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Abstract

Main conclusion Using genome-wide association map-

ping, 47 SNPs within 27 significant loci were identified

for four grain shape traits, and 424 candidate genes

were predicted from public database.

Grain shape is a key determinant of grain yield and quality in

rice (Oryza sativa L.). However, our knowledge of genes

controlling rice grain shape remains limited. Genome-wide

association mapping based on linkage disequilibrium (LD)

has recently emerged as an effective approach for identifying

genes or quantitative trait loci (QTL) underlying complex

traits in plants. In this study, association mapping based on

5291 single nucleotide polymorphisms (SNPs)was conducted

to identify significant loci associated with grain shape traits in

a global collection of 469 diverse rice accessions. A total of 47

SNPs were located in 27 significant loci for four grain traits,

and explained *44.93–65.90 % of the phenotypic variation

for each trait. In total, 424 candidate genes within a 200 kb

extension region (±100 kb of each locus) of these loci were

predicted. Of them, the cloned genes GS3 and qSW5 showed

very strong effects on grain length and grain width in our

study. Comparing with previously reported QTLs for grain

shape traits,we found 11novel loci, including 3, 3, 2 and 3 loci

for grain length, grain width, grain length–width ratio and

thousand grain weight, respectively. Validation of these new

loci would be performed in the future studies. These results

revealed that besides GS3 and qSW5, multiple novel loci and

mechanisms were involved in determining rice grain shape.

These findings provided valuable information for under-

standing of the genetic control of grain shape and molecular

marker assistant selection (MAS) breeding in rice.
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Abbreviations

GL Grain length

GW Grain width

GT Grain thickness

TGW Thousand grain weight

LWR Grain length–width ratio

QTL Quantitative trait loci

LD Linkage disequilibrium

SNP Single nucleotide polymorphism

GWAS Genome-wide association study

CTAB Hexadecyltrimethy ammonium bromide

MAF Minor allele frequency

SE Standard error

ANOVA Analysis of variance

BLUP Best linear unbiased prediction

cMLM Compressed mixed linear model

PCA Principle component analysis

G 9 E Interaction of genotype and environment

GAPIT Genome association and prediction integrated

tool

MAS Molecular assistant selection
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Introduction

Rice (Oryza sativa L.) is one of the most important cereal

crops and a staple food for more than one-half of the

world’s population. Rice yield is directly determined by

four major components: number of effective tillers per

plant, number of grains per panicle, the ratio of filled

grains, and grain weight (Sakamoto and Matsuoka 2008;

Xing and Zhang 2010). Grain size, a key factor determin-

ing grain weight, is specified by its three dimensional

structures: grain length (GL), grain width (GW), and grain

thickness (GT) (Fan et al. 2006; Zuo and Li 2014). In

breeding applications, grain size and weight are important

traits for rice yield and quality.

Grain size and weight are generally recognized as

quantitative traits that are controlled by multiple genes and

affected by environment factors. To date, more than 400

QTLs that control grain size and weight have been detected

by using various mapping populations (http://www.gra

mene.org/qtl). Several major QTLs controlling grain size

and weight have been identified and functionally charac-

terized, such as GS3 (Fan et al. 2006; Mao et al. 2010),

GW2 (Song et al. 2007), qSW5/GW5 (Shomura et al. 2008;

Weng et al. 2008), GS5 (Li et al. 2011), qGL3/qGL3.1 (Qi

et al. 2012; Zhang et al. 2012), GW8 (Wang et al. 2012),

TGW6 (Ishimaru et al. 2013) and GL7/GW7 (Wang et al.

2015a, b). Among these, GS3 encoding a putative trans-

membrane protein and qGL3/qGL3.1 encoding a protein

phosphatase with Kelch-like repeat domain function as a

negative regulator for grain length. For grain width, GW2

encoding a RING-type E3 ubiquitin ligase and qSW5/GW5

encoding a novel protein act as negative regulators,

whereas GS5 encoding a putative serine carboxypeptidase

and GW8 encoding a transcription factor with SBP domain

are positive regulators. TGW6 encodes a novel protein with

indole-3-acetic acid (IAA)-glucose hydrolase activity and

loss of TGW6 function results in an increase in grain

weight and yield. GL7/GW7 encodes a protein homologous

to Arabidopsis thaliana LONGIFOLIA proteins, which

regulates longitudinal cell elongation. The GL7/GW7 locus

containing a 17.1-kb tandem duplication leads to upregu-

lation of GL7/GW7 and downregulation of its nearby

negative regulator, resulting in an increase in grain length

and improvement of grain appearance quality. Functional

characterizations of these genes have greatly enriched our

knowledge of the molecular mechanisms determining grain

size and weight in rice. However, additional genes con-

trolling grain size and weight remain to be identified.

