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Abstract

The eye lens is a transparent and avascular organ in the front of the eye that is responsible for 

focusing light onto the retina in order to transmit a clear image. A monolayer of epithelial cells 

covers the anterior hemisphere of the lens, and the bulk of the lens is made up of elongated and 

differentiated fiber cells. Lens fiber cells are very long and thin cells that are supported by 

sophisticated cytoskeletal networks, including actin filaments at cell junctions and the spectrin-

actin network of the membrane skeleton. In this review, we highlight the proteins that regulate the 

diverse actin filament networks in the lens and discuss how these actin cytoskeletal structures 

assemble and function in epithelial and fiber cells. We then discuss methods that have been used to 

study actin in the lens and unanswered questions that can be addressed with novel techniques.

Introduction

The eye lens is a remarkable spheroid organ composed of highly organized fiber cells 

covered by an anterior monolayer of epithelial cells (Figure 1). The lens presents a unique 

opportunity to study cell migration, elongation, packing, differentiation and aging all within 

the same tissue. Life-long lens growth is facilitated by the proliferation and differentiation of 

equatorial epithelial cells into fiber cells (Bassnett and Winzenburger, 2003; Kuszak, 1995; 

Kuszak et al., 2004a; Piatigorsky, 1981), followed by coordinated migration, elongation and 

stabilization of fiber cells (Kuszak et al., 2004b; Lovicu and Robinson, 2004; Piatigorsky, 

1981; Taylor et al., 1996). Fiber cell morphogenesis is supported by three cytoskeletal 

systems: microtubules, intermediate filaments and actin filaments (F-actin). Single and 

bundled microtubules, which are arranged along the long axis of lens fibers, have been 

suggested to be important for cell elongation and vesicular transport (Kuwabara, 1968; Lo et 

al., 2003; Piatigorsky, 1975). Beaded intermediate filaments comprised of specialized 

intermediate filament proteins, CP49 (phakinin, Bfsp2) and filensin (CP115, Bfsp1) 

(Alizadeh et al., 2003; FitzGerald, 2009), are needed for mechanical integrity (Fudge et al., 

2011; Gokhin et al., 2012) and maintaining life-long lens transparency (Gokhin et al., 2012; 

Oka et al., 2008; Sandilands et al., 1995). Of the F-actin networks, the best understood is the 
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spectrin-actin membrane skeleton, composed of actin filaments cross-linked by α2β2-

spectrin, which is integral for fiber cell packing (Gokhin et al., 2012; More et al., 2001; 

Nowak et al., 2009; Nowak and Fowler, 2012) and mechanical stiffness (Gokhin et al., 

2012). In this review, we focus on the organization, regulation and functions of F-actin 

networks and their associated actin-binding proteins in the lens (summarized in Tables 1 and 

2). We also cover approaches for studying actin in the lens and discuss unanswered 

questions about actin’s role in the lens.

1. Roles of actin in embryonic lens development and formation

Early lens development is characterized by invagination of a specialized region of the 

surface ectoderm (lens placode) to form the lens pit, which then pinches off from the 

overlying ectoderm to form the lens vesicle (Lovicu and Robinson, 2004; Piatigorsky, 1981). 

During formation of the optic cup (the presumptive retina and retinal pigmented epithelium) 

and invagination of the lens vesicle, actin-rich filopodia extend from the basal posterior 

surface of lens pit to the anterior surface of the retina, and contract to shape the embryonic 

eye (Chauhan et al., 2009; Mann, 1964; McAvoy, 1980). The Rho family of GTPases 

(RhoA, B and C; Rac 1, 2 and 3; Cdc42) is central to actin cytoskeleton regulation in 

epithelial morphogenesis, including cell adhesion, migration, filopodia extension, and apical 

domain contractions (Bishop and Hall, 2000; Heasman and Ridley, 2008; Linseman and 

Loucks, 2008; Nobes and Hall, 1994; Nobes and Hall, 1999; Villalonga and Ridley, 2006). 

