration sufficient to impair NOS activity, despite the 

higher concentration of L-arginine relative to ADMA in plasma (10,15). In addition, chronic 

infusion of ADMA was reported to increase vascular angiotensin-converting enzyme, 

oxidative stress, and vessel lesions, suggesting that ADMA can cause vessel injury at least 

partially through modulating oxidative stress (93). Interestingly, this study also reported that 

chronic ADMA infusion caused similar increases of vascular angiotensin-converting 

enzyme, oxidative stress and vessel lesions in eNOS deficient and wild type mice, 

suggesting that ADMA may exert detrimental effects beyond its disruption of eNOS derived 

NO production. At the present time, it is unclear whether chronic ADMA accumulation 

observed in CHF can actually cause or exacerbate the development of myocardial 

dysfunction or CHF.

While the detailed molecular mechanism for increased ADMA and L-NMMA in various 

pathological conditions is not clear, there is some evidence that accumulation of ADMA and 

L-NMMA may result from depressed DDAH1 expression or activity, either through loss-of-

function polymorphisms of the DDAH1 gene (104), reduced DDAH1 transcript expression 

(21), or post-translational modifications such as oxidation of DDAH1 protein. For example, 

Valkonen et al identified a mutation of the DDAH1 gene that is associated with high plasma 

ADMA levels and conveys an increased risk for coronary heart disease and an increased 

prevalence of hypertension (104). DDAH activity is also depressed by oxidized LDL and 

TNFα (51), high levels of homocysteine in endothelial cells (91), and high plasma glucose 

in diabetic rats (67). In addition, our previous study showed that mechanical unloading by 

left ventricular assistant device caused significant decreases of a group of pro-inflammatory 

cytokines and increase of myocardial DDAH1 mRNA and protein content in left ventricular 

tissue from patients with severe CHF (21), suggesting that mechanical stresses regulate 

myocardial DDAH1 protein expression in the failing heart.

ADMA and L-NMMA production and removal

Protein methylation plays an important role in many cellular functions and occurs 

constitutively in cells. The production of ADMA and L-NMMA is the result of proteolysis 

of proteins containing methylated arginines (74,81,90). L-NMMA is formed when protein-

incorporated L-arginine is methylated by the enzymes protein arginine methyltransferases 

type I (PRMT-I) or type-II (PRMT-II) (74,81). PRMT-I can subsequently methylate L-

NMMA, resulting in the formation of ADMA, whereas PRMT-II can methylate L-NMMA 

into symmetric dimethylarginine (SDMA) (74,81). Methylated arginines are released as 

unbound forms in the cytosol then transported into the circulation via system y+-carriers of 

the cationic amino acid transporter (CAT) family. Similar to L-arginine, ADMA, L-NMMA 

and SDMA can be taken up by other cells using CAT. Both ADMA and L-NMMA directly 

compete with L-arginine for the active site of NOS to attenuate NO production. SDMA does 
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not directly inhibit NOS activity, but SDMA could attenuate NOS function indirectly by 

inhibition of the CAT (24). The strong association between increased ADMA levels and 

CHF suggests ADMA production may be increased or its removal may be decreased under 

these conditions. One possible source of increased ADMA is increased protein degradation 

by autophagy or proteasome activity during tissue remodeling and inflammation associated 

with cardiovascular diseases. Interestingly, inhibition of proteasome activity in cultured cells 

reduced free levels of ADMA and SDMA, while inhibition of autophagy only reduced 

ADMA (100) Both autophagy and proteasome activity are up-regulated during various 

phases of CHF (106), while protein synthesis is often increased as well, so that protein 

turnover and subsequent production of ADMA and L-NMMA may also be elevated. 

However, the contribution and significance of these pathways to ADMA production in CHF 

is not known.

Once ADMA and L-NMMA are released by proteolysis, they are eliminated from the body 

in part through renal excretion (1). As ADMA was first isolated from human urine by 

Kakimoto and Akazawa in 1970 (59), renal excretion was initially recognized as the major 

route for ADMA elimination. However, a study from McDermott subsequently showed that 

the urinary recovery of L-NMMA and ADMA following intravenous injection in rabbits was 

only 0.14% and 5.1%, respectively, indicating that both L-NMMA and ADMA undergo 

extensive metabolism (75). Ogawa et al further identified an enzyme termed 

dimethylarginine dimethylaminohydrolase (DDAH, it is currently named as DDAH1) that 

catalyzes hydrolysis of L-NMMA and ADMA into L–citrulline and mono- or 

dimethylamine (77). A second DDAH isoform (DDAH2) was reported in 1999 (62). While 

early studies suggested that both DDAH1 and DDAH2 are effective in degrading ADMA 

and L-NMMA, we have demonstrated that DDAH1 is the essential or sole enzyme 

responsible for ADMA degradation in mice and in cultured human endothelial cells (44).

