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Abstract

Feedback about our choices is a crucial part of how we gather information and learn from our 

environment. It provides key information about decision experiences that can be used to optimize 

future choices. However, our understanding of the processes through which feedback translates 

into improved decision-making is lacking. Using neuroimaging (fMRI) and cognitive models of 

decision-making and learning, we examined the influence of feedback on multiple aspects of 

decision processes across learning. Subjects learned correct choices to a set of 50 word pairs 

across eight repetitions of a concurrent discrimination task. Behavioral measures were then 

analyzed with both a drift-diffusion model and a reinforcement learning model. Parameter values 

from each were then used as fMRI regressors to identify regions whose activity fluctuates with 

specific cognitive processes described by the models. The patterns of intersecting neural effects 

across models support two main inferences about the influence of feedback on decision-making. 

First, frontal, anterior insular, fusiform, and caudate nucleus regions behave like performance 

monitors, reflecting errors in performance predictions that signal the need for changes in control 

over decision-making. Second, temporoparietal, supplementary motor, and putamen regions 

behave like mnemonic storage sites, reflecting differences in learned item values that inform 

optimal decision choices. As information about optimal choices is accrued, these neural systems 

dynamically adjust, likely shifting the burden of decision processing from controlled performance 

monitoring to bottom-up, stimulus-driven choice selection. Collectively, the results provide a 

detailed perspective on the fundamental ability to use past experiences to improve future decisions.
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1. Introduction

Decision-making is fundamentally influenced by past experiences. On a daily basis, we face 

numerous decisions requiring us to draw upon learned information to optimize our choice 

selection. This underlying information is acquired through experience, often by using 

feedback to assess the quality of decisions. Feedback thus provides a critical link between 

decision outcomes and mnemonic information that influences future choices. However, the 

processes and neural substrates that translate feedback into improved decision-making 

remain poorly understood.

The present study investigated how the neural systems that process feedback can influence 

subsequent decision-making behavior. Specifically, we used computational models of 

learning and choice selection to investigate how feedback influences decision-making in the 

context of repeated choice experiences with deterministic outcomes. In such contexts, 

feedback from a single choice can provide sufficient information to optimize future 

decisions involving the same choice. For example, if a student guesses that Harrisburg is the 

capital of Pennsylvania and is then told this answer is correct, the student gains valuable 

information that may help for later choices. In practice, however, the retrieval of learned 

information can be faulty, so repetition is typically required to attain optimum performance. 

These considerations, wherein outcome feedback and choice selection are conceptually 

linked, suggest that feedback processing and decision-making share a common set of neural 

substrates. We sought to characterize these substrates using functional magnetic resonance 

imaging (fMRI) combined with model-informed data analysis.

This work is guided by a literature on perceptual decisions and the impact of noisy sensory 

input, such as in tasks wherein subjects decide whether a noisy image depicts a face or a 

house (Heekeren et al., 2004; Dunovan et al., 2014; Tremel and Wheeler, 2015) or whether a 

cloud of dots with partial motion coherence is drifting leftward or rightward (Shadlen and 

Newsome, 2001). These perceptual decision processes are well characterized by sequential 

sampling models, such as the drift-diffusion model (Ratcliff, 1978; Ratcliff and McKoon 

2008). In this class of model, a decision-variable accumulates evidence for or against a 

choice—when this value reaches a threshold, a decision is executed. As one makes a 

perceptual choice, competing sensory evidence is evaluated until a stopping criterion is 

reached. This process has been conceptually mapped onto physiological measures, wherein 

the firing rate of neurons modulates in a manner analogous to parameters within drift-

diffusion models (Hanes and Schall, 1999; Shadlen and Newsome, 2001; Ratcliff et al., 

2007; Roitman and Shadlen, 2002; Glimcher, 2003). Parallel neuroimaging work in humans 

has identified fMRI signatures of comparable processes (Ploran et al., 2007, 2011; Wheeler 

et al., 2008; Kayser et al., 2010a, 2010b) and connected these signatures directly to drift-

diffusion parameters (Bowman et al., 2012; Tremel and Wheeler, 2015). Thus, the processes 

Tremel et al. Page 2

Behav Brain Res. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



encapsulated by drift-diffusion models are neurally plausible and carry specific cognitive 

interpretations for underlying neural correlates based on past work.

Importantly, under the drift-diffusion framework, the source of information to be evaluated 

for a decision can derive from any of a number of systems (e.g., sensory, memory, etc.). 

Since the underlying information being evaluated is the the distinguishing characteristic of 

mnemonic versus perceptual decisions, the predictions of drift-diffusion models should hold 

for decisions wherein evidence is based on information gathered from experience. To 

support this extension, Yang and Shadlen (2007) trained monkeys to associate shapes with 

reward probabilities, and using a modified weather prediction task, linked changes in the 

firing rates of parietal neurons to the integration of probabilistic decision evidence acquired 

from training. In humans, Wheeler and colleagues (2014) demonstrated similar modulations 

of fMRI activity in occipital, temporal, and parietal regions that corresponded to sequences 

of presented probabilistic evidence. In both cases, decision evidence derived directly from 

arbitrary stimulus-response associations acquired through learning, supporting the link 

between drift-diffusion principles and decision-making in non-perceptual domains. On top 

of this, Frank et al. (2015) offered a direct connection by showing that changes in estimates 

of outcome reward (via probabilistic reinforcement learning) correlated with changes in 

model-estimated decision thresholds and that this relationship could be traced to activity in 

thalamic and medial frontal regions. The study’s approach, however, focused on specific 

cortico-striatal connections and did not directly consider the broader influence of feedback 

on decision processes or a feedback-based learning framework. Taken together, key findings 

from simple perceptual decisions seem to translate to the mnemonic domain, but the larger 

intersection between memory and decision-making remains unclear.

One fundamental unknown is how feedback influences decision-making processes and 

improves later behavior. This is especially applicable for deterministic or quasi-deterministic 

decisions, where the available choices always or nearly always produce the same outcome. 

Tricomi and Fiez (2008, 2012) made progress on this front by examining decision-making 

across multiple rounds of a paired-associate learning task. They found that feedback 

influenced both explicit and implicit memory, which together seemed to drive learning and 

subsequent decision-making. However, the Tricomi and Fiez work did not consider model-

based connections between behavioral and neuroimaging data, and therefore could not draw 

inferences in the context of computationally defined feedback and decision-making 

processes.

The current study takes this next step by investigating the influence of feedback on decision 

processes during a concurrent discrimination learning task. In this task, subjects are 

presented with a pair of items, wherein one is arbitrarily designated as the correct choice, 

and the other as incorrect. After selecting an item, subjects see feedback that indicates the 

value of the choice (i.e., a correct or incorrect choice). With repeated experience of the 

items, subjects accrue mnemonic information and gain proficiency in making correct 

choices. At the same time, subjects could also accrue all of the mnemonic information 

necessary for perfect performance from a single decision experience. Thus, concurrent 

discrimination offers a meaningful framework with which to study how the encoding and 

accrual of past experiences translate into improved decision-making.
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To capture these feedback-based learning influences, we implemented a reinforcement 

learning model alongside the drift-diffusion model. Reinforcement learning describes how a 

history of outcomes, built up for individual choices, creates a prediction of an outcome’s 

value that can be used to drive choice selection. Errors between the expected versus 

observed outcomes (reward prediction error, RPE) are used to adjust the expected value of a 

choice (EV) toward a more accurate representation of the actual result. Thus, measures 

derived from reinforcement learning can explain aspects of feedback processing in terms of 

a learning signal (RPE) and the consequence of that learning (EV). Neurally, these signals 

have been shown to be distinct and separable: in the context of probabilistic learning, each 

signal tends to localize to different areas, such as sub-regions of the basal ganglia and 

orbitofrontal cortex (Schultz et al., 1998, 2000). In the case of deterministic learning, such as 

concurrent discrimination, reinforcement learning should be equally applicable. In an 

extreme case, where mnemonic encoding and retrieval processes are entirely noise-free, the 

RPE signal from an initial choice should drive sufficient learning to ensure optimal choice 

selection for a future episode. Reinforcement learning can capture this type of single-trial 

learning, such that the initial RPE updates the EV to ensure future accuracy. While 

deterministic learning can be plausibly captured by reinforcement learning models, the 

extent to which estimates of RPE and EV exhibit the same neural localization and 

dissociations compared to probabilistic choice learning remains an open question. 