Changes in Cdc42 cause a loss of actin-rich filopodia that leads to an abnormally shaped 

optic cup and lens pit, suggesting that F-actin filopodia transmit force to fine-tune 

embryonic eye morphogenesis (Chauhan et al., 2009). Three-dimensional culture of Rx+ 

(retinal homeobox gene) embryonic stem cells stimulates optic cup formation in vitro, and 

treatment of cultures with the myosin II ATPase inhibitor, blebbistatin, or the Rho-kinase 

(ROCK) inhibitor, Y-27632, blocks invagination of the optic cup (Eiraku et al., 2011). Lens 

pit filopodia also contain activated myosin II with phosphorylated myosin light chain 

(pMLC), and blebbistatin treatment to inhibit myosin II ATPase activity results in 

lengthening of these filopodia. In contrast, calyculin A treatment (inhibitor of myosin 

phosphatase, which leads to increased pMLC, thereby activating myosin II ATPase) results 

in shorter filopodia (Chauhan et al., 2009).

As the lens placode invaginates to form the lens vesicle, epithelial cells undergo apical 

constriction via contraction of an actomyosin network (Lang et al., 2014; Quintin et al., 

2008), regulated by MLC phosphorylation and activation of myosin IIB at the apical 

surfaces of lens epithelial cells (Lang et al., 2014). Inhibition of myosin, actin dynamics or 

RhoA through specific inhibitors disrupts lens invagination (Borges et al., 2011; Plageman et 

al., 2011). Shroom3, a Rock1/2 and actin-binding cytoskeletal protein, is required for apical 

constriction of the lens placode, and loss of Shroom3 leads to reduced F-actin and myosin 

IIB at the apical surface of the lens placode (Plageman et al., 2010). Shroom3 likely recruits 

F-actin via the Mena-family of actin modulators that are known to play a role in apical 

constriction (Plageman et al., 2010; Roffers-Agarwal et al., 2008). Similar to the effects of 

Shroom3, loss of p120-catenin, a cadherin-binding protein that activates Rho GTPases to 

modulate actin dynamics (Pieters et al., 2012), also causes defects in lens invagination and 

leads to mislocalization of myosin IIB away from the apical surface (Lang et al., 2014). A 
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new study shows that Cdc42 inhibits Shroom3-induced cell contraction in the lens placode 

to allow cell elongation, suggesting that a balance between these opposing forces on the 

actin cytoskeleton is needed for normal orientation and planar cell polarity in the lens 

placode (Muccioli et al., 2016). These studies indicate that contractility of the actomyosin 

network is important for early eye and lens formation.

In the lens vesicle, apical surfaces of epithelial cells are directed toward the lumen, and 

consequently, components of the basal lamina secreted by these cells surround the external 

surface of the vesicle, eventually creating a thin collageneous basement membrane (lens 

capsule) to encase the lens (Lovicu and Robinson, 2004). Posterior epithelial cells elongate 

at their apical ends into the vesicle lumen and differentiate into primary lens fiber cells to fill 

the bulk of the embryonic lens (Lovicu and Robinson, 2004). Rap1, a Ras-like small GTPase 

required for Cdc42 activation during cell-cell junction formation (Hogan et al., 2004), is 

needed for elongation of primary lens fibers and adhesion of fiber cell tips to the apical 

surface of the anterior epithelium (Maddala et al., 2015a). Rap1 also regulates E-cadherin at 

cell-cell junctions (Hogan et al., 2004), and E-cadherin junctions recruit cortactin and 

Arp2/3 to initiate F-actin assembly (Ehrlich et al., 2002; Helwani et al., 2004; Kovacs et al., 

2002; Vasioukhin et al., 2000). Loss of Rap1 in the lens results in decreased F-actin and 

disrupts E-cadherin and β-catenin staining at the epithelial-fiber apical junction, leading to 

gaps between the apical surfaces of anterior epithelial cells and tips of elongating primary 

fiber cells (Maddala et al., 2015a). Transgenic lens expression of a Rho GTPase specific 

inhibitor C3-exoenzyme leads to small and very disrupted embryonic lenses and swollen 

fiber cells with decreased F-actin, adherens junctions and gap junctions (Maddala et al., 