Association mapping utilized linkage disequilibrium

(LD) to examine the marker-trait associations, and enabled

researchers to exploit natural variation and identify novel

genes for complex traits (Zhu et al. 2008). With the

development of SNP assays, high throughput genotyping

technologies and associated statistical methods, association

mapping has been widely used in various plant species,

including A. thaliana (Olsen et al. 2004; Ehrenreich et al.

2009), soybean (Jun et al. 2008), wheat (Breseghello and

Sorrells 2006), maize (Palaisa et al. 2003; Wilson et al.

2004; Camus-Kulandaivelu et al. 2006), foxtail millet (Jia

et al. 2013) and rice (Agrama et al. 2007; Wen et al. 2009;

Huang et al. 2010; Zhao et al. 2011). Association mapping

has potential advantages over conventional linkage analy-

sis and QTL mapping, such as broader allele coverage,

higher mapping resolution, shorter time-consuming and

improving the cost effectiveness. Association mapping has

become a useful and robust strategy complementary to

classical bi-parental mapping and has the power to genet-

ically map multiple traits simultaneously (Huang and Han

2014).

In the present study, association mapping of four traits

(GL, GW, grain length–width ratio (LWR) and thousand-

grain weight (TGW)) was performed with a panel of 469

accessions using a custom-designed array contained 5291

genomic SNPs. The objectives of this study were to (1)

investigate the population structure and genetic diversity

for grain shape in a global rice germplasm collection; (2)

identify the novel SNPs and loci associated with grain

shape in rice; (3) explore design of gene pyramiding

breeding strategies for cultivar genetic improvement. These

results will increase our understanding of the molecular

mechanisms underlying grain size and weight, and may

provide some new information for rice molecular design

breeding.

Materials and methods

Plant materials and phenotyping

To reduce spurious genetic associations caused by popu-

lation structure, a set of 469 global diverse indica acces-

sions with rice grain traits variation were chosen to

construct this genome-wide association study (GWAS)

population (Supplementary Table S1). The seeds of all

accessions were collected, stored and supplied by China

National Center for Rice Improvement, China National

Rice Research Institute (CNRRI). All the rice accessions

were planted in the following four environments: the

Lingshui Experiment Station of CNRRI (LS; N 18�480, E
110�020) in Hainan, China, in the winter of 2013–2014; the

Hangzhou Experiment Station of CNRRI (HZ; N 30�320, E
120�120) in Zhejiang, China, in the summer of 2013–2014.

For field experiments, the accessions were grown in a

6 9 6 completely randomized block design with three
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replications. The space was 20 cm between the plants and

25 cm between the rows. Four plants in the middle of each

row were harvested individually to measure the grain traits.

Twenty full-filled rice grains were randomly selected from

each plant for trait measurement. GL was estimated by

placing 20 grains one by one in a straight line along a ruler,

and then arranged by breadth to measure grain width. The

averaged GL and GW of 20 grains as the trait values of that

line were used for data analysis. The LWR is equal to GL

divided by its GW. TGW was calculated based on 200

grains and converted to 1000-grain weight.

DNA extraction and genotyping

Genomic DNA was extracted from leaf tissue of one plant

per accession using the CTAB method (Murray and

Thompson 1980). All the accessions were genotyped using

the Illumina RiceSNP6k BeadChip containing 5291 SNPs,

which were chosen from the Rice Haplotype Map Project

Database (http://www.ncgr.ac.cn/RiceHap2) (Huang et al.

2010). Genotypes were called using the program

GenomeStudio (Illumina, San Diego, Calif. USA). The

quality of each SNP was confirmed manually, and low

quality SNPs (call rate\80 % and minor allele frequency

(MAF)\0.05) were removed from the dataset. Finally,

3951 SNPs were obtained for the association mapping

(Supplementary Table S2).

Data analysis

The mean, standard error (SE) and broad-sense heritability

(HB
2) were calculated using the Excel 2007. The percentage

of phenotypic variation explained by population structure

(RPCA
2 ) was computed using SAS system 9.0 (SAS, Inc.,

Cary, NC), as well as the ANOVA. Correlation coefficients

were run in R ‘‘corrgram’’ (https://cran.r-project.org/web/

packages/corrgram/), and the best linear unbiased predic-

tion (BLUP) was carried out in R ‘‘lme4’’ (https://cran.r-

project.org/web/packages/lme4/) for estimating phenotypic

values of each line in four environments.

