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Abstract

Although the measurements of clinical outcomes for cancer treatments have become diverse and complex, there remains a
need for clear, easily interpreted representations of patients’ experiences. With oncology trials increasingly reporting non-
time-to-event outcomes, data visualization has evolved to incorporate parameters such as responses to therapy, duration
and degree of response, and novel representations of underlying tumor biology. We review both commonly used and newly
developed methods to display outcomes in oncology, with a focus on those that have evolved to represent complex datasets.

Graphs and figures allow the illustration and visualization of
data to demonstrate an intervention or treatment effect in on-
cology treatments. The ability to display data figuratively en-
ables rapid interpretation of sometimes complex information:
There are known educational benefits from the addition of pic-
tures, graphs, or diagrams to text. Mayer refers to this enhanced
learning as the multimedia effect (1). However, there is also the
risk of obscuring or diluting information through oversimplifi-
cation. The maxims of visualizing quantitative information re-
main as important as ever, and we must strive to impart the
“maximum amount of information, in the smallest space, using
the minimum amount of ink” (2). A review of published ran-
domized controlled trials that were taken from year 2006 to
2007 showed most trials report one to three figures, with a
mean of 2.3 figures per article (3). The four most common types
were forest plots, Kaplan-Meier curves, flow diagrams, and
graphs to show repeated measures over time (usually as a line
graph with time on the abscissa).

Here, we describe the graphical representations of data seen
most commonly in oncology research presentations/publica-
tions and focus on some of the newer, creative additions that

attempt to convey data graphically, particularly in the context
of high-dimensional companion molecular datasets that often
accompany modern clinical trials.

Graphical Representation to Illustrate Data on
Overall Survival or Progression-Free Survival

Most phase III trials are often powered to detect a progression-
free or overall survival endpoint. The Kaplan-Meier curve re-
mains one of the most important visualizations for analysis of
survival data in oncology and is highlighted in this section.

Kaplan-Meier Curves

Kaplan-Meier curves allow comparison of survival outcomes (eg,
alive/dead, free of disease/relapsed) in different groups over time.
They have become ubiquitous within the oncology literature. This
representation was established in 1958 by Edward L. Kaplan and
Paul Meier, who published a seminal paper on how to deal with
incomplete observations, for example, survival after an
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intervention in patients treated at different time points (ie, time-
to-event data) (4). The Kaplan-Meier estimate is particularly useful
when applied to two groups of subjects on different treatments,
and their statistical differences in survival can be estimated by
the log-rank test or Cox proportional hazards modeling (followed
by the Wald or likelihood ratio tests to evaluate specific coeffi-
cients in the model). It is important to note that in certain cancer
types, especially with the advent of new targeted therapies, there
may be a proportion of patients who remain alive or free from dis-
ease after long periods of follow-up. This is reflected as a non-
zero tail probability in the Kaplan-Meier curves (5).

Kaplan-Meier estimates require the assumption that censored
individuals have the same prospects of survival as those who
continued to be followed. The estimate is univariate and may not
take into account many factors that can influence collection of
survival data. This can lead to unreliable survival estimates, such
as loss to follow up, withdrawal from study, and alternative
outcome than the event of interest. Censoring occurs when infor-
mation on time-to-event is not obtainable because of loss to fol-
low-up or nonoccurrence of the event of interest before the end
of study period. It is important to note that many oncology stud-
ies are not able to follow up all patients for the full duration until
all patients experienced the event of interest (event time of inter-
est) as some patients may enter the study at later time points.
When patients are censored, this is illustrated by the presence of
a vertical tick mark on the curve (Figure 1), which leads to a re-
duction of sample size of patients at risk after the censorship and
lower reliability of the curve over time (6).