The critical role of DDAH1 in ADMA degradation

As stated above, two DDAH isoforms have been reported. Previous existing concepts 

regarding tissue or cell specific DDAH1 biology and their function in regulating NO 

production in various tissues are based on the reports that DDAH1 and DDAH2 have 

comparable activities for degrading ADMA and L-NMMA (62), as well as the report that 

DDAH1 is minimally expressed in the heart (62,100), vessels (62) and vascular endothelial 

cells (5). Accordingly, it was originally accepted that DDAH2 plays the major role in 

regulating ADMA and L-NMMA levels in the heart and vessels, while DDAH1 plays the 

major role in degrading ADMA and L-NMMA in neuronal tissues. However, we observed 

that DDAH activity was totally abolished in all tissues obtained from global DDAH1 

deficient mice while the expression of DDAH2 was unaffected in these tissues (43). In other 

words, tissues obtained from global DDAH1 KO mice are unable to degrade ADMA or 

NMMA even though DDAH2 expression is not affected (43). Consistent with our findings, 

Dr. Leiper et al. also demonstrated that DDAH activity was reduced ~50% in tissues 

obtained from heterozygous DDAH1 KO mice (63). Furthermore, selective gene silencing of 

DDAH1 (but not DDAH2) caused accumulation of ADMA and decreased NO production in 

cultured human endothelial cells (43), while over-expression of DDAH1 (but not DDAH2) 

decreased ADMA content in cultured human endothelial cells (113). These findings clearly 
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indicate that DDAH1 is the critical enzyme for ADMA degradation, while DDAH2 has no 

detectable role in ADMA degradation in both mouse tissues and human cells.

The important role of DDAH1 in cardiovascular function

DDAH1 plays an important role in regulating cardiovascular function and risk factors of 

CHF by degrading endogenous NOS inhibitors ADMA and L-NMMA. Thus, DDAH1 gene 

deficiency causes increases of plasma and tissue ADMA and L-NMMA, which is associated 

with reduced NO production, moderate hypertension, and endothelial dysfunction 

(43,44,63). DDAH1 gene deficiency also limits angiogenesis and impairs vascular injury 

repair (30,113,115). Conversely, over-expression of DDAH1 results in decreases of plasma 

and tissue ADMA levels, which was associated decrease of systemic blood pressure (28), 

increase of insulin sensitivity (94), increase of angiogenesis (53,113,115), reduced high fat 

diet induced atherosclerosis (52,108) and graft coronary artery disease (98). These findings 

indicate that endogenous ADMA levels are sufficient to alter vascular tone and other tissue 

functions, and suggest that elevating DDAH1 activity to eliminate ADMA could be a 

promising strategy for restoring NOS function and increasing NO bioavailability in CHF and 

other cardiovascular diseases.

While the recent studies clearly show DDAH1 plays the critical role for ADMA and L-

NMMA degradation, the significance of endothelial DDAH1 in regulating cardiovascular 

NO signaling is not totally clear. Using the Tie-2 Cre system, we found that endothelial 

specific DDAH1 gene deletion caused significant decreases of DDAH1 in vascular tissues, 

increased tissue and plasma ADMA, reduced acetylcholine induced NO production and 

vessel dilatation, and resulted in systemic hypertension (43,44), abnormal angiogenesis, and 

impaired endothelial injury repair (113,115). However, using a similar Tie-2 Cre system, a 

new endothelial specific DDAH1 strain was shown to have no major effect on systemic 

ADMA content (30), but significantly attenuated angiogenesis (30). While endothelial 

specific DDAH1 gene deletion using Tie-2 Cre system attenuated endothelial injury repairs 

and angiogenesis in both mouse strains, the effect of endothelial DDAH1 gene deletion on 

systemic blood ADMA was different in these mouse strains. Unfortunately, the causes of the 

discrepancy of endothelial DDAH1 on systemic blood ADMA between these two 

endothelial DDAH1 gene deficient strains are not clear at this point.