Genome-wide association mapping

For association analysis of our panel, genome association

and prediction integrated tool (GAPIT) with compressed

mixed linear model (cMLM) and population parameters

previously defined (P3D) was performed under R envi-

ronment (Lipka et al. 2012; Zhang et al. 2010). And the top

10 principle components were used as a covariant. The

kinship matrix estimated by these SNPs data was combined

with population structure to improve statistical power of

our genome-wide association mapping. As Bonferroni

correction (1/3951 = 2.5E-04) was too conservation

(Nakagawa 2004), a compromised threshold of P = 0.001

was used to detect the significant association signals. To

obtain the loci with the lowest P value, redundant loci were

filtered in a 200 kb genomic window. And the candidate

gene prediction was performed from the Rice Haplotype

Map Project Database (http://202.127.18.221/RiceHap2/).

Finally, the allele with an increasing effect was defined as

elite allele and vice versa. The elite alleles of association

loci were used to evaluate the pyramiding effect.

Results

Grain shape variation among accessions

In this study, 469 indica accessions collected from 20

countries (Fig. 1a) were used as the genome wide associ-

ation mapping panel. Four grain shape traits, namely GL,

GW, LWR and TGW of 469 rice accessions were measured

in four environments after harvested. Extensive and sig-

nificant phenotypic variations were observed for the four

grain traits in Hangzhou (HZ) and Lingshui (LS) during

2013–2014 (Table 1; Fig. 1b, c; Supplementary Figure S1;

Supplementary Table S3). The mean of GL over the 469

accessions in each environment was 8.58, 8.51, 8.81 and

8.86, respectively. Over the four environments the mini-

mum GL value was in 2013 HZ (6.67 cm), and the maxi-

mum value was in 2014 HZ (11.37 cm). GW had means of

2.69, 3.12, 2.81 and 2.89 in each environment, respec-

tively. GW value ranged from 1.89 to 2.17 cm in the four

environments. The mean of LWR over the 469 accessions

in each environment was 3.24, 2.76, 3.19 and 3.10,

respectively. Over the four environments the minimum

LWR value was in 2013 LS (1.94), and the maximum value

was in 2013 HZ (4.98). TGW had means of 23.94, 28.44,

25.04 and 26.88 g in each environment, respectively. TGW

value ranged from 14.35 to 50.75 g in the four environ-

ments. The distribution of the four grain traits in all four

environments showed continuous variation, and the phe-

notypic segregation approximately fit a normal distribution

(Fig. 1d–g). This indicated that grain shape traits were

governed by multiple loci in this association panel. The

broad-sense heritability (HB
2 %), averaged across four

environments, of GL, GW, LWR and TGW, was 79.1,

84.4, 89.6 and 83.7 %, respectively. The ANOVA indi-

cated that effects of genotype (G), environment (E) and

their interaction were high significantly (P\ 0.001)

(Table 1).

The results of Pearson correlation analysis showed

that the phenotypic correlations between traits were

similar in the four testing environments (Fig. 2). GW

showed significantly negative correlation with GL and
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LWR, and highly positive correlation with TGW in all

environments. TGW exhibited significantly or very sig-

nificantly negative correlation with LWR, and highly

positive correlation with GW. The correlation coeffi-

cients ranged from -0.88 between LWR and TGW, to

0.71 between LWR and GL (Fig. 2). These results

demonstrated that rice grain traits were highly related to

each other, and this provided valuable knowledge for

rice grain shape modifications.

Genetic structure and linkage disequilibrium

estimation

STRUCTURE softwarewas used to assess the subpopulation

genetic structure of the 469 indica rice accessions based on

the distribution of the 3,951 SNPs across 12 rice chromo-

somes. Our previous study showed that the indica panel

could be classified into four subpopulations (Lu et al. 2015).

In this GWAS mapping, the population effect showed by a

Fig. 1 Material distribution and grain shape traits diversity. a The

worldwide distribution of 469 indica accessions. The black dots

represent the country-specific distribution. b Different grain length in

the germplasm. Bar 1 cm. c Different grain width in the germplasm.