The degree of censoring can depend on the rate of recruit-
ment and how closely the patients are followed; for example,
participants lost to follow-up during the study are censored. The
Kaplan-Meier method assumes that censoring is noninformative
and independent of survival, which may not be true because the
number of patients at risk at any time point should be represen-
tative of the population at the same time (7). It is important to
question how the study was conducted and the efficacy of the in-
tervention if there were a high number of patients withdrawing
from the study, leading to a large number of patients censored in
the analysis. Most statistical methods for analyzing time-to-
event data assume that the censored patients have survival that

is similar to that of the uncensored patients. The key solutions
are imputation, sensitivity analysis (via best/worst-case scenar-
ios), and explicit testing of the drop-out as a study end point (8).

The most common summary statistic for describing patterns
and comparisons between the Kaplan-Meier curves is the haz-
ard ratio, which gives a relative event rate in the groups. It is im-
portant to note that statistically significant differences in
survival can occur between two groups, but the absolute differ-
ence in survival between them may nevertheless be clinically
insignificant. That is, it is critical to distinguish statistical and
clinical significance; the latter generally requires the former, in
combination with a statistically significant effect-size. For ex-
ample, in the AVAiL study, which compared the addition of a
vascular endothelial growth factor inhibitor (bevacizumab) or
placebo to first-line platinum doublet chemotherapy, a statisti-
cally significant benefit of adding bevacizumab was seen on
progression-free survival (hazard ratio [HR] ¼ 0.75, 95% confi-
dence interval [CI] ¼ 0.60 to 0.90, P ¼ .03). However, the actual
difference in the median was less than a month and did not
translate to an overall survival benefit, suggesting a lack of clini-
cally significant benefit despite statistical significance (9).

Graphical Representations of Treatment Effect

Interpreting treatment effects in cancer clinical trials is crucial
to review the relative therapeutic efficacy between different
groups. Forest plots, funnel plots, and violin plots are examples
of graphical representations of treatment effect. They are de-
scribed in this section.

Forest Plots

Forest plots have been used since the 1970s (10) although the
name appears to have been coined in the 1990s and derives from
the appearance of this representation as a “forest” of lines (11,12).
They are used to show the relative treatment effect of an inter-
vention between groups within the larger cohort. The effect size
is defined as the magnitude of the difference between treatment
groups whereas the P value reveals whether an effect exists but
does not reveal the size of the effect (13). In meta-analyses, forest
plots allow the effect size of all studies to be easily visualized to-
gether in one figure. Forest plots constitute several horizontal
lines, which represent the 95% confidence interval, and a central
symbol in the middle of the line segment, which represents a
point estimate that is usually the median or mean (Figure 2A).
Where difference between means is presented, null has the value
of zero (0) and the x scales are normal, but if ratios are presented
(ie, odds ratio), null has a value of 1 and the scales are logarith-
mic. The central line represents the null hypothesis, and the di-
rection of the effect of treatment depends on which side of the
line the central point lies on. The summary overall measure of ef-
fect is often represented by a diamond symbol below individual
measures (See Figure 2A for explanation on interpretation of a
forest plot for systemic review) (14).

Forest plots are useful in considering the behaviors of sub-
groups within a larger dataset. For example, the benefit for a
particular treatment may only be small in a large population,
but separating out and analyzing the effect of the therapy in dif-
ferent subgroups may sometimes identify those who may bene-
fit more. Such analyses can be subject to error, especially where
small numbers of data points are present and confidence inter-
vals are therefore wider than for the entire group (15). Although
forest plots are commonly used in research, the quality, style,

Figure 1. Kaplan-Meier curves comparing survival data for two treatments with

vertical tick marks representing censoring. Note that toward the tail of both

curves censoring increases. The number of subjects in each group and at each

time point is given numerically, as are the hazard ratio, confidence interval, and