An important role of kidneys in ADMA metabolism

Kidneys are the organs with highest DDAH1 expression and play an important role in 

regulating systemic ADMA and L-NMMA. It was reported that less than 20% ADMA was 

excreted via urine in humans, indicating that over 80% of ADMA is metabolized by DDAH 

(1). Thus, it is generally believed that ADMA and L-NMMA are eliminated principally by 

DDAH with a small contribution from renal excretion at least in human. However, gene 

deletion of DDAH1 (DDAH1 knockout mice has no detectable tissue DDAH activity) causes 

only ~2 fold increase of plasma ADMA and L-NMMA in mice under control conditions 

(44), while plasma ADMA and L-NMMA generally increases over 4 fold (increases up to 10 

fold) in patients with severe renal failure (10,54). While the dramatic increase of plasma 

ADMA and L-NMMA in renal failure is likely a combined result of diminished renal 
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ADMA and L-NMMA excretion and decreased degradation by renal DDAH1, these findings 

clearly indicate that kidneys play a greater role in ADMA and L-NMMA elimination than 

previously thought. In addition, these data suggest that kidneys may be able to dramatically 

increase excretion of ADMA and L-NMMA when ADMA and L-NMMA are overloaded in 

response to DDAH1 dysfunction. Thus, the important role of the kidneys in ADMA and L-

NMMA metabolism under stress conditions may have been underestimated by the field.

ADMA enhances NOS-derived O2
− and peroxynitrite (ONOO−)

Although the most obvious consequence of increased levels of ADMA and L-NMMA is to 

inhibit NO production, recent reports indicate that the endogenous NOS inhibitors may also 

cause NOS to generate O2
− and peroxynitrite rather than NO (Figure 1). Normally, NOS 

transfers electrons from NADPH, via the flavins FAD and FMN in the carboxy-terminal 

reductase domain, to the heme in the amino-terminal oxygenase domain, where the substrate 

L-arginine is oxidized to L-citrulline and NO. The flow of electrons within NOS is normally 

tightly regulated. However, when this flow is disrupted, oxygen reduction and NO 

generation can become uncoupled so that O2
− is generated by the oxygenase domain. This 

uncoupling can occur when NOS is exposed to oxidant stress (including peroxynitrite), 

when it is deficient in the reducing cofactor BH4 (25,60), or when it is deprived of its 

substrate L-arginine (110). BH4 is required for iNOS dimerization (6,26) and stabilizes the 

dimeric forms of eNOS, nNOS and iNOS (6). Thus, BH4 depletion (or oxidation of BH4 to 

BH2) can induce NOS-derived O2
− generation (6,25,96). Deprivation of the substrate L-

arginine can also induce NOS to generate O2
− and ONOO− (110,111,117). Similar to 

substrate deficiency, several in vitro studies have demonstrated that addition of ADMA or L-

NMMA caused O2
− generation by purified NOS protein (16,67,78), and also in cultured 

human endothelial cells (16), isolated arterioles from rat gracilis muscle (100), and in a 

murine lung epithelial cell line LA-4 (109). In vitro studies have demonstrated that the NOS 

inhibitor N-monomethyl-L-arginine (L-NMMA) is also capable of inducing NOS 

uncoupling through multiple mechanisms such as heme loss (78). Importantly, elevated 

superoxide in cardiomyocytes or endothelial cells can interact with and scavenge NO before 

it can activate guanylate cyclase to produce cGMP or be utilized for S-nitrosylation, thereby 

further impairing NO signaling. Reduced NO bioavailability or increased ROS is also known 

to increase PDE5 activity (70) partially through attenuating PDE5 nitrosylation (107), 

suggesting further indirect effects of NOS uncoupling on reducing cGMP signaling. ADMA 

inhibition of NOS, through inhibition of NO production as well as NOS uncoupling and 

superoxide production, thus acts as a double edged sword in endothelial and cardiomyocyte 

pathophysiology. Importantly, administration of tetrahydrobiopterin, which prevents NOS 

uncoupling, can significantly attenuate ROS production, pressure overload induced cardiac 

hypertrophy and heart failure, indicating that the loss of NO production, as well as increased 