2004; Rao et al., 2002). Similarly, inhibition of Cdc42 activation due to transgenic lens 

expression of RLIP76/RALBP1, an effector of two Ras family GTPases, Ral and Rho/Rac 

(Jullien-Flores et al., 1995; Park and Weinberg, 1995), causes abnormal F-actin networks, 

small lenses and microphthalmia (Sahu et al., 2014).

2. Functions of actin in lens epithelial and fiber cell morphogenesis

2.1 Epithelial cells

The anterior hemisphere of the late embryonic and adult lens is covered by a monolayer of 

epithelial cells. Epithelial cells near the anterior pole are cuboidal in shape and quiescent. 

Basal surfaces of these epithelial cells contain actin stress fibers (Liou and Rafferty, 1988; 

Weber and Menko, 2006) (Figure 1G) and F-actin-rich lamellipodia (Weber and Menko, 

2006) that are likely linked to the lens capsule through focal adhesions and integrin receptors 

(Schoenwaelder and Burridge, 1999). On apical and lateral surfaces, anterior epithelial cells 

(Bassnett, 2005) with adherens junctions (Zampighi et al., 2000) with adherens junctions 

(Weber and Menko, 2006) (Figure 1F). On their basal surfaces, actin stress fibers and 

lamellipodia likely aid the spreading of anterior epithelial cells on the lens capsule and may 

help to maintain the undifferentiated state as in other cell types (McBeath et al., 2004; 

Woods et al., 2005), while apical cortical actin stress fibers help stabilize the cuboidal cell 

shape (Weber and Menko, 2006). In addition to these typical actin structures, the apical 

domains of anterior epithelial cells also contain unusual polygonal arrays of F-actin 

associated with myosin II and sequestered actin bundles (SABs) (Rafferty, 1985; Rafferty 
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and Scholz, 1984, 1985, 1989; Rafferty et al., 1990; Scholz and Rafferty, 1988). Polygonal 

arrays of F-actin have been found in mouse, rabbit, squirrel, monkey and human lens 

epithelial cells (Rafferty and Scholz, 1985, 1989; Rafferty et al., 1990; Scholz and Rafferty, 

1988; Yeh et al., 1986). These geodesic domes of actin and myosin filaments are proposed to 

flatten in order to maintain epithelial cell integrity during lens accommodation, but this has 

not been experimentally tested (Rafferty and Scholz, 1985; Yeh et al., 1986). SABs (Figure 

1E and 1F) are composed of a single, elongated bundle of F-actin that is attached to the 

apical plasma membrane at one end and interacts with a perinuclear network of intermediate 

filaments at the other end (Rafferty and Scholz, 1985). In mice, the presence and size of 

SABs are strain- and age-dependent (Liou and Rafferty, 1988; Rafferty and Scholz, 1989). 

The function of SABs in maintaining lens epithelial cell shapes or behaviors is unclear.

Life-long lens growth depends on the proliferation and differentiation of equatorial epithelial 

cells into secondary fiber cells (Lovicu and Robinson, 2004). Epithelial cells in the anterior-

most region of the lens equator disassemble their F-actin stress fibers and only have 

dispersed F-actin on their basal surfaces, retaining cortical actin fibers at their apical 

surfaces (Weber and Menko, 2006). As equatorial epithelial cells proliferate and start to 

differentiate, they increase in height in the apical-basal dimension but decrease in diameter, 

thus maintaining their volume (Bassnett, 2005). Concomitantly, dispersed F-actin on their 

basal surfaces collects into bundles that radiate from the center of the cell toward the cell 

periphery, along with some cortical actin fibers (Weber and Menko, 2006). In the posterior-

most region of the lens equator, epithelial cells undergo a remarkable morphogenesis to 

change from randomly packed cells into hexagonally packed cells arranged into organized 

meridional rows (Figure 1L) (Bassnett et al., 1999; Cheng et al., 2013; Wu et al., 2015). 