Bar 1 cm. d Histogram of grain length in multiple environments.

e Histogram of grain width in multiple environments. f Histogram of

grain length–width ratio in multiple environments. g Histogram of

thousand-grain weight in multiple environments. LS Lingshui, HZ

Hangzhou

822 Planta (2016) 244:819–830
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principal component analysis (PCA) component and relat-

edness estimated automatically from the genotypic datawere

evaluated using GAPIT as well as GWAS (Lipka et al. 2012;

Zhang et al. 2010). The scree plot generated through GAPIT

indicated the first twoPCs as informative, and then decreased

gradually (Fig. 3a, b). Moreover, until the 10th PC compo-

nent, the variance value almost unchanged, thus the top 10

PCs were used as a covariate to adjust the GWAS results

(Fig. 3a). In addition, the heatmap of kinship value showed

that most of the value concentrated at *0.5 level indicating

a weak relatedness in the complex GWAS panel (Fig. 3c).

This evaluation is consistent with our previous study sug-

gesting that the GAPIT is credible for population structure

and relative kinship estimations (Lu et al. 2015). In the

present study, the linkage disequilibrium (LD) decay dis-

tance was *109.37 kb at which the LD parameter (r2)

dropped to half of its maximum value. In addition, the LD

decay distance differed among chromosomes and ranged

from 96.15 kb on chromosome 5 to 421.39 kb on chromo-

some 7.

Genome-wide association analysis

In this study, the association analysis was performed using

BLUP method predicted for each accession to reduce the

environment effects and simplify the calculations. The

stringent criterion of -log10 (P) C3.0 under four environ-

ments was used for determining the association signifi-

cance of the four grain traits. Using the GWAS approach,

Table 1 Phenotypic variation

for grain traits across four

environments in 469 indica

accessions

Trait Environment Mean ± SE Range RPCA
2 (%)a HB

2 (%)b G 9 Ec

GL (cm) 2013, HZ 8.58 ± 0.03 6.67–10.92 29.10 79.1 ***

2013, LS 8.51 ± 0.03 6.83–10.67 27.24

2014, HZ 8.81 ± 0.03 6.92–11.37 31.65

2014, LS 8.86 ± 0.03 7.11–11.20 32.22

GW (cm) 2013, HZ 2.69 ± 0.01 1.89–3.79 37.50 84.4 ***

2013, LS 3.12 ± 0.01 2.17–3.93 31.10

2014, HZ 2.81 ± 0.01 1.92–3.90 39.37

2014, LS 2.89 ± 0.01 2.02–3.90 32.53

LWR 2013, HZ 3.24 ± 0.02 2.17–4.98 41.23 89.6 ***

2013, LS 2.76 ± 0.02 1.94–4.11 38.52

2014, HZ 3.19 ± 0.02 2.15–4.74 43.73

2014, LS 3.10 ± 0.02 1.97–4.75 38.26

TGW (g) 2013, HZ 23.94 ± 0.16 14.50–38.85 19.16 83.7 ***

2013, LS 28.44 ± 0.18 16.70–50.75 21.82

2014, HZ 25.04 ± 0.15 14.35–41.75 18.69

2014, LS 26.88 ± 0.19 16.45–47.80 23.96

GL grain length, GW grain width, LWR grain length–width ratio, TGW thousand-grain weight, LS Lingshui,

HZ Hangzhou, SE standard error

*** Significant at P = 0.001
a Phenotypic variation explained by population structure
b Heritability in the broad sense
c G 9 E, interaction of genotype and environment

Fig. 2 Correlation of four grain shape traits in four environments.

The upper panel contains the correlation coefficients, and the lower

panel contains the distributions of the four traits. The diagonal

represents the density line of the traits. *, ** and *** represent

significant at 0.05, 0.01 and 0.001, respectively. GL, GW, LWR and

TGW represent grain length, grain width, grain length–width ratio and

thousand grain weight, respectively. HZ and LS represent Hangzhou

and Lingshui, respectively
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we successfully identified both known genes and previ-

ously reported QTLs from rice as well as novel candidate

loci in the rice genome. The results of our genome-wide

association scans were summarized in Fig. 4 and Table 2

where we showed the SNP trait associations discovered in

the association panel. A total of 27 significant loci were

identified for the four grain traits. For the 27 significant

loci, 424 candidate genes were obtained within a 200-kb

genomic region (±100 kb from the peak SNP) from the

Rice Haplotype Map Project Database (http://202.127.18.

221/RiceHap2/) (Supplementary Table S4). In addition, the

distributions of the 3951 SNPs were analyzed and 47 SNPs

were located in the 27 significant loci for the four grain

traits (Supplementary Table S2, Table S4). Of the 27 loci,

GS3 and qSW5 showed very strong effects on grain length

and width. Simultaneously, in order to investigate envi-

ronment-specific and common loci under multiple envi-

ronments, we performed association mapping using

TASSEL version 4.0 (Bradbury et al. 2007) under each

environment (Supplementary Table S5).