Regardless, like the drift-diffusion model, reinforcement learning has a set of distinct 

cognitive predictions that correspond to a set of distinct neural correlates.

Thus, the two models each describe aspects of learning and decision-making that, when 

combined, could offer unique leverage for understanding how feedback influences decision-

making behavior, and how this influence is implemented neurally. The drift-diffusion model 

describes how information is evaluated to drive decision-making, whereas reinforcement 

learning describes how feedback shapes that information. As such, each model can 

distinguish between performance-related effects (e.g., boundary in the diffusion model and 

RPE in reinforcement learning) and evidence-related effects (e.g., drift-rate in the diffusion 

model and EV in reinforcement learning). When applied to neural data, these two models 

can be leveraged to identify regions associated with performance and evidence monitoring, 

versus regions that provide evidence to decision-making processes.

To investigate these relationships, we acquired behavioral and functional neuroimaging 

(fMRI) data during a concurrent discrimination task. Drift-diffusion and reinforcement 

learning models were fit to the learning behavior to describe separable aspects of decision-

making and feedback processing. We then localized brain regions whose activity tracked 

with changes in the model parameters and tested for regional overlap in sensitivity to 

parameter changes across the two models. Overall, our goal was to meaningfully connect the 

neural substrates and cognitive processes related to the processing of outcome feedback with 

those related to decision-making.
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2. Materials and Methods

2.1 Subjects

Twenty healthy, right-handed, fluent English speakers participated in a 1-hour behavioral 

and functional MRI session. Four subjects were excluded for excessive movement during 

scanning (N = 3) or incomplete data due to technical problems (N = 1), leaving 16 (12 

female) subjects contributing to the final analyses. These subjects aged 19–31 years (mean 

22.1) and had normal or corrected-to-normal vision. Informed consent was obtained from all 

subjects according to procedures approved by the University of Pittsburgh Institutional 

Review Board. Subjects were compensated $75 for their time.

2.2 Task

Subjects performed a 50-item concurrent discrimination learning task during the scanning 

session (Fig. 1a). In each trial, a pair of words was presented in the center of a screen in a 

single column for three seconds. In each of these pairs, one word was designated as the 

correct (positive) choice and the other as the incorrect (negative) choice. During the display 

period, subjects selected one of the words, indicating their selection with a button press, and 

received feedback about their decision. Feedback was displayed for 1.5 s and indicated 

either a correct choice (green checkmarks) or an error (red Xs). Trials were separated by a 

variable inter-stimulus interval of 1.5–7.5 s selected from a distribution positively skewed 

toward the shorter intervals (1.5 s increments, mean trial separation = 2.91). This served as 

jitter between trials to facilitate later deconvolution of the fMRI signal (Dale, 1999). After 

all 50 word pairs in the set were presented, subjects were allowed to rest for one minute 

before beginning the next Round, in which subjects saw the same set of word pairs again in 

a randomized presentation sequence and again made choices for each pair. Over the course 

of eight Rounds (in which each discrimination was presented once), subjects learned which 

item in each pair was associated with positive feedback (i.e., was “correct”) and which was 

associated with negative feedback.

The discrimination learning task was presented using E-prime and projected onto a screen at 

the head of the magnet bore using a BrianLogics MRI Digitial Projection System. Subjects 

viewed the screen via a mirror attached to the radio frequency coil and indicated their 

responses via a fiber optic response glove on their right hand connected to a desktop 

computer with a serial response box (Brain Logics, Psychology Software Tools, Pittsburgh, 

PA). Earplugs were provided to minimize discomfort due to scanner noise.

2.3 Stimuli

Word stimuli were pulled from the MRC Psycholinguistic Database (Coltheart, 1981). All 

words were one syllable, three to five letters, three or four phonemes, and had a log HAL 

frequency of at least 7.0. Stimuli had concreteness, imageability, and familiarity measures of 

at least 400. Additional word frequency data were obtained from the English Lexicon 

Project (Balota et al., 2007). For each subject, a list was generated by randomly selecting 

two pre-made lists from a set of eight 50-word lists balanced and matched for frequency and 

number of letters. These two lists were individually randomized and then paired, ensuring 
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that each subject had a unique set of word pairs balanced for selected psycholinguistic 

criteria.

2.4 Image Acquisition

Images were acquired on a Siemens Allegra 3-Tesla system. T1-weighted anatomical images 

were obtained using an MP-RAGE sequence (repetition time, TR = 1540 ms; echo time, TE 

= 3.04 ms; flip angle, FA = 8 degrees; inversion time, TI = 800 ms; 1 mm isotropic voxels 

acquired in 192 sagittal slices). T2-weighted anatomical images were obtained with a spin-

echo sequence (TR = 6000 ms, TE = 73 ms, FA = 150 degrees, 0.78 mm2 in-plane 

resolution; 38 axial slices spaced 3.2 mm apart). Functional images sensitive to the BOLD 

contrast were acquired using a whole-brain echo-planar T2*-weighted series (TR = 1500 ms, 

TE = 25 ms, FA = 60 degrees, 3.125 mm2 in-plane resolution, 29 axial slices spaced 3.5 mm 

apart). The first four images of each run were discarded to allow for net magnetization and 

RF equilibration.

2.5 Functional Imaging Preprocessing

Image preprocessing and analysis was carried out using FIDL, a software package developed 

at Washington University in St. Louis. Imaging data were preprocessed to address noise and 

image artifacts, including within-TR slice-time acquisition correction, motion correction 

using a rigid-boy translation and rotation algorithm (Snyder, 1996), within-run voxel 

intensity normalization of 1000 to facilitate cross-subject comparisons (Ojemann et al., 

1997), and computation of a Talairach atlas space transformation matrix (Talairach and 

Tournoux, 1988). Single-subject analyses were performed in data space. For group analysis, 

data were resampled to 2 mm isotropic voxels and transformed into Talairach atlas space.

2.6 Behavioral analysis

Behavioral accuracy and response time (RT) measures were assessed across Rounds 

(repetitions of the 50-item set) using repeated-measures ANOVAs. Round was entered as an 

eight-level (Round 1–8) within-subjects factor. For all ANOVA analyses, the Greenhouse-

Geiser sphericity correction was applied when Mauchly’s test indicated a violation of the 

sphericity assumption.

2.7 Drift-diffusion modeling

The drift-diffusion model is a robust model of decision-making behavior that describes 

variations in behavioral response time distributions on the basis of several parameters. Of 

interest for this study were mean drift-rate (v), corresponding to the mean rate of evidence 

accumulation for a condition, and decision threshold (a), corresponding to decision criteria 

or the amount of evidence needed before committing to a decision (Ratcliff, 1978; Ratcliff 

and McKoon, 2008). We expected that as subjects learned, their decision-making would 

become more proficient. In a drift-diffusion model, an increase in the drift-rate and decrease 

in the threshold parameters would correspond to faster and more confident decisions. 