P value. CI ¼ confidence interval; HR ¼ hazard ratio.
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and content of forest plots can vary. Post hoc subgroup analysis
should also be interpreted with caution and should, at best, be
used as hypothesis-generating. When data is classified into dif-
ferent small subgroups, it is important not to over interpret the
results as the power of individual subgroup analyses is usually
low (16). Schriger et al. studied 129 Cochrane reviews and 171
non-Cochrane reviews (17). They found forest plots to be always
present in Cochrane reviews and that they were standardized
but often contained three or fewer studies. Sixty percent of non-
Cochrane forest plots depicted at least four or more studies, and
important information such as the weighting of each study,
tests for overall effect, and heterogeneity were often omitted
(17). There are also other limitations to using forest plots; for ex-
ample, the use of symbol areas to convey study weights may
not be optimal. There may be difficulty in decoding symbol
areas (ie, size of the boxes) to allow for an accurate comparison
of study weights, and big symbol areas may obscure other im-
portant information on the plot (18).

Funnel Plots

Funnel plots were first introduced in 1984 by Light and Pellemer
(19). They are scatter plots of the effect estimates from individ-
ual studies against some measure of each study’s size or preci-
sion (20). A symmetrical funnel shape plot would give an

indication of an appropriately sampled dataset whereas an
asymmetrical funnel plot would imply possible publication bias
or heterogeneity between studies (Figure 2B) (21). The scatter
should be because of sampling variation alone with larger stud-
ies showing narrower spread at the top compared with smaller
studies scattering more widely at the base of the funnel (22,23).

Funnel plots are increasingly used to compare studies in order
to check for publication bias and identify outliers. They are there-
fore used mainly in meta-analyses. Caution must be taken when
interpreting funnel plots as a clear definition of precision, and ef-
fect in constructing the funnel plot may affect the shape of the
plot, leading to discrepancies (24,25). There are several reasons
that can lead to asymmetry of the funnel plot, including selection
bias, publication bias, true heterogeneity, data irregularities, arte-
fact, or chance (22). Asymmetry of the funnel plot only implies
the potential for those sources that may affect its shape but does
not provide guidance in teasing out the specific cause, which can
be extremely challenging. An example of funnel plot asymmetry
could be seen in smaller studies with a higher proportion of
patients in the high-risk groups. The patients in the high-risk
groups may tend to have a higher response rate to the study
treatment arm compared with the patients in the normal or low-
risk groups. This could lead to funnel plot asymmetry because of
risk differences with variation in the number of patients in each
group, rather than bias (26).
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Figure 2. Forest plots, funnel plots, and violin plots as examples of graphical representations of treatment effect. A) Example of a forest plot used in systemic review.

B) Illustrations of funnel plot asymmetry. Log of the risk ratios was plotted against the standard error of the risk ratio of each study to identify asymmetry in the distri-

bution of trials. Gaps in the funnel plot suggest potential publication bias. Figure courtesy of Ritchie et al. (21). C) Example of violin plots shows the distribution of coef-

ficient of variation (CV) values from injection replicates, within-patient proteomic variation based on all renal cell carcinoma (RCC), and clear cell renal cell carcinoma,

and among-patient variation based on all RCC reproduced from Guo et al. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative

digital proteome maps (28). ccRCC ¼ clear cell renal cell carcinoma; RCC ¼ renal cell carcinoma.
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Violin Plots

The violin plot is a way of plotting numeric data, which essen-
tially combines the box plot and the density trace or histogram
into a single display that reveals structure within the data (27).
This synergistic combination allows for display of the distribu-
tional characteristics of different batches of data. It is named a
violin plot as this statistical display can give rise to the graphic
appearance of a violin if the population has a bimodal distribu-
tion (Figure 2C) (28). The plots contain markers for the median
of the data and a box indicating the interquartile range.

Violin plots provide an indication of the shape of the distri-
bution and demonstrate the presence of clusters in the data,
which highlights the variation in the distribution (27). However,
the violin plot does not allow easy comparison across different
datasets between treatment groups and is prone to exaggerate
the influence of extreme outliers as they may not give an as-
sessment of the number of data points.

Graphical Representations of Tumor Response

Waterfall plots, spider plots, and swimmer’s plots are effective
ways to display individual patient tumor changes and response

changes over the course of treatment and are discussed in this
section.