For the GL trait, 8 major loci, explaining *50.23 % of

the phenotypic variation, were identified on chromosomes 2,

3, 4, 5, 8 and 12 (Table 2). Among them, the GS3 locus

(seq-rs1614) was confirmed and explained *8.50–14.73 %

of the total phenotypic variation under four environments

(Fig. 5a; Supplementary Table S6), and this result was

consistent with previous reports (Huang et al. 2010; Zhao

et al. 2011). Furthermore, the loci, seq-rs1610, seq-rs2061

and seq-rs4660, on chromosomes 3, 4 and 10 were identified

across three environments (Fig. 5a; Supplementary

Table S6). Additionally, the loci, seq-rs1604 and seq-rs2427,

on chromosomes 3 and 5 were detected in both 2013 and

2014 HZ environments (Fig. 5a; Supplementary Table S6).

The locus (seq-rs2718) on chromosome 6 was identified in

both 2014 HZ and LS environments (Fig. 5a; Supplemen-

tary Table S6).

For the GW trait, 4 major loci, explaining *58.57 % of

the phenotypic variation, were identified on chromosomes

1, 2, 4 and 5 (Table 2). Among them, the previously cloned

qSW5 locus showed very strong effect on GW and had high

Fig. 3 Population structure of current association panel which consisted mostly of the indica accessions. a Scree plot from GAPIT showing the

selection of PCs for association study. b Variation of the top two principal components. c Kinship values

Fig. 4 Manhattan plots of genome wide association mapping for four rice grain traits. a Grain length, b grain width, c grain length–width ratio,

d thousand grain weight. Green lines represent the threshold at -log10 (P) C3
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R2 values (*13.6–27.79 %) in the four environments

(Supplementary Table S5), and this result was consistent

with previous reports (Huang et al. 2010; Zhao et al. 2011).

The locus (seq-rs2434) as well as the qSW5 (seq-rs2427),

on chromosome 5 was detected across four environments

(Fig. 5b; Supplementary Table S6). In addition, eleven and

eighteen significant loci were identified across two and

three environments, respectively (Fig. 5b; Supplementary

Table S6). Moreover, the loci, seq-rs196, seq-rs1303 and

seq-rs2139, on chromosomes 1, 2 and 4 were also detected

for TGW, LWR and TGW, respectively (Table 2).

In our study, marker-trait association analyses revealed

that 5 loci associated with LWR, locating on chromosomes

2, 3, 4, 5 and 10 (Table 2; Fig. 4c). These loci could

explain up to 65.90 % of the total phenotypic variation

(Table 2). Among them, the known genes GS3 and qSW5

were showed clear signal for LWR in all the four envi-

ronments (Fig. 5c; Supplementary Table S6). The locus

(seq-rs1610) on chromosome 3 was also detected across

four environments (Supplementary Table S6). Addition-

ally, the loci (seq-rs944 and seq-rs2123) on chromosomes 2

and 4 were detected in both 2013 and 2014 HZ, and the loci

(seq-rs3533 and seq-rs3537) on chromosome 7 were

identified in both 2013 and 2014 LS (Fig. 5c; Supple-

mentary Table S6).

For the TGW trait, 10 major loci, explaining *44.93 %

of phenotypic variation, were detected on chromosomes 1,

3, 4, 5, 7 and 11, and six loci were located in the adjacent

Table 2 Summary of SNPs significantly associated with grain traits using the BLUP method

Trait Marker Chr. Position Allelea MAF P value R2 (%)b Known QTL Marker References

GL seq-rs918 2 13760905 G/A 0.17 6.68E-04 50.23

seq-rs919 2 14722011 T/G 0.17 6.68E-04

seq-rs1614 3 16939138 T/C 0.25 1.87E-15 GS3 Fan et al. (2006)

seq-rs1697c 3 22579680 G/T 0.21 2.63E-04 qGL3a RM15456 Li et al. (2010)

seq-rs2123 4 19733128 C/T 0.05 2.89E-04 qGL4b RM5586 Kato et al. (2011)

gwseq-rs14d 5 5377176 T/C 0.21 1.91E-06 qSW5 Shomura et al. (2008)

seq-rs3750 8 5964991 C/T 0.06 4.35E-05

seq-rs5920 12 25594275 G/A 0.36 2.91E-04 qGL12 RM2854 Li et al. (2010)

GW seq-rs196 1 7562923 A/G 0.29 2.24E-04 58.57

seq-rs1303 2 33850349 T/C 0.25 7.62E-05

seq-rs2139 4 21062959 A/G 0.42 6.02E-05

seq-rs2427d 5 5359498 G/A 0.32 1.12E-22 qSW5 Shomura et al. (2008)