Changes in behavior, as captured by changes in the model parameters, should thus map onto 

changes in the activity of brain regions associated with evidence accumulation (modeled by 

drift rate parameter) and decision criteria (modeled by the threshold parameter). It is 
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important to note that because regional activity might correlate with changes in a parameter 

does not necessarily mean that particular region is responsible for the computation itself 

(e.g., if a region correlates with changes in drift-rate, this region does not necessarily 

function as an evidence accumulator). Rather, the correlation is a marker of the cognitive 

process—the region is associated in some way with what the parameter represents. For 

instance, a region whose activity correlates with drift-rate may not be responsible for 

computing a decision variable itself, but rather is associated with that process, either 

responding to other regions computing the variable or providing signals that feed into the 

computation. Regardless, however, the region would be associated with drift-rate, while not 

necessarily computing it.

Drift-diffusion models were fit to subject reaction time and choice data using the HDDM 

software package (Wiecki et al., 2013). HDDM fits models using hierarchical Bayesian 

methods wherein subject-level and group-level parameters are estimated at the same time 

using Markov-chain Monte-Carlo (MCMC). To examine changes in key parameter estimates 

across learning, two parameters, mean drift rate (v) and decision threshold (a), were allowed 

to vary across the eight Rounds of the task (i.e., eight repetitions of the 50-item 

discrimination set). Thus, there was one value per Round for each of drift-rate and threshold, 

allowing the model to fit changes in behavior across learning in terms of these two 

parameters. The non-decision time (ter) and starting point (z) were estimated at the subject- 

and group-levels, while variance parameters (variance in drift, sv, non-decision time, st, and 

starting point, sz) were estimated only at the group level. Data were accuracy-coded, such 

that the upper threshold (a) of the model corresponded to a correct choice (i.e., the subject 

chose the positive item), whereas the lower bound (0) corresponded to errors (i.e., the 

subject chose the negative item). Round-wise parameter estimates for drift-rate and 

threshold were used as covariates in the imaging analyses.

Model parameters were estimated using three MCMC chains of 10,000 samples each. The 

first 1,000 samples of each chain were discarded to ensure that the chain stabilized. After 

sampling, model convergence was evaluated visually by inspecting the traces of the model 

posteriors and statistically by computing the Gelman-Rubin statistic, which compares inter- 

and intra-chain variance with an ANOVA approach. This statistic was near 1.0 (maximum 

deviance from 1.0 was 0.007) for all parameters, suggesting that the models converged 

properly. For a third check, the Geweke statistic, which compares variance at the starts and 

ends of chains, also indicated proper convergence.

Model fits to the data were evaluated by simulating choice and reaction time data from the 

model posterior distributions and comparing to the observed data. One hundred datasets 

were generated from each subject’s model. The mean of these 100 sets was then used to 

compare against the empirical data to ensure that model-derived data can reproduce key 

patterns of accuracy and response time in the observed behavioral data. Figure 1b illustrates 

the relationship of the model-simulated versus empirical behavior. These were assessed for 

differences across conditions using 2 × 8 repeated measures ANOVA including factors of 

Dataset (observed, model-derived) and Round (Round 1–8).
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Two alternative models were also constructed to assess whether the aforementioned model 

indeed provided the best fit to the data. One alternative model allowed only threshold to vary 

by Round, while the other allowed only drift-rate to vary by Round. Primary and alternative 

models were assessed with the deviance information criterion (DIC), which measures the 

lack of fit of model estimates and penalizes for complexity (i.e., degrees of freedom) 

(Spiegelhalter et al., 2002; Spiegelhalter et al., 2014). A lower DIC indicates a better fit, 

typically by a magnitude of 10 or more (Burnham and Anderson, 2004; Zhang and Rowe, 

2014).

2.8 Reinforcement learning agent

In order to capture the dynamics of feedback-based experience across Rounds as subjects 

performed the concurrent discrimination learning task, a reinforcement learning agent was 

used. This agent used an off-policy temporal difference control algorithm (Q-learning) to 

estimate reward-prediction error (RPE) signals and item-level expected values (EV) from 

subjects’ choice selection behavior across learning (Watkins and Dayan, 1992; Sutton and 

Barto, 1998). The agent computed an EV (quality measure or Q-value) for selecting each of 

two actions in a given state. Here, a state was defined as a word pair. A subject, then, could 

take two possible actions—choosing one or the other word in the pair. The agent updated the 

EV based on the human subjects’ choices by incrementing the value with an RPE 

(multiplied by a constant learning rate). EVs of each action were instantiated with random 

values ranging from 0 to 1 selected from a uniform distribution. Through learning, these 

initial values should approach the observed value for that action. The RPE was calculated as 

the difference between the observed outcome (1 for a correct response, 0 for an error) versus 

the EV for a given action. Thus, the agent updated its values based on the experiences of the 

human subject.

In contrast to the drift-diffusion model, the reinforcement learning agent learned at the trial-

level and learned only from the choice data (i.e., did not address variance in response times). 

Thus, RPE and EV estimates derived from the model were trial-by-trial estimates and not 

round-level averages (cf. threshold and drift-rate in the drift-diffusion model). EVs were 

entered into a softmax logistic function to compute response probabilities for the chosen 

action. From these probabilities, we computed a log likelihood estimate reflecting the 

likelihood that a given subject would respond a particular way across the task session. An 

agent was considered to be optimal when its learning rate parameter produced the maximum 

likelihood. The models and optimization routine were implemented within Matlab (The 

MathWorks, Natick, MA). The input learning rate parameter was sampled across a range of 

possible values from 0.0 to 1.0. Trial-wise model estimates of RPE and EV were extracted 

from the model running with the optimal learning rate. These estimates were used as 

covariates in the imaging analyses. The extent of model fit was measured with pseudo-R2 

statistics computed as (LLmodel − LLnull)/LLnull, wherein LLmodel is the log-likelihood 

estimate of the fitted agent and LLnull is that of a chance-performance model (i.e., response 

probabilities are 0.5 for all trials). These statistics are presented in Table 2.
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2.9 Voxelwise imaging analysis

Subject-level neuroimaging data were analyzed using a voxel-by-voxel general linear model 

(GLM) approach. In the GLM, each time point is computed as the sum of coded effects, 

produced by model events and by error (Friston et al., 1994; Glover, 1999; Miezin et al., 

2000; Ollinger et al., 2001). The GLM approach makes no assumptions about the underlying 

shape of the blood-oxygen-level-dependent (BOLD) response, but assumes that component 

signals, described by the coded events, will sum linearly to produce the observed BOLD 

signal. Within each Round, a linear term was included to capture signal drift, and a constant 

term captured baseline signal. A high-pass filter at 0.009 Hz was added to the models to 

reduce the influence of low-frequency fluctuations in the BOLD response. Each trial was 

modeled with a series of finite impulse response (FIR) basis functions, wherein each time 

point of a trial was described by a delta function. The sequence of these functions 

corresponded to trial-level time series averages. Event-related effects were described as an 

estimate of the percent of BOLD signal change relative to the baseline constant.

For each subject, two GLMs were created which separately modeled effects related to 

diffusion model parameters and effects related to reinforcement learning measures. In both 

GLMs, accuracy was entered as a categorical event-related regressor, which coded each 

decision trial as correct or incorrect, modeled to 11 time-points (16.5 s). In the diffusion 

model GLM, two additional covariates were entered to describe changes in the drift-rate and 

decision threshold parameters across Rounds. These were modeled as continuous measures 

across the entire task and thus captured correlation between the modeled measure and the 

underlying BOLD signal. On a trial-level, these covariates were modeled with 11 FIR basis 

functions (11 time-points totaling 16.5 seconds) to describe changes in correlation within a 

trial epoch. Importantly, the diffusion model parameters captured choice and response time 

behavior on the level of Round (i.e., all trials in Round 1 had the same parameter values, all 

trials in Round 2 had the same parameter values, etc.) (Table 1). Modulations in these 

parameters therefore reflected modulations by Round.