Waterfall Plots

Waterfall plots are increasingly used in early-phase oncology
clinical trials as a powerful visualization of individual patients’
responses to an intervention or therapy. Waterfall plots are
most commonly used to show the maximal percentage change
of a tumor measurement after treatment. Each vertical bar rep-
resents an individual patient, and tumor response can be easily
interpreted as shrinkage if it is below the baseline and tumor
progression if it is above. Patients’ responses are typically sorted
horizontally by magnitude from left to right in descending or-
der, allowing for a cascading expression of the intervention’s
activity and can be colored by clinical or molecular characteris-
tics (eg, stage or mutation status) (29,30). This graduated repre-
sentation summarizes the typical response size, the fraction of
patients experiencing benefit, and also gives insight into the
interpatient heterogeneity of response (Figure 3A).

Despite their popularity, there are several concerns with the
use of waterfall plots in representing clinical data. Shao et al. re-
viewed published waterfall plots to investigate variability in
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Figure 3. Waterfall plots, spider plots, and swimmer’s plot as examples of graphical representations of tumor response. A) Waterfall plot with each vertical bar repre-

senting an individual subject. Tumor shrinkage is denoted by the direction of the bars from baseline, with tumor progression if it is above and regression if below zero.

RECIST measurement criteria can also be applied, with a partial response indicated by a decrease of at least 30% (dashed line) and progression a change of greater than

20% from baseline. B) Spider plot depicting tumor burden (assessed as the longest linear dimension) over time. Similar to a waterfall plot, a response is indicated by a

reduction in measurements below the baseline. C) Swimmer plot demonstrating treatment duration, the time point at which a response to treatment began, contin-

ued, and ended, whether or not the subject was considered a durable responder, and the disease stage at baseline.
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criteria used to define them and found that they are influenced
by interobserver measurement errors of tumor size. They rec-
ommended that waterfall plots should be generated only after
central review of imaging by radiologists trained in Response
Evaluation Criteria in Solid Tumours 1.1 (RECIST) measurement
(31). Waterfall plots depict only the best on-study change in tu-
mor burden relative to baseline for each individual patient and
cannot represent the kinetics or dynamics of tumor growth (32).
Some physicians may incorrectly infer that treatment response
and especially the magnitude of response will automatically
translate into actual patient benefit. However, this is often not
the case, particularly where initial responses are mitigated by
rapid tumor adaptation and progression. There are many stud-
ies that have demonstrated that objective response rate (ORR),
defined as either a partial or complete response by RECIST, does
not correlate with overall survival (OS). For example, in clinical
trials of second-line chemotherapy for patients with advanced
gastric cancer, Shitara et al. compared OS and other endpoints,
finding no association between ORR and OS (P ¼ .38) (33). Hotta
et al. compared cisplatin-based chemotherapy with carbopla-
tin-based chemotherapy for the management of advanced non–
small cell lung cancer with cisplatin-based chemotherapy
showing superior objective response rates but failed to demon-
strate statistically significant survival advantage as compared
with carboplatin-based chemotherapy (34). Another issue with
waterfall plots is that they do not show changes over time. If a
tumor initially grows then shrinks, the waterfall can only cap-
ture the one point in time. They are therefore not very useful
when evaluation of a treatment may alter over repeated time
points, as occurs with some immunotherapies. Given this, it
would be judicious to restrict use of waterfall plots to early-
phase trials where response is a signal of efficacy supporting
further phase II or III trials.

Spider Plots

Spider plots have more recently entered oncology publications
to depict changes in tumor measurements over time relative to
baseline tumor burden. The way data is represented generates a
pattern similar to the legs of a spider (Figure 3B). These plots al-
low the viewer to follow the longitudinal variations of tumor
burden, which is often crucial when studying immunotherapeu-
tic agents, where tumor burden may transiently increase before
reducing over time (35). Spider plots depict the duration of effect
from commencement of therapy; a longer plateau of the curve
below the baseline may represent a more durable treatment re-
sponse. Additional information can be incorporated by exploit-
ing coloring and shape of the final point, as well as the line style
and line color, giving great flexibility.