Cortical F-actin fibers appear on lateral membranes of these cells (Weber and Menko, 2006) 

and are likely important for stabilizing N-cadherin junctions between these differentiating 

cells (Ferreira-Cornwell et al., 2000; Leong et al., 2000). F-actin is also enriched at the 

vertices (tricellular junctions) of these hexagonal cells near their basal-lateral interface and 

at their apical tips (Cheng et al., 2013) to form the lens fulcrum (Figure 1H–J). The lens 

fulcrum (Sugiyama et al., 2009) or modiolus forms an anchor point where tips of many 

differentiating fiber cells are located as fiber cells rotate in orientation (Zampighi et al., 

2000). Bidirectional signaling through EphA2 activates Src and cortactin, leading to the 

proper localization and accumulation of actin that is essential for hexagonal cell shape, 

organized packing of meridional rows and the formation of the lens fulcrum (Cheng et al., 

2013) (Figure 1L).

2.2 Newly differentiating and elongating secondary fiber cells

Coordinated elongation and migration of differentiating fiber cells is a beautiful example of 

collective cell migration in tissues (Montell, 2008; Pocha and Montell, 2014). At the lens 

equator, newly formed fiber cells are hexagonally shaped in cross-section (Figure 2). Each 

fiber cell has 4 short sides and 2 broad sides and is contacted by 6 neighboring cells one at 

each of the 4 short sides, and at each of the 2 broad sides (1 cell from a more superficial 

layer and 1 cell from a deeper layer), so that each fiber cell is surrounded by 6 nearest 

neighbors, connected along their lateral membranes and by 6 tricellular junctions. This 

arrangement leads to the addition of new layers, or shells, of fiber cells (Kuszak, 1995; 
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Kuszak et al., 1991; Kuszak et al., 2004a) on the lens periphery that surrounds previous 

generations of fiber cells (Figure 2D). Secondary fiber cells maintain hexagonal packing 

during elongation, as anterior tips of these cells migrate along the apical surfaces of 

epithelial cells, while posterior tips crawl along the lens capsule towards the anterior and 

posterior lens poles, respectively (Lovicu and Robinson, 2004). The tips of elongating fiber 

cells detach from the anterior epithelium or the posterior capsule at the poles and contact the 

tips of opposing fiber cells from the other side of the lens to form Y-sutures (Kuszak et al., 

2004b) (Figure 1K). Differentiation of newly formed secondary lens fiber cells is 

accompanied by an increase in ratio of polymerized F-actin vs. monomeric globular G-actin 

(Ramaekers et al., 1981). Thus, newly formed fiber cells have an extensive cortical F-actin 

network along the entire lengths of their lateral membranes, and F-actin is enriched at the 

tricellular junctions (vertices) of hexagonally packed young fiber cells on their lateral 

surfaces (Leonard et al., 2011; Nowak et al., 2009). Treatment of primary cultures of chick 

lens epithelial cells with cytochalasin-D causes epithelial cells to disassemble F-actin stress 

fibers, initiate fiber cell differentiation and assemble cortical F-actin bundles (Weber and 

Menko, 2006), indicating that F-actin network rearrangement is necessary to drive fiber cell 

elongation and differentiation (Beebe and Cerrelli, 1989; Mousa and Trevithick, 1977; 

Weber and Menko, 2006).