The other GLM modeled covariates derived from the reinforcement learning models. RPE 

and EV measures were entered as covariates to model trial-by-trial modulations across the 

entire task in a manner similar to the diffusion model GLM. In contrast to the diffusion 

model parameters (modeled Round-by-Round), the positive RPE and EV measures were 

continuous such that each trial had a unique value (modeled trial-by-trial). Round was not 

coded in either GLM since the covariate measures derived from both computational models 

capture variances due to Round (i.e., measures inherently modulate across Rounds, thus 

changes in the measures reflect changes across Round).

Importantly, only positive RPEs were entered. There are several reasons for this analysis 

choice. The first is theoretical. Specifically, positive RPEs are thought to capture learning 

signals derived from feedback and correlate with phasic increases in the firing rates of 

dopamine neurons in the brainstem and striatum (Schultz et al., 1997; O’Doherty et al., 

2003; Bayer and Glimcher, 2005; Daw and Doya, 2006; Oyama et al., 2010). In contrast, 

negative prediction errors seem to correspond to different processes than positive ones and 

localize to different regions in the brain (Spoormaker et al., 2011). If negative RPEs were 

included in the analysis, it could potentially complicate interpretations and under-power 

Tremel et al. Page 9

Behav Brain Res. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results related to the more dominant positive prediction errors that seem to drive most of the 

learning in this task (i.e., negative prediction errors are relatively rare in this task, especially 

in late rounds). Second, very few of the total trials were associated with negative RPEs. 

Across subjects, a median of 8% of the total trials (~32 trials) were negative RPE trials. 

Given the single-subject regression design of the GLMs, this is considered to be too few 

trials to get reliable estimates from a single regressor (Green, 1991). Indeed, the observed 

power for detecting a moderate effect size for a linear multiple regression or ANCOVA with 

this design and number of trials would be about 0.20. In contrast, the observed power for the 

same analysis for the positive RPE regressor would be at least 0.95 for all subjects. Thus, 

while negative RPE signals have clear theoretical value, this phenomenon was not 

adequately sampled in the present study.

A critical concern about this regression-style approach to the imaging analysis is that the 

covariates between the two GLMs are not necessarily orthogonal. Indeed, the correlations 

between the four covariates of interest are generally high on a subject level, meaning the 

models will attempt to parse variance based on the uncorrelated components. This suggests 

that separating the effects attributable to each of the covariates is difficult and should be 

considered with a degree of caution (for example, Hare et al., 2008; Hunt, 2008). While 

these concerns should be kept in mind, there are a few factors that may partly assuage these 

issues. First, since the covariates of interest are derived from computational models that offer 

strong predictions regarding neural substrates, results from each covariate (Figs. 2 and 3) can 

be compared against the prior literature. Replication of prior findings bolsters confidence in 

the present findings. Second, between the two models, our analysis seeks to associate 

parameters between the models rather than parse them (e.g., examining overlap of regions 

that track drift-rate with those that track EV). In contrast to much other work, our objective 

is not to explain effects solely in terms of decision-making or reinforcement learning, but 

rather in terms of associations between the models to gain insight into the neural substrates 

that are shared between decision-making and learning. Establishing such associations 

between these two models is an important step in identifying possible neural substrates that 

mediate the influence of feedback on decision-making.

2.10 Separating neural effects of within-model parameters

Since the measures within each model are related both behaviorally and conceptually, our 

focus was on regions that predominantly track one or the other within-model measure (e.g., 

RPE more than EV or vice-versa). To statistically separate the effects modeled within each 

GLM, voxel-by-voxel paired t-tests were computed to identify voxels that differentially 

correlated with the parameters from the diffusion model, or with the parameters from the 

reinforcement learning agent. For the diffusion model GLM, the drift-rate covariate was 

tested against the decision threshold covariate. Voxels in the resulting image with a positive 

t-statistic indicated underlying activity that correlated to a significantly greater degree with 

modulations in decision threshold than drift-rate. In other words, voxels with statistically 

larger correlation coefficients for threshold were indicated by significantly positive t-

statistics in the activation map. Likewise, voxels with a negative t-statistic indicated activity 

that correlated to a significantly greater degree with modulations of drift-rate than decision 

threshold. As such, this t-test separated activity that was statistically more attributable to 
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modulations in either parameter, as computed by the linear models. The analysis was 

restricted to time points 4–7 (of the 11 modeled time-points), which captured the bulk of 

trial-related activity and excluded biologically irrelevant time points (e.g., first and last time 

points of the series). An identical approach was taken with the reinforcement learning 

measures for the other GLM, separating activity that was statistically more attributable to 

modulations in either RPE or EV.

Images resulting from the t-tests were corrected for multiple-comparisons using a cluster-

extent threshold and adjusted for sphericity (minimum z-transformed t-statistic of 2.5, p = 

0.01, 42-voxel contiguity). These corrected images were then smoothed with a two-voxel (4 

mm) full width at half maximum (FWHM) Gaussian kernel. A threshold was applied to the 

smoothed, corrected images at a Z-statistic of 2.0 to eliminate any sub-threshold bleed-over 

resulting from the smoothing procedure (i.e., from the tails of the Gaussian kernel).

These maps were used to define regions of interest whose activity correlated with the 

individual covariates (e.g., regions whose activity correlated with modulations in positive 

RPE signals). Z-statistics that exceeded an alpha of 0.001 were tagged as peaks, around 

which spherical regions (12 mm radius) were grown. Voxels within the spheres that were 

absent from the corrected maps were then excluded from the region (i.e., voxels that did not 

pass the multiple comparisons and sphericity tests). The coordinates of the peaks of each of 

the resulting regions were used to identify approximate anatomic locations in Talariach 

space (Talairach and Tournoux, 1988). Regions were defined for each covariate, resulting in 

a set of regions of interest that corresponded to effects related to drift-rate, decision 

threshold, RPE, and EV. The purpose of this region identification procedure was to examine 

regions related to each covariate and to relate it to previous literature. Thus, this level of 

analysis was independent of the following intersection analysis.

2.11 Intersection of model effects

To establish meaningful links between the two computational approaches and the neural 

signatures of each, an analysis of the intersection of significant effects, similar to multi-

experiment conjunctions, was performed. This analysis identified regions corresponding to 

the functional overlap between diffusion model and reinforcement learning parameters. 

First, for each measure of interest (RPE, EV, decision threshold, and drift-rate), a binary 

mask was created that marked any above-threshold (i.e., significant) voxel with a 1 and any 

below-threshold voxel with a 0. These masks were computed from the corrected statistical 

images that resulted from the t-tests described above. Thus, each mask contained 

information identifying which voxels correlated with each of the four measures at a 

relatively rigorous threshold corrected for multiple comparisons and adjusted for sphericity.

The resulting masks for the diffusion model parameters were then compared to the masks of 

the reinforcement learning measures. There were, thus, four possible combinations: 

Threshold + RPE, Threshold + EV, Drift-rate + RPE, and Drift-rate + EV. For each 

combination, a logical “AND” computation identified voxels that exhibited above-threshold 

effects in both source masks (e.g., a given voxel’s activity correlated significantly with 

threshold modulations and correlated significantly with RPE modulations in separate 

analyses). This computation is analogous to the minimum t-field computation (or minimum 
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statistic) of multi-experiment conjunctions, which ensures that a given voxel shows a reliable 

effect independently for both covariate and not just for one. The null hypothesis for this 

statistic is that a voxel’s activity across subjects correlated with at most, one of the 

covariates. Therefore, rejecting the null hypothesis would mean that a voxel’s activity 

correlated with both covariates. For each combination, the result was an image of voxel 

clusters that were functionally correlated with both model parameters. This analysis, then, 

related functionally identified regions of reinforcement learning to regions associated with 

specific aspects of a decision-making processes. We computed the center of mass for each 

region in the intersections to identify approximate anatomical locations in Talairach space 

(Talairach and Tournoux, 1988).