However, there may be missing information from spider
plots if a patient’s data were not captured entirely, especially in
those who progressed or died early on the trial. They may there-
fore give a visual overestimation of treatment effect because of
this survivorship bias. Therefore, spider plots only provide good
visual qualitative assessment but do not allow for formal statis-
tical inference (32). Furthermore, spider plots are less interpret-
able when there are large numbers of patients as it grows
difficult to follow individual lines, especially when they cross.

Given the intricacies of each data point, spider plots are not
useful when comparing results for large numbers of patients
over a long period of time. They are therefore increasingly uti-
lized in phase I studies or to elaborate the response in a selected
subgroup.

Swimmer Plot

A swimmer (or swim-lane) plot aims to show multiple pieces of
information about a given dataset in one plot (36). Swimmer
plots have gained popularity as manner of clearly describing the
fluctuating relationship between objective tumor response (eg,
RECIST measurements) and patient survival. Analogous to wa-
terfall plots, each patient is represented as a single bar, in this
case horizontal. But rather than using tumor response as the
other axis, swimmer plots use time and overlay the patient’s
bar with multiple other pieces of information that enrich and
qualify basic time-to-event metrics (36). By setting a clear sym-
bol legend to depict patients’ response to therapy, one is able to
review the timeframes of treatment, the point at which a re-
sponse to treatment occurred, and determine which patients
achieved a longer duration on treatment. This information on
the duration of treatment may be important for therapy that
would be continued without a specific duration as long as the
patient has stable disease or objective response. A longer dura-
tion of treatment would suggest better tolerability and treat-
ment outcomes. Additional graphical symbols (Figure 3C) can
depict the type of response (partial vs complete), when the on-
set of benefit took place, and the duration of the benefit. Similar
to spider plots, they allow various treatment response metrics
to be visualized over time in a small number of patients; how-
ever, they become cluttered and uninformative if too many sub-
jects are included or too many variables are included. By
convention, patients are sorted on the basis of duration of treat-
ment. The swimmer’s plot allows for a clear graphical display of
the duration of response and reveals which patients continue to
benefit from the treatment. This is important in immunothera-
pies where a proportion of patients may have an objective re-
sponse or disease stabilization initially but are able to remain
on the therapy for a long duration of time.

Graphical Representations to Illustrate Cancer
Genotypes and Phenotypes

With the enormity and complexity of genomic information,
graphical representations such as heatmaps and circos plots al-
low these data to be conveyed effectively and are discussed in
this section.

Heatmaps

Heatmaps are a data visualization tool that uses color to repre-
sent data values in a two-dimensional image. They can be used
to map where the clusters of areas of interest are to identify pat-
terns and trends that are increasingly used to depict complex
data such as mRNA or protein abundances, but to also organize
high-dimensional data for easy visualization by the reader.

The columns in a heat map correspond to individual tumor
samples, and the rows often represent genes or transcripts of
interest, with the colors representing expression level or muta-
tion status (Figure 4) (37). Heatmaps are commonly used to sim-
plify complex datasets. It was estimated that 30.4% of all
original research articles published in 2012 from five leading
journals, including Nature Biotechnology, Cancer Cell, Genome
Research, Genome Biology, and Molecular & Cellular Proteomics con-
tained at least one heatmap (38). Plotting a heatmap can now be
performed easily via algorithms (such as R or Stata) or via statis-
tical clustering packages. The clustering of heatmaps is a sur-
prisingly challenging problem, with no clear procedure for
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finding the appropriate clustering metrics, and the display de-
pends on the choice of distance metric, choice of linkage
method, and even the clustering algorithm used itself (39,40).
This leads heatmaps to have different displays based on minor
choices made by the analyst and does limit their robustness as
a visualization technique. Not all heatmaps need to be clus-
tered: They can form a useful representation for any matrix of
data. A recently developed enhancement to the heatmap is the
dotmap, where a background value represents statistical signifi-
cance, and the size of a circle in the foreground represents the
effect size. The color of the circle gives the direction of the effect
size. This allows representation of four-dimensional data
within a heatmap (41,42).