LWR seq-rs1303 2 33850349 T/C 0.25 2.75E-04 65.90

seq-rs1614 3 16939138 T/C 0.25 9.46E-09 GS3 Fan et al. (2006)

seq-rs2123 4 19733128 C/T 0.05 3.03E-04 qLWR4 RM6997 Ying et al. (2012)

seq-rs2427 5 5359498 G/A 0.32 1.48E-23 qSW5 Shomura et al. (2008)

seq-rs4717 10 22631657 T/C 0.08 7.37E-04

TGW seq-rs184 1 6667379 A/G 0.45 9.17E-04 44.93 Gw1-1 RM10398 Yu et al. (2008)

seq-rs196 1 7562923 A/G 0.29 3.70E-04 QGwt1c, qBRW1a RM259 Xu et al. (2002),

Wang et al. (2003)

seq-rs288 1 14827946 C/T 0.30 4.76E-04

seq-rs1614 3 16939138 T/C 0.25 9.00E-06 GS3 Fan et al. (2006)

seq-rs1698c 3 22582110 C/A 0.21 5.42E-04 qTGW3-4, qGW3.8 RM16 Marathi et al. (2012),

Zhang et al. (2013)

seq-rs2139 4 21062959 A/G 0.42 1.41E-04

seq-rs2255 4 30599877 A/G 0.18 5.67E-04 qTGW4-1 RM3276 Marathi et al. (2012)

seq-rs2427 5 5359498 G/A 0.32 2.03E-10 qSW5 Shomura et al. (2008)

seq-rs3526 7 23662096 C/A 0.07 3.19E-04

seq-rs4745 11 3031650 T/C 0.34 3.40E-04 GWt11 RM332 Yoshida et al. (2002)

GL grain length, GW grain width, LWR grain length–width ratio, TGW thousand-grain weight
a Major allele/minor allele
b Phenotypic variation explained by all of the significant loci
c The two SNPs can be considered as the same locus (*2 kb)
d The two SNPs can be considered as the same locus (*17 kb)
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or overlapping regions previously reported to be associated

with TGW (Table 2). Moreover, the loci (seq-rs288 and

seq-rs2139) on chromosomes 1 and 4 were identified across

three environments (Fig. 5d; Supplementary Table S6).

Furthermore, we also identified the known genes (GS3 and

qSW5) for TGW in all four environments (Fig. 5d; Sup-

plementary Table S6). Additionally, the locus (seq-rs5793)

on chromosome 12 was detected in both 2013 LS and 2014

HZ (Fig. 5d; Supplementary Table S6).

Gene linkage or pleiotropy

Gene linkage and pleiotropy are common phenomena in

plant genetics. A matrix summarizing the linkage or

pleiotropy of the loci associated with four grain traits were

shown in Fig. 6. In our study, 12 known or new candidate

SNPs showed clear signal linkage or pleiotropy that was

associated with multiple grain traits in the four environ-

ments. Among them, the loci seq-rs1614 and seq-rs2427

underlying grain size (GS3 and qSW5) were shown to be

significantly associated with GL, LWR, TGW and all four

grain traits, respectively (Fig. 6). Previous studies showed

that GS3 had pleiotropic effects on grain length and weight

(Fan et al. 2006; Mao et al. 2010), and qSW5 was associ-

ated with grain width and weight (Shomura et al. 2008;

Weng et al. 2008). These associations were also supported

by Pearson correlation analysis based on traits measured in

all four environments (Fig. 2). In addition, we detected the

locus (seq-rs2123) on chromosome 4 that were

significantly associated with both GL and LWR, and we

found a locus (seq-rs196) on chromosome 2 that was sig-

nificantly associated with GW and TGW. Moreover, the

average correlation coefficients of GL-LWR (r = 0.71,

P\ 0.001) and GW-TGW (r = 0.57, P\ 0.001) were

highly significant in all four environments. Additionally,

some new candidate loci possessing gene linkage or

pleiotropy were observed as well (Fig. 6). Exploring and

utilizing the linkage or pleiotropy of the loci underlying

grain traits would be beneficial for rice grain yield

improvement.

Pyramiding elite alleles for breeding

The objective of gene pyramiding in molecular breeding is

to combine a series of target alleles in a specific line or

variety (Servin et al. 2004). We examined the efficacy of

pyramiding elite alleles into an individual plant for four

grain traits (Supplementary Table S7). Besides GS3 (seq-

rs1614) and qSW5 (seq-rs2427), such as the eilte allele of

the locus seq-rs1698 showed potential breeding value for

GL and TGW (Supplementary Table S7). This result was

also confirmed by classical QTL mapping in different bi-

parental mapping populations (Li et al. 2010; Marathi et al.