The choice of threshold for this analysis is, to an extent, arbitrary. There is a considerable 

compromise that must be made with respect to false positives and false negatives: by 

changing the threshold, the results could change appreciably. Our approach is reasonably 

cautious with false positives and favors a higher threshold at the risk of potentially excluding 

overlapping regions by mistake. The maps presented in Figs. 2 and 3 show the statistical 

values of the individual covariates that may help assess the extent to which this tradeoff 

might impact the results.

3. Results

3.1 Behavioral performance

Subjects overall learned quickly, reaching 80% accuracy in three to four repetitions (Figure 

1b). This improvement in accuracy across rounds was indicated by a significant main effect 

of Round in a repeated measures ANOVA (F[2.58, 38.65] = 83.35, p < 0.001, ηp
2 = 0.85) 

and significant rank-order correlation (ρ = 0.99, p < 0.001). Likewise, response time (Figure 

1c) decreased across rounds beginning at the first recall round (i.e., Round 1 was exposure 

only and required no retrieval of learned information), indicated by a significant Round 

effect on response times (F[2.16, 32.33] = 19.12, p < 0.001, ηp
2 = 0.56) and negative rank 

order correlation (ρ = −0.93, p < 0.001). Altogether, the increase in accuracy across rounds 

suggests that subjects were able to successfully optimize their choice selections with 

repeated experience. Likewise, the decrease in response times suggests that decision-making 

becomes more automatized through learning.

3.2 Drift-diffusion modeling

The primary goal of the diffusion model analysis was to attempt to capture behavioral 

improvements across rounds and describe those changes in terms of decision-making 

processes. If these changes can be captured successfully, model parameters could be used to 

inform neuroimaging analysis and thus examine the neural underpinnings of improvements 

to decision processes across learning. Of specific interest were the threshold and drift-rate 

parameters, which were free to vary across Round. The model was able to produce 

parameters that could accurately describe the behavioral data (Fig. 1b). The mean group 

parameters for the final model are enumerated in Table 1.
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In terms of decision processes, improvements in choice selection behavior across rounds 

manifested as an overall decrease in decision thresholds coupled with an overall increase in 

driftrates across rounds. Figure 1c illustrates decision threshold changes, which increased 

from Round 1 to Round 2, and then gradually decreased over subsequent Rounds. These 

variations reached statistical significance, indicated by a main effect of Round (F[3.26, 

48.98] = 10.784, p < 0.001, ηp
2 = 0.42). The changes in the parameter progressively 

decreased across Rounds, as indicated by a negative rank order correlation, excluding Round 

1 in which decision thresholds had to be formed without prior experience of the 

experimental context (ρ = −0.99, p < 0.001). Figure 1c also illustrates changes in drift-rates 

across Round. Drift-rate increased steadily with repetitions of the item set, indicated by a 

significant effect of Round (F[1.71, 25.57] = 81.97, p < 0.001, ηp
2 = 0.84) and positive rank 

order correlation (ρ = 0.99, p < 0.001). Altogether, decreases in threshold and increases in 

drift-rate are intuitive patterns for a learning task such as this, wherein subjects gain 

confidence in their choices through repetition and learn to make fast and accurate decisions. 

Moreover, while the pattern of changes across both parameters is intuitive, it is not requisite; 

it is equally plausible, for instance, that behavior might be described solely based on changes 

to one parameter or the other. This was not the case. Two alternative models, wherein either 

drift-rate or threshold was fixed while the other was free to vary by round, produced poorer 

fits (DIC 10,325 and 9,324) to the observed data than the primary model (DIC 8,927). It is 

also worth noting that, while parameters in Round 1 do not reflect experience-related 

computations, the model seems to account for this, as observed in the increase in threshold 

and change in sign for drift-rate from Round 1 to Round 2. Conceptually, subjects approach 

Round 1 with trial-and-error guessing and subsequently switch to a controlled retrieval 

strategy at Round 2.

To assess the fit of the model, choice and response time data were simulated from the 

posterior distribution of the final model. Data produced by simulation mapped onto the 

empirical data with little error for both accuracy (Round × Dataset interaction, F[2.43, 

77.84] = 0.06, p = 0.96, ηp
2 = 0.002) and RT measures (F[2.03, 64.86] = 0.12, p = 0.89, ηp

2 

= 0.004). These null ANOVA results indicate that the empirical and simulated datasets were 

not different and suggest that data generated from the model posteriors could reproduce key 

behavioral patterns within the empirical dataset, on average (Fig. 1b).

3.3 Reinforcement learning agent

In parallel with the diffusion model analysis, a reinforcement learning approach was taken to 

characterize changes in choice selection behavior across rounds in terms of feedback 

processing and mnemonic prediction strength. Accuracy data for the concurrent 

discrimination task indicated gradual improvements to performance as choices were 

repeatedly experienced. As such, the reinforcement learning agent should produce trial-level 

EV estimates that gradually increase across rounds (reflecting better outcome predictions) 

and RPE estimates that gradually decrease in magnitude and frequency across rounds 

(reflecting fewer unexpected outcomes).

Overall, the pseudo-R2 statistic of the reinforcement learning models was 0.37 on average, 

indicating the models fit the human behavior quite well compared to a chance-performance 
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model (Table 2). Learning rates of the models were generally high, at a mean of 0.81 (0.02), 

corresponding to the rapid climb of the learning curve (Fig. 1b). This indicates that, 

according to the models, subjects strategically placed a high importance on new information 

in learning the choice-outcome values. It is worth noting that, while reinforcement learning 

is typically applied to tasks with probabilistic choice-outcome relationships (in which 

learning is typically slow), it was successfully applied here to concurrent discrimination 

learning, which features deterministic choice-outcome relationships and relatively rapid 

learning. A key result here is in the learning rate for our deterministic task, which is 

considerably higher than learning rates in probabilistic learning tasks (Rieskamp, 2006; Doll 

et al., 2009; Cavanagh et al., 2010; Gläscher et al., 2010). Importantly, this high learning rate 

determines the relative influence of EV and RPE values and how important individual choice 

experiences are to a particular subject.

3.4 Effects of single model covariates

Regions of interest corresponding to activity that correlated with the model parameters were 

identified from the covariate activation maps. Tables 3–6 enumerate regions whose activity 

correlated with modulations in positive RPEs, EV, decision threshold, and drift-rate, 

respectively. The correlation maps are presented in Figures 2 and 3. Briefly, the results run 

parallel to many findings in the literature. Positive RPE signals correlated with activity in 

regions such as the pre-supplementary motor area (pre-SMA), caudate nucleus, cingulate 

gyrus, and dorsolateral prefrontal cortex (dlPFC), among other regions (Table 3) (Gläscher 

et al., 2010; Glimcher, 2011; Daw et al., 2011). EV correlated with activity in regions such 

as the parahippocampal gyrus, orbitofrontal cortex, and the putamen (Table 4) (Frank and 

Claus, 2006; Hare et al., 2008). Decision thresholds varied with activity in cognitive control 

regions such as the pre-SMA, anterior insula, and frontoparietal regions (Table 5) (Mulder et 

al., 2012; Frank et al., 2015). Drift-rates varied with activity in memory regions such as the 

parahippocampal gyrus and putamen, as well as control regions like supplementary motor 

areas (SMA) (Table 6) (Badre et al., 2014).