Circos Plots

Next-generation sequencing has resulted in large amounts of
data from genome-wide analysis that are difficult to conceptu-
alize as individual genetic changes (43). Rapid genome sequenc-
ing has allowed comparisons to be made with a referent human
sequence and scientists to discover new genomic areas of inter-
est that may impact on cancer evolution. Visualizing data in a
circular format (Figure 5) allows for flexibility in illustrating con-
nections between different positions, depicts regions of interac-
tions, and represents large amount of complex data better than
the tabulated format (44). The ease of creating large and

complex genomic maps allows one to compare sequences of in-
terest to existing genome or sequence collections. Circos plots
excel at showing genome rearrangements (particularly translo-
cations) and copy number alterations, as well as global genomic
instability. While they provide an overall map of the complexity
of an individual genome, it is difficult to appreciate specific mu-
tations, which may be the underlying driver for some tumors.
Further, they artificially exaggerate the linkages between cer-
tain chromosome pairs that are more distant on the circle and
can be difficult to compare in-depth because of the low base-
pair resolution. Low base-pair resolution may indicate that it is
difficult or even impossible to visualize small events or to dis-
tinguish those that are nearly adjacent (ie, the “resolution” of
the plot may be too low for discerning neighboring events at
base-pair level).

Graphical Representations to Illustrate
Connectedness and Relatedness in Cancer

Over the last few years, there has been a drive for new and im-
proved methods for conveying complex scientific data in manu-
scripts and at conference presentations, channels that enable
more rapid digestion of information. This section aims to high-
light some innovative graphs and plots to describe complex
pathways or relationships in cancer management.

Figure 4. Heat map distilling complex gene expression and correlating it with clinical data. Each tile within a row represents the expression level of a specific gene,

with darker tones indicating higher expression levels. Each patient sample is shown as a column, and two clusters of genes and patients have been defined (vertical

rectangle). The boxed cluster contains more women with less disease specific mortality. Clusters of genes that group together according to expression are also shown

in the horizontal rectangle.
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Transit Map Diagrams

With new molecular therapies and immunotherapies becoming
available in addition to traditional chemotherapy, there is a
need for more comprehensive diagrams to describe patients’
complex treatment choices and options. As different patients
have different paths of management dependent on the molecu-
lar drivers present, a transit map diagram may therefore be a
more informative representation (Figure 6) compared with us-
ing conventional flow diagrams (45,46). Transit map diagrams
allow the viewer the ease of a visual aid for the variable steps in
a complex pathway. These map out the turn-wise approach for
different choices and their interactions. The variety of choices

for various drug combinations could be highlighted with each
arm of the pathway to illustrate the different targets. While this
does not quantify the clinical impact (effect size) of the various
treatments or the sequence in which these treatments can or
should be taken, it does allow visualization of the possibilities
that now face each patient and their health care team. To date,
transit map diagrams are by definition annotated and manually
curated in a supervised fashion and not algorithmically
generated.

Network Analysis Diagrams

In situations where strength and frequency of connection be-
tween different items of interest are to be displayed, network
analysis may offer a new, innovative way of data visualization.
The vertex represents each factor that is being studied, and the
size of the vertex is proportional to the efficacy of the factor.
The lines connecting each vertex can represent the strength or
character of the connections, eg, the thicker the line, the stron-
ger the connection. As with transit map diagrams, network
graphs only highlight the variety of pathways and targets but
struggle to quantify the degree of effect other than the arbitrary
strength of connection via the thickness of the line connecting
one item to another. In contrast to transit map diagrams, net-
work diagrams are algorithmically generated via a variety of
computational methods (eg, www.genemania.org). Network
analysis is often used to illustrate multidimensional “-omics”
datasets such as genomics, transcriptomics, and metabolomics
(Figure 7A) but can also be used to represent any group of inter-
connected variables such as academic authorship (Figure 7B)
(47,48).