2012; Zhang et al. 2013). Without considering the inter-

action effects among these loci, mean values for pheno-

typic traits except GL significantly increased linearly with

pyramiding more elite alleles in rice cultivars (Fig. 7). For

the GL trait, when pyramiding 0–3 elite alleles, the mean

phenotypic values had no significant changes, and the mean

phenotypic values increased significantly with pyramiding

4 elite alleles, and the mean phenotypic values were sig-

nificantly higher when pyramiding 5–7 elite alleles in rice

varieties (Fig. 7). These results indicated that enhancing

the frequency of elite alleles has a significant phenotypic

effect on rice grain traits improvements.

Fig. 5 Venn diagrams showing unique and shared SNPs for grain

shape traits among four environments. a GL grain length. b GW grain

width. c LWR grain length–width ratio. d TGW thousand grain weight.

LS and HZ represent Lingshui and Hangzhou, respectively

Fig. 6 Summary of significant trait-marker associations for four

grain traits across genomic regions. GL, GW, LWR and TGW

represent grain length, grain width, grain length–width ratio and

thousand grain weight, respectively
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Discussion

Rice is one of the most staple foods in the world, feeding

more than half of the global population especially in Asian

countries. It has been estimated that a 40 % increase in rice

production by 2030 will be needed to meet the predicted

demand of the growing world population (Khush 2005).

Rice grain shape is one of the most important factors

determining rice yield (Huang et al. 2013). Thus, identifi-

cation of major QTLs for grain shape and grain weight is

an important objective of rice genetic research and breed-

ing programs. In this study, genome-wide association

mapping was performed to identify the loci for four grain

shape traits in 469 rice accessions. The sample size of our

study is larger or similar to the number of accessions used

in genome wide association study in rice (Huang et al.

2010; Zhao et al. 2011). The 469 diverse accessions were

from 20 countries, which represented all major rice

growing regions of the world (Fig. 1a). Four grain shape

traits including GL, GW, LWR and TGW were measured

in four environments. We successfully identified 27 loci for

the four grain traits, comprising 17 distinct regions dis-

tributed on all 12 chromosomes except chromosomes 6 and

9.

In rice, more than 400 QTLs that control grain shape

traits have been detected by using various mapping popu-

lation (Huang et al. 2013). To date, 20 genes associated

with grain size and weight have been isolated by map-

based cloning strategies (Huang et al. 2013; Zuo and Li

2014; Duan et al. 2013; Hu et al. 2015; Liu et al. 2015a, b;

Wang et al. 2015a, b). We compared the positions of the

significant loci identified in this study with the positions of

the reported genes or QTLs for the four grain traits. Of the

27 identified loci, the positions of 16 loci were close to

those reported in previous studies, including 5, 1, 3 and 7

loci for GL, GW, LWR and TGW, respectively (Table 2).

As is known, GS3 and qSW5 are major QTLs for GL and

GW (Fan et al. 2006; Shomura et al. 2008), which showed

very strong effect for the same phenotypes in our study.

This result was consistent with the GWAS results for GL

and GW by Huang et al. (2010) and Zhao et al. (2011).

Kato et al. (2011) mapped a GL QTL (qGL4b) to a 3.0 Mb

region on chromosome 4 between marker RM5586 and

RM3524. Interestingly, we detected a locus (seq-rs2123)

for both GL and LWR in this chromosome region

(Table 2), within which overlapped with a QTL for LWR

reported by Ying et al. (2012). In addition, we detected 2

loci (seq-rs1697 and seq-rs5920) for GL on chromosome 3

and 12, respectively (Table 2), which have also been

located in similar positions in different mapping population

(Li et al. 2010). Moreover, Yu et al. (2008) mapped a TGW

QTL (Gw1-1) to a 392.9 kb region on chromosome 1

between marker RM10376 and RM10398. We also detec-

ted a locus (seq-rs184) for TGW in the overlapped region.

In the present study, 2 significant loci (seq-rs1698 and seq-

rs2255) for TGW were located in the same genomic

regions as those previously reported by Marathi et al.