3.5 Intersection of model-defined neural effects

To link together the cognitive processes captured by the drift-diffusion model and 

reinforcement learning, along with their neural substrates, a conjunction analysis was 

performed. The overlap of voxels corresponding to learning-related modulations in drift-

diffusion model and reinforcement learning parameters were examined using a 2 × 2 design 

of evaluation (Threshold, Drift-rate by RPE, EV). Each intersection image contained voxels 

that were significantly active for both of the two parameters in the intersection (e.g., 

Threshold and RPE). Importantly, these intersections should not be interpreted as indicating 

dependence between measures (i.e., interactions), but rather that present voxels exhibited 

activity that correlated with both modulations of a diffusion model parameter and also to 

modulations of a reinforcement learning measure. Moreover, to keep interpretations as clean 

as possible, the intersections were created by separating within-model effects (i.e., effects 

due to positive RPE signals were statistically separated from those due to EV; the same 

applied to drift-rate and threshold effects). This method thus prevented any overlap between 

parameters of the same model, namely between RPE and EV and between drift-rate and 

threshold.
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The intersections of Drift-rate + RPE and of Threshold + EV produced no overlapping 

voxels and were thus excluded from further consideration. The two remaining intersections 

produced sets of 11 and 5 regions corresponding to intersections of Threshold + RPE and 

Driftrate + EV covariates, respectively. The overlap of effects related to positive RPE 

modulations and to changes in decision threshold localized to 11 regions (Table 7), 

encompassing territory in the caudate head, anterior insula, medial frontal gyrus (pre-SMA), 

fusiform gyrus, anterior cingulate cortex, right inferior occipital gyrus, and middle frontal 

gyrus (dlPFC). The other intersection, corresponding to the overlap of drift-rate and EV 

effects, identified five regions that clustered in the putamen, inferior parietal lobe, SMA, 

middle insula, and middle temporal lobe (Table 8).

It is important to note that while these overlaps can be interpreted with respect to the 

computational models that provide the covariates, a positive overlap result does not 

necessarily indicate that the contained regions are performing the same function or exhibit 

shared processing. For instance, a given region that exhibits a conjunction effect across two 

particular conditions might exhibit dissociable patterns of activity (Woo et al., 2014) or 

connectivity (Smith et al., 2015) between those conditions. However, because the analysis is 

testing correlation based on results from computational models that attach specific 

interpretations to the parameters, we can speculate how processing related to changes in 

these parameters might overlap conceptually. In this way, these correlations do not 

necessarily implicate the regions in the computation of the parameter itself, but rather link it 

to the conceptual processes represented by the parameter in the models. For instance, RPE 

signals seem to be computed by brainstem dopamine neurons (Schultz et al., 1997) and 

subsequently broadcast diffusely to other regions throughout the brain. Though activity in 

these other regions frequently correlates with RPE signals, it is unlikely that they participate 

in the computation of RPE. Rather, the correlation marks a process that results from or is 

associated with the RPE signal, not performing of the computation itself. It is in this spirit 

that conceptual interpretations of the parameter-correlated overlap regions are discussed in 

the following section.

4. Discussion

In this study, we used a dual model approach to investigate how different aspects of 

decision-making were influenced by feedback about decision performance and how the 

neural correlates of feedback processing and decision-making relate to each other. 

Behavioral data from a concurrent discrimination task were fit using a drift-diffusion model 

to characterize decision-making processes and a reinforcement-learning model to describe 

the influence of feedback. Parameters from these models were regressed onto neural data to 

localize brain regions whose activity varied with changes in the parameters. Correlations 

between modulations in the parameters across Rounds and modulations in fMRI activity 

served as markers of the processes described by the computational models. The intersection 

of the regions localized across the two models was then examined: brain regions common 

between the two models should correspond to putative substrates of feedback influences on 

decision-making.
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The patterns of overlap between regions localized by both drift-diffusion and reinforcement-

learning model parameters support two primary inferences. First, frontal, fusiform, anterior 

cingulate, and caudate nucleus regions behave like performance monitors, seeming to reflect 

errors in performance predictions that signal the need for changes in decision-making 

control. Second, temporoparietal, SMA, and putamen regions behave like evidence storage 

and accumulation sites, seeming to reflect differences in learned item values that inform 

optimal decision choices. As information about optimal choices is accrued, these neural 

systems dynamically adjust as decision-making becomes more skilled (i.e., faster and more 

accurate). Figure 4a provides a graphical depiction of these inferred intersections, which are 

discussed in detail below.

4.1 Outcome feedback influences decision thresholds via performance monitoring

Feedback about choice outcomes provides direct information about whether or not a given 

behavior met one's performance expectations. In the concurrent discrimination task, an 

accurate choice in an early round might signal that a chosen memory retrieval strategy 

worked surprisingly well, whereas an inaccurate choice in later rounds might indicate that a 

choice was made too quickly. More generally, outcome feedback provides critical 

information about whether control over the decision-making process is appropriately 

matched to performance expectations. Outcome feedback can therefore indicate that 

controlled processing for a subsequent decision can be safely reduced without jeopardizing 

performance, or that it should be increased so that more or better evidence can be gathered 

to support a given choice option.

Feedback about such performance discrepancies can be conceptualized as differences 

between predicted versus observed outcomes. These differences are captured by RPE signals 

in reinforcement learning models. Similarly, changes in controlled processing can be 

conceptualized as changes in the amount of evidence needed before a choice can be made; 

these are captured by the threshold parameter in drift-diffusion models. Thus, the neural 

substrates corresponding to the influence of outcome feedback on performance monitoring 

can be derived from the intersection of regions localized by the positive RPE and threshold 

parameters.

Activity in the anterior insula, pre-SMA, dlPFC, anterior cingulate cortex, fusiform and 

inferior occipital gyri, and dorsal caudate head (Table 7) was sensitive to changes in positive 

RPE signals and decision thresholds. These regions might therefore be important for 

performance monitoring and adjustments in controlled processing in response to unexpected 

outcomes. It is worth noting that for perceptual decisions, similar regions have been found to 

exhibit sensitivity to outcome information (Wheeler et al., 2008). This suggests that the 

control exerted by these regions is not exclusive to decisions based on retrieved information 

or to decisions with explicit feedback, and thus might reflect some degree of domain-general 

functionality.

Consistent with this interpretation, each of these regions has been more broadly implicated 

in performance monitoring. For example, the anterior insula has been associated with the 

conscious perception of errors (Ullsperger et al., 2010), while the anterior cingulate and 

dorsolateral prefrontal regions seem to be important in conflict monitoring and cognitive 
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control (Botvinick, 1999; MacDonald et al., 2000). Furthermore, the identification of the 

dorsal striatum (particularly the dorsal caudate head) is consistent with anatomical models 

that distinguish between the dorsomedial and dorsolateral striatum, with the former 

associated with cognitive performance evaluation, goal achievement, and action-reward 

associations (Tricomi and Fiez, 2008, 2012) and the latter associated with sensorimotor 

learning and the encoding of implicit reward representations (cf. putamen in the Drift-rate + 

EV intersection) (Poldrack et al., 2005; Williams and Eskandar, 2006; Seger et al., 2010). 

Regions in the fusiform and inferior occipital gyrus might reflect an executive influence 

from prefrontal regions to sensory regions or an attentional biasing on perceptual 

representations. Additionally, some of the regions are associated with behavioral speed-

accuracy tradeoffs, including the pre-SMA, dlPFC, striatum, and perceptual regions in the 

ventral stream (Bogacz et al., 2010). Thus, the wider literature supports the idea that regions 

identified from the Threshold + RPE intersection mediate the influence of external 

performance signals on adjustments to decision-making control.

4.2 Feedback history influences the rate of evidence accumulation

High quality decision evidence is critical to optimal choice selection performance. As noted 

above, in deterministic decisions, outcome feedback can provide unambiguous information 

about optimal choices. Experience-based improvements in decision-making should therefore 

reflect the degree to which this information is encoded into memory and successfully 

retrieved. In the concurrent discrimination task, mnemonic information deemed relevant to a 

choice episode can be gathered from various sources and integrated as evidence for or 

against a given option. For instance, a subject might rely heavily on contextual or associative 

information from declarative memory in the medial temporal lobe to make an accurate 

choice on some trials. For other trials (or for other subjects), implicit value information (i.e., 

familiarity) might drive choice selection, via procedural memory in the basal ganglia. In 

most cases, it seems likely that a combination of these influences drives optimal decision-

making in deterministic contexts (Tricomi and Fiez, 2008, 2012).