Conclusions and Directions

We have highlighted some of the graphs, plots, and representa-
tions (summarized in Table 1) that have emerged as useful tools
to enhance data visualization and interpretation of increasingly
nuanced and complex patient outcomes in cancer. In many sit-
uations, conventional methods of delivering information are
still employed (eg, Kaplan-Meier curves) and novel representa-
tions are also presented to give a more comprehensive and
enriched appreciation of patients’ experiences. Likewise,
increasingly complex translational data is mandating novel
methods of data visualization to allow communication to non-
specialists and stakeholders. There is a rapid improvement in
the graphics capabilities of statistical software packages, which
is enabling the ready preparation of complex plots by both re-
searchers and clinicians. As new treatment paradigms emerge
and tumor biology is increasingly understood, it is likely that
more striking and original methods of displaying data and
conveying information will be developed. If these developments
enable easy and rapid interpretation of data then, like Kaplan-
Meier curves, they are likely to be used throughout the oncology
literature like popular art pervades advertising.

Modern clinical cancer research relies increasingly on the
communication of complex data. The community needs to de-
velop a graphical vocabulary that allows for easy and familiar
communication. Standardizing our graphical representations
and understanding their strengths and weaknesses is a key ele-
ment to reach that goal. Journals could play a key role here,
standardizing features like colors used to describe stage, histol-
ogy, or chromosomes, or the symbols used in plots like swim
plots. Bringing consensus to data representation will speed the

Figure 5. Circular visualization of a next-generation sequence analysis of a can-

cer xenograft model compared with its cell line (NCI-H209). Reproduced from

Rosello et al. (44). Copy number variations (red ¼ gain; green ¼ loss) were calcu-

lated based on normal lymphocyte DNA as a control. Inter- and intrachromoso-

mal rearrangements are represented in blue (interchromosomal) and purple

(intrachromosomal).
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Figure 6. Transit and subway map diagrams allow for visual simplification of successive steps in a complex pathway. A) Example of transit map diagram courtesy of

Gedye et al. New treatments for metastatic melanoma (45). A) Schematic of newly approved (solid lines) and experimental (dashed lines) treatments for patients with

metastatic melanoma. The patient’s treatment is personalized according to the underlying driver mutation (eg, NRAS-mutant). B) Historically, few treatments were

available for melanoma. Examples of treatment progressions are shown for (C) patients with BRAF-mutant melanoma or (D) patients without an identifiable driver mu-

tation (wild-type). PD-1 ¼ programmed cell death protein 1, PD-L1 ¼ programmed cell death 1 ligand 1. E) Subway map designed by Claudia Bentley. Reproduced from

Hahn et al. A subway map of cancer pathways (46). These maps simplify complex pathways but show key steps and resultant effects, such as apoptosis.
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Figure 7. Network graphs as examples of graphical representations to illustrate connectedness and relatedness in cancer. A) Network analysis of recurrently mutated

genes in triple-negative breast cancer (47). This network analysis diagram shows significantly overrepresented pathways defined from genes mutated across multiple

patients. Color indicates the frequency of clones in individual patients and the size of node the frequency across patients of that group of mutations. B) Network graph

representing the 36 cohesive oncology co-authorship network, 2001–2010 reproduced from Shao et al. Analysis of oncology research from 2001 to 2010: a scientometric

perspective (48). One vertex represents one author. The vertex size is proportional to the productivity of the author while the thickness of the lines indicates the

strength of connection between two authors. The thicker the line between the two vertices, the closer the relationship is. The value between two vertices represents

the frequency of cooperation instances.
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ability of both clinicians and researchers to rapidly and correctly
interpret the increasingly complex data arising from modern
cancer clinical trials.

To quote Edward Tufte, “The commonality between science
and art is in trying to see profoundly—to develop strategies of
seeing and showing” (49).
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