ROS production that results from NOS uncoupling contributes to CHF (17,57). It is possible 

that strategies to reduce ADMA levels in conjunction with increasing BH4 may further 

alleviate NOS dysfunction during CHF. Therefore, identifying methods to increase DDAH1 

activity and reduce ADMA levels may be clinically important.
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Regulation of DDAH1 expression by farnesoid X receptors (FXR) agonists 

and ursodeoxycholic acid (UDCA)

UDCA is a major component of bear bile, which has been used for thousands of years in 

traditional Chinese medicine to treat a variety of illnesses. Endogenous bile acids are 

produced in the liver and are essential for cholesterol catabolism and intestinal lipid 

emulsification. In addition to their role as detergents, bile acids play an important role in 

maintaining lipid and glucose homeostasis through activation of FXR (102) and pregnane X 

receptors (46). Currently, UDCA is approved by the FDA for treatment of primary biliary 

cirrhosis (97) and other liver diseases. Importantly, a recent report demonstrated that UDCA, 

as well as the FXR agonist GW4064 dose dependently increased DDAH1 expression in the 

liver and lowered plasma ADMA levels through an FXR response element located within the 

first exon of the DDAH1 gene (41). A separate study by a different group also demonstrated 

that activation of FXR with GW4064 increased DDAH1 gene expression in the liver and 

kidney, and decreased plasma ADMA (64). Interestingly, 6 weeks’ UDCA therapy was 

found to improve endothelium-dependent vasodilatation and arterial blood flow in patients 

with CHF under conditions of impaired nitric oxide production (91). In addition, a 

randomized, placebo-controlled clinical trial demonstrated that UDCA significantly 

improved peak post-ischemic blood flow in the arm (105). It will be important to find out if 

increased endothelial DDAH1 expression and/or reduction of ADMA levels played a role in 

the beneficial effects of UDCA observed in these clinical studies.

Bile acids, GW4064, or hepatic expression of constitutively active FXR, have previously 

been found to significantly lower plasma triglyceride, cholesterol and glucose levels (71,72). 

Interestingly, genetic disruption of eNOS or nNOS has also been shown to alter lipid 

metabolism, resulting in increased fat deposition in the liver (86,87). Similarly, FXR gene 

deletion increased plasma lipid levels (80). While the effects of UDCA on cardiomyocyte 

DDAH1 expression and NO signaling are unknown, there is evidence that UDCA can 

attenuate ER stress (79), and apoptosis, which are commonly observed in CHF (68,106). 

UDCA was also shown to protect against apoptosis in a myocardial ischemia reperfusion 

injury model (82). These findings suggest UDCA or other FXR agonists could provide a 

novel approach to increase DDAH1 expression to restore NO signaling in cardiovascular 

diseases. It will therefore be important to find out whether UDCA activation of FXR induces 

DDAH1 gene expression in the cardiovascular system or whether this effect is restricted to 

liver and kidney.

Summary

The current scientific literature in the field indicates that the NO/cGMP/PKG signaling 

pathway plays an important role in attenuating CHF development and/or progression 

through modulating cardiac perfusion, myocardial contractility and myocardial energy 

efficiency. ADMA attenuates vascular NO bioavailability in the cardiovascular system, and 

DDAH1 plays the major role in ADMA degradation to maintain cardiovascular NO/

cGMP/PKG signaling. Increased plasma ADMA is one of the strongest predictors of 

mortality in patients who have had a myocardial infarction or suffer from CHF, and is also 
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an independent risk factor for several other conditions that contribute to CHF development, 

including hypertension, coronary artery disease/atherosclerosis, diabetes, and renal 

dysfunction. Together these findings suggest that increasing or maintaining normal DDAH1 

expression and/or activity could be an important therapeutic target for improving NO 

bioavailability in CHF and other cardiovascular diseases.
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Highlights

• ADMA may exacerbate heart failure development directly.

• ADMA may exacerbate heart failure through increase of cardiovascular 

risk factors.

• DDAH1 plays a critical role in ADMA degradation.
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Figure 1. 
ADMA attenuates nitric oxide synthase (NOS)-induced NO/cGMP/PKG signaling and 

increases NOS derived superoxide anion production in vascular endothelial cells.
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Figure 2. 
ADMA levels are independent predictors of cardiovascular events in patients with 

congestive heart failure and the Major Adverse Cardiac Events (MACE).
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Figure 3. 
The proposed mechanism of DDAH1 dysfunction and accumulation of ADMA on the 

development of congestive heart failure through modulating various cardiovascular risk 

factors.
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