Since EV is an analogue of evidence quality, it can be used to localize the neural substrates 

of mnemonic information that guide choice selection. In parallel, drift-rate provides a 

measure of the rate of evidence accumulation during a decision. Because EVs are updated 

based on feedback at the end of each trial and reflect a history of prior experience, the 

overlap between effects related to this history described by EVs and those related to drift-

rate of the current trial reflects the influence of the accrued experience of feedback from 

previous trials on evidence accumulation. In this intersection, regions were found in inferior 

parietal lobe, middle temporal gyrus, middle insular cortex, SMA, and the putamen (Table 

8).

At its simplest, the concurrent discrimination task requires a mapping of a particular visual 

item (here, a word) to a motor output (which can change from trial to trial and Round to 

Round). The SMA, then, may be involved in creating such a mapping on the fly, along with 

other regions in this intersection, such as the middle insular cortex, which has been 

implicated in motor control related to habit learning (Poldrack et al., 1999). Importantly, 

coactivation of similar collections of regions has been reported in studies examining 

Tremel et al. Page 17

Behav Brain Res. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



practice-related sensorimotor coordination, timing of movements, and task repetition 

(Jantzen et al., 2002; Jantzen et al., 2004; Smith et al., 2004). This suggests that the regions 

in this intersection might contribute to building strong stimulus-driven response behavior 

over the course of the task. The role of the dorsolateral striatum (putamen) seems to be 

particularly important in this type of procedural habit and motor learning (Yin et al., 2004, 

2006; Tricomi et al., 2009). For instance, if an EV on a particular trial has been well-learned, 

drift-rate will be high, suggesting strong functional connections between the representation 

of the EV and the necessary motor mapping to enact the correct response given the 

orientation of the stimuli for that trial. Taken together, this suggests that corticostriatal 

circuits similar to those implicated in procedural memory or habit learning might partly 

underlie performance on a concurrent discrimination task. Such a system supported by the 

putamen would be well suited to contribute salient value information about each choice 

option. This information could be built up over repeated outcome experiences, establishing a 

sense of item-level familiarity (Poldrack et al., 1999; Poldrack et al., 2001; Seger and 

Cinotta, 2005). EV, thus, carries information about a particular stimulus, such that stronger 

EVs can lead to easier choices (i.e., better discriminability). Drift-rate can therefore be 

directly influenced by the quality of an EV, such that stronger EVs can speed up a decision 

process by providing higher quality evidence. A procedural memory system could work to 

build strong EVs to be used as evidence for a choice.

4.3 Repeated feedback encourages a shift toward stimulus-driven decision-making

In the concurrent discrimination task, subjects select randomly on the first exposure of an 

item, having no initial valid information that can be used to predict the choice outcome. 

With repetition, information is continuously gathered regarding the correct and incorrect 

outcomes and subsequently used to improve performance. After multiple rounds, this 

improved performance is manifested as faster and more accurate selection of the rewarded 

item in each pair (Fig. 1b). In a sense, decision-making becomes proceduralized.

The apparent increase in decision-making efficiency that arises from repeated encoding 

could be seen as a result of the integrated functioning of the performance monitoring and 

evidence storage systems discussed above, as illustrated in Figure 4. Early in the task, when 

choice accuracy is low and response times are slow (Fig. 1b), adequate decision evidence 

might not yet have been encoded to drive confident choice selection. This is reflected in the 

high decision thresholds and low drift-rates for the earlier rounds of the task, signifying a 

need to gather and evaluate better (or more) evidence (Fig. 1c). Correspondingly, RPEs are 

frequent early on, since EVs are unreliable (i.e., low quality evidence). Control regions such 

as the dorsal caudate, anterior insula, anterior cingulate, and pre-SMA might monitor these 

frequent error signals (RPE) to prospectively determine the degree of cognitive oversight 

needed to ensure optimal performance based on recent performance history.

As experience with the choices builds, accuracy begins to climb and RTs decrease (Fig. 1b), 

accompanied by a relaxation of decision thresholds and an increase in drift-rates (Fig. 1c). 

Thus, EVs become more reliable, representing improvements to evidence quality. 

Consequently, unexpected outcomes become less frequent. After sufficient repetition, 

bottom-up information from putative evidence providers and accumulators in the putamen, 
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temporoparietal regions, and SMA becomes reliable enough to guide decisions under 

relatively lenient decision criteria. The skill that potentially develops through repeated 

choice selection places an emphasis on stimulus-driven information (e.g., outcome 

predictions), which builds as a result of earlier control (e.g., high decision thresholds). 

Learning through feedback might therefore enhance the quality of contributing decision 

evidence, so that bottom-up signals become more salient and reliable, and thus sufficient to 

enact a choice without burdensome goal, strategy, and error monitoring.

The striatum seems to play a particularly important role in this process. These roles are well 

characterized by reinforcement learning (Knutson et al., 2005), wherein the caudate and 

putamen contribute separately to learning processes (Seger and Cincotta 2005) and in the 

formation of value-driven stimulus-response associations (Yin et al., 2004, 2006; Tricomi et 

al., 2009). In the present study, EV and RPE relate to different aspects of decision-making. 

EV captures a history of the feedback experienced on prior trials. RPE captures momentary 

learning signals that reflect the outcome of the current trial. We found that the putamen 

seems to capture EV (i.e., predicted outcome value), whereas the caudate seems to capture 

positive RPE signals (i.e., learning signals). Thus, information held by the putamen is drawn 

upon as decision evidence (reflected in drift-rate), supporting the development of habit-like 

responses as information becomes well-learned. These stimulus-response associations arise 

as a result of computations in the caudate. For instance, microstimulation of the caudate at 

the time of reward (i.e., post-response feedback) can enhance the rate of associative learning 

(Williams and Eskandar, 2006). Moreover, the caudate head is sensitive to flexible, short-

term changes in learning that might reflect errors between predictions and outcomes (Kim 

and Hikosaka, 2013). Our findings suggest that the caudate might not directly influence 

decisions (via drift-rate), but rather seems to respond to or monitor post-decision events. 

Between the dorsomedial and dorsolateral striatum, then, learning is a process of outcome 

signaling and subsequent information updating (Miyachi et al., 2002). Information about 

errors in outcome predictions might be processed in the caudate and might subsequently 

influence the function of the putamen related to information updating or utilization of a 

history of outcomes to inform choice-selection.

It is worth noting that a key limitation to these interpretations is the exclusion of negative 

RPE trials from the analysis. While these trials have clear theoretical value, they were 

undersampled in this study’s design. Thus, the present task cannot be leveraged with a 

regression analysis to produce reliable and confident results related to these negative RPE 

signals. A task that features frequent errors as a critical part of learning would be much 

better suited for investigating negative RPEs with confidence. Concurrent discrimination, 

however, wherein many subjects have perfect performance in later rounds, is more about 

repetition of positive choices.

4.4 Contributions of the medial temporal lobe

Given the nature of the task, it was expected that declarative memory regions such as the 

hippocampus and medial temporal lobe would map onto the EV and drift-rate intersection. 

While these regions were absent in this intersection, it should be noted that the 

parahippocampal gyrus was present in both the drift-rate and EV maps. It would make sense 

Tremel et al. Page 19

Behav Brain Res. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that declarative memory would play a role in concurrent discrimination learning. Such a 

system would be well suited to supply key contextual information about episodic 

associations between items in a present pair to support encoding for individual decision 

events (Burgess et al., 2002; Kirschoff et al., 2000). There are several possible explanations 

for the apparent absence of the influence of a declarative memory system on improvements 

in deterministic decision-making. First, given that the parahippocampal regions on each map 

were in different hemispheres (albeit at homologous locations), it is possible that the 

thresholds used to define the regions were too strict and washed out any overlapping effects 

(i.e., false negative). This is an unfortunate tradeoff for the selection of any threshold value. 