(2012). Additionally, three out of eight associated loci for

TGW were mapped in adjacent intervals on the same

chromosome as those reported in previous studies

(Table 2). These results demonstrated that our 6K SNP

array could capture the major common variants responsible

for grain shape traits. However, no significant loci for grain

traits were detected on chromosomes 6 and 9. One possible

explanation was that the QTL effects were too small to be

detected in our association panel, and another reason might

be due to the lack of SNP coverage in the potential QTL

regions. On the other hand, we identified 11 novel loci,

Fig. 7 Pyramid effect analysis for different numbers of elite alleles. X-axis represents the number of elite alleles carried by the accessions and Y-

axis represents trait mean value GL, GW, LWR and TGW represent grain length, grain width, grain length–width ratio and thousand grain weight,

respectively. All bars represent standard error
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including 3, 3, 2 and 3 loci for GL, GW, LWR and TGW,

respectively (Table 2). Validation of these new loci would

be performed in the future studies.

QTL9 environment interaction is an important compo-

nent for quantitative traits (Xing et al. 2002). In the present

study, we observed some significant loci were only detec-

ted in one environment. For example, the associated loci,

seq-rs3156, seq-rs4859, seq-rs768 and seq-rs2255 for GL,

GW, LWR and TGW, respectively, were only detected in

2013 HZ. Result of ANOVA also showed that the G 9 E

interactions were highly significant for all rice grain traits.

Therefore, the QTL9 environment interaction should not

be ignored if molecular marker assistant selection (MAS) is

applied for the manipulation of rice grain shape traits.

However, the stable expression of a QTL across a broad

range of agrometeorological conditions is a critical factor

when breeding for wide adaptation (Maccaferri et al.

2008). In this study, the major loci (GS3 and qSW5) were

detected across all four environments. These results were

also proved by those obtained NILs carrying various alleles

in the same background of ZhenShan97 (Lu et al. 2013)

and supported by other GWAS experiments (Huang et al.

2010; Zhao et al. 2011). These results suggested that the

major loci were first fixed in cultivated variety free of

environmental influences due to strong human selection.

Additionally, 3, 18 and 2 significant loci for GL, GW and

TGW, respectively, were detected across three environ-

ments (Fig. 5; Supplementary Table S6). Moreover, 3, 11,

6 and 1 significant loci for GL, GW, LWR and TGW,

respectively, were detected across two environments

(Fig. 5; Supplementary Table S6). These stable significant

loci affecting grain traits across different environments

may be helpful in MAS of rice grain shape breeding.

The colocation of QTLs for multiple traits may be due to

either pleiotropy or tightly linked genes controlling related

traits (Brown 2002; Chen and Lubberstedt 2010). Our results

showed that the associated loci GS3 and qSW5 exhibited

strong pleiotropic effects on grain size and grain weight.

Besides, 5 overlapped regions (seq-rs2123, seq-rs184, seq-

rs196, seq-rs1698 and seq-rs2255) were found to be asso-

ciated with grain traits in this study (Table 2). Among them,

the locus (seq-rs2123) was detected for both GL and LWR,

which was closely to the position identified by Kato et al.

(2011) for GL and Ying et al. (2012) for LWR. In addition,

the seq-rs1697 locus was detected for GL and TGW on

chromosome 3. Its position was coincident with previously

identified QTLs (Li et al. 2010; Marathi et al. 2012).

Moreover, we identified a new locus (seq-rs2139) on chro-

mosome 4 for GW and TGW across three environments.

The Pearson correlation analysis also proved that the traits

with co-localized loci were correlated with each other in all

four environments (Fig. 2). Accumulation of favorable

alleles in linkage blocks is very important and useful for

breeders to implement grain shape improvement programs.

Characterization and validation studies involving joint

linkage and association mapping, combining with fine

mapping to identify the novel genes and alleles underlying

our association hits, would help us more clearly understand

the relationship between these candidate genes and the

phenotypes observed in our study, and provide breeders with

the effective genetic tools to break unfavorable linkages and

exploit these valuable alleles.

In the present study, we identified 27 loci associated

with four grain traits via GWAS and convincingly

demonstrated that the rice grain shape is complex trait

controlled by many genes of major or minor effect. We

also refined candidate chromosomal regions for the known

QTLs, including the cloned genes GS3 and qSW5. More-

over, new candidate loci were obtained, and genetic vari-

ations combined with phenotypic variances were observed.

Results of the present study demonstrated that genome-

wide association mapping in rice could complement and

enhance the information from linkage-based QTL studies

toward the implementation of MAS in breeding programs.

Considering the effect and distribution of novel loci asso-

ciated with grain shape in our study, further validation is

needed to unearth the relationship between these candidate

loci and the phenotypes and facilitate exploring the

molecular mechanisms governing grain shape suitable for

rice breeding programs.
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