Second, it is possible that reinforcement learning algorithms cannot capture behavior related 

to hippocampal memory. This seems unlikely given that we did identify parahippocampal 

regions whose activity correlated with EV and that the learning rate of the model was high 

(i.e., single-trial learning was possible within the model). However, it is possible that the 

model-free algorithm we chose for our analyses was not an adequate choice to fully capture 

hippocampal influences and instead a model-based reinforcement learning approach would 

be more appropriate (Doll et al., 2015; Johnson and Redish, 2005). A third possibility is that 

the context of the task overburdens declarative memory and places emphasis on more 

traditional reinforcement learning circuits (such as striatal procedural memory). For 

instance, our task used 50 items, which is far more than the typical 8–12 items used in the 

work with human amnesics (for example, Hood et al., 1999; Bayley et al., 2005). 

Memorizing associations for 8 items can be supported by declarative memory, but it is less 

clear how such a system might behave in the context of 50 items. Moreover, feedback or 

reward context might play a role in the engagement of the hippocampal memory system, 

since our task featured salient visual feedback while other permutations of discrimination 

learning tasks have used physical monetary feedback, such as dimes (Hood et al., 1999).

These issues of task context and of tradeoffs between declarative and procedural memory 

have been highlighted in much of the literature on concurrent discrimination learning. For 

instance, performance on concurrent discrimination tasks with a compromised declarative 

memory system can sometimes be spared (Ridley et al., 1989; Gaffan et al., 1991). This 

might be influenced by task design factors, such as including long retention intervals 

between decision episodes (Malamut et al., 1984). Moreover, preserved performance ability 

seems to be mediated, at least in part, by the striatum (Teng et al., 2000). However, when 

larger areas of the temporal lobe are damaged (such as the parahippocampal gyrus), 

performance is almost entirely abolished, suggesting that some aspects of declarative, 

associative, or recognition memory are necessary for learning to occur (Buffalo et al, 1998; 

Buffalo et al., 1999; Chudasama et al., 2008). Similar mixed results can be found in humans, 

wherein robust habit learning seems to support learning in amnesics in some instances 

(Bayley et al., 2005) but not in others (Hood et al., 1999). Likewise, patients with deficient 

procedural learning capacity due to Parkinson’s disease, seem to require a declarative 

awareness of cue-reward relationships in order to succeed on concurrent discrimination 

learning (Moody et al., 2010). This underscores the importance of the basal ganglia for this 

type of learning, but also highlights the idea that multiple systems can and may interact. In 

the end, it seems that concurrent discrimination learning is a product of interactions between 
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both hippocampal and basal ganglia systems, but these interactions are modulated by 

contextual and structural elements of the task (e.g., Turchi et al., 2010).

4.5 Conclusions

In an integrative approach to investigating the neural substrates of feedback and decision-

making, our findings outline the cognitive processes and neural correlates that support an 

intersection of feedback-based learning and decision-making. Feedback carries critical 

outcome information that influences subsequent decision-making in numerous ways (Fig. 4). 

Outcome monitoring regions in the pre-SMA, anterior insula, anterior cingulate, dlPFC, and 

dorsal caudate nucleus help to translate external information about whether behavior is 

meeting expectations into appropriate adjustments to control over decision-making. At the 

same time, evidence-providing regions in the putamen, temporoparietal regions, and SMA 

allow mnemonic information gathered from past decisions to be applied to a current 

decision-making episode. Taken together, these findings highlight the critical influence of 

feedback on performance monitoring and the accrual of mnemonic information about choice 

value. In particular, the findings outline an intersection of neural substrates that are 

important to both feedback-based learning and decision-making. As this learning occurs, 

evidence quality improves, leading to a shift in processing from controlled, top-down 

decision-making to proceduralized, stimulus-driven choice selection, each mediated by 

separable neural substrates.
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Highlights

1. Covariates derived from decision and learning models identify common 

neural regions.

2. Feedback provides performance information monitored by a prefrontal 

network.

3. Choice-outcome learning improves decision evidence via the basal 

ganglia.

4. Choice-outcome learning drives a shift toward stimulus-driven 

decision-making.
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Figure 1. 
a, Concurrent discrimination task. In a set of 50 items, subjects are presented with a pair of 

words, one of which is designated the target (i.e., correct). Subjects choose the word and 

receive visual feedback. The set of 50 items is repeated 8 times total (8 Rounds), during 

which subjects learn the correct choices. b, Average accuracy across rounds (left panel) and 

response time across rounds (right panel) is plotted for the task participants (empirical) and 

for simulations of a drift-diffusion model (simulated) (see Table 1). Shaded area reflects 
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standard error of the means. c, Threshold (left) and drift-rate (right) parameters across 

rounds of the drift-diffusion model fit from task behavior (see Table 1).
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Figure 2. 
Activation map illustrating effects of reward prediction error (RPE) and expected value (EV) 

covariates derived from the reinforcement learning model. Z value indicates offset in mm 

from anterior commissure/posterior commissure atlas in Talairach space. Heat map scales 

for RPE (red to yellow) and EV (blue to green) reflect magnitude of the z-transformed t-

statistic. Tables 3 and 4 list details of these illustrated regions.
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Figure 3. 
Activation map illustrating effects of decision threshold and drift-rate covariates derived 

from the drift-diffusion model. Z value indicates offset in mm from ACPC axis in Talairach 

space. Heat map scales for decision threshold (red to yellow) and drift-rate (blue to green) 

reflect magnitude of the z-transformed t-statistic. Tables 5 and 6 list details of these 

illustrated regions.
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Figure 4. 
a, Schematic illustrating the influences of feedback on a decision process. The lighter grey 

boxes indicate a theoretical process that is a specific focus of the present study, with a 

corresponding measure of interest indicated in parentheses (e.g., EV is a measure of decision 

evidence). The color-shaded areas represent a theoretical mapping of the two intersections of 

reinforcement learning and drift-diffusion parameters in the present study. EV, expected 

value; RPE, reward prediction error. b, Regions of interest corresponding to the Threshold + 
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RPE (red) and Drift-rate + EV (blue) intersections. Z coordinates indicate the position of the 

axial slice in mm from ACPC line in Talairach space.
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Table 1

Estimated group-level parameters for drift diffusion models. a, decision threshold values (subscript indicates 

the Round number); v, mean-drift rate values; ter, mean non-decision time; z, starting point; st, cross-trial 

variance in non-decision time; sv, cross-trial variance in drift-rate; sz, cross-trial variance in starting point; SE, 

standard error of the mean estimates across subjects.

Param Group Mean SE

a1 1.347 0.018

a2 1.924 0.020

a3 1.807 0.020

a4 1.745 0.021

a5 1.683 0.021

a6 1.664 0.022

a7 1.652 0.023

a8 1.526 0.021

v1 −0.144 0.056

v2 0.370 0.055

v3 0.875 0.056

v4 1.525 0.059

v5 1.871 0.060

v6 2.281 0.062

v7 2.653 0.065

v8 2.766 0.065

ter 0.845 0.022

z 0.556 0.012

st 0.495 --

sv 0.556 --

sz 0.037 --
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Table 2

Estimated model fits and learning rates for the reinforcement learning model. Pseudo R2, statistic illustrating 

degree of model fit (0.20 is generally a well-fit model); α, learning rate parameter.

Subject Pseudo R2 α

1 0.52 0.86

2 0.17 0.79

3 0.40 0.68

4 0.50 0.93

5 0.50 0.87

6 0.40 0.82

7 0.49 0.85

8 0.23 0.85

9 0.24 0.57

10 0.41 0.76

11 0.32 0.93

12 0.62 0.79

13 0.51 0.83

14 0.46 0.88

15 0.11 0.67

16 0.17 0.86
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