F-actin bundles are important for stabilizing fiber cells during elongation and migration 

(Fischer et al., 2000; Lee et al., 2000). At the posterior tips of differentiating secondary 

fibers, F-actin forms a dense mesh at the basal surface (Al-Ghoul et al., 2003; Weber and 

Menko, 2006) (Figure 1M), and N-cadherin/F-actin complexes are enriched at the vertices of 

hexagonal fiber cells, with myosin II and caldesmon, a contractile regulatory protein, located 

at the center connected to the N-cadherin/F-actin complexes on the lateral membranes 

(Bassnett et al., 1999). These F-actin bundles are aligned from one cell to the next, 

connected via N-cadherin cell-cell junctions, with paxillin, myosin light chain kinase 

(MLCK) and focal adhesion kinase also detected in these membrane complexes (Bassnett et 

al., 1999). Basal F-actin bundles at posterior fiber cell tips are thought to aid in the collective 

and coordinated migration of fiber cells along the lens capsule (Al-Ghoul et al., 2003; 

Bassnett et al., 1999; Weber and Menko, 2006). A recent study in zebrafish indicates 

fibronectin1 is localized in small puncta at the apical-apical junctions between epithelial 

cells and elongating tips of secondary lens fiber cells, as well as in posterior portions of 

secondary fiber cells (Hayes et al., 2012). Loss of fibronectin1 in zebrafish lenses leads to 

abnormal F-actin distribution, disorganization of secondary lens fibers and disrupted Y-

sutures (Hayes et al., 2012), suggesting that integrin signaling via focal contacts leads to 

altered F-actin organization and impaired fiber cell migration.

As fiber cells differentiate, the discontinuous and irregular spectrin-actin network becomes 

smooth and continuous along fiber cell membranes (Figure 2E–2I), likely due to 

tropomodulin 1 (Tmod1) stabilization of F-actin after its assembly (Lee et al., 2000; Nowak 

et al., 2009; Nowak and Fowler, 2012). Tmod1, an actin pointed end capping protein first 

identified in human erythrocytes (Fowler, 1987; Moyer et al., 2010), is also required for 

maintaining the hexagonal geometry and packing of differentiating lens fiber cells in the 

mouse lens (Gokhin et al., 2012; Nowak and Fowler, 2012). The spectrin-actin network, also 

known as the membrane skeleton, and Tmod1 are associated in a macromolecular complex 
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with CP49 and filensin, which form beaded intermediate filaments (Fischer et al., 2003b; 

Gokhin et al., 2012). Loss of either Tmod1 or CP49 causes decreased lens mechanical 

stiffness, presumably due to disruption of the spectrin-actin or beaded intermediate filament 

networks, respectively (Gokhin et al., 2012; Nowak et al., 2009). Unexpectedly, the 

membrane skeleton and beaded intermediate filaments synergize to promote the formation of 

large micron-size gap junction plaques in differentiating fiber cells that are crucial for 

normal lens ion and fluid homeostasis (Cheng et al., 2015). Gap junction plaques rest in 

lacunae within the spectrin-actin network along fiber cell membranes, suggesting that the 

membrane skeleton plays a role in accretion or stability of large gap junction plaques in the 

lens (Cheng et al., 2015). It remains unclear whether the membrane skeleton interacts 

directly with gap junction plaques, or if gap junction plaque stability/assembly is affected 

indirectly by membrane skeleton/beaded filament network interactions through a linker 

protein (Fuchs and Yang, 1999; Wiche et al., 2015; Wiche and Winter, 2011).

The entire spectrin-actin network is proposed to be tethered to the plasma membrane 

through spectrin interactions with ankyrin-B (Bennett and Baines, 2001; Bennett and 

Stenbuck, 1979, 1980; Luna and Hitt, 1992; More et al., 2001) as well as by ezrin-

periplakin-periaxin-desmoyokin (EPPD)-actin anchorage complexes (Maddala et al., 2011b; 

Maddala et al., 2015b; Straub et al., 2003). Ankyrin-B links the membrane skeleton to 

NrCAM (More et al., 2001) and possibly N-cadherin, as shown for E-cadherin in other 

epithelial cell types (Kizhatil et al., 2007). The loss of NrCAM or ankyrin-B in the lens 

causes cataracts and disrupts the actin cytoskeleton (More et al., 2001), and a recent study 

shows that haploinsufficiency of ankyrin-B leads to a disrupted spectrin-actin network, 

abnormal lens fiber cell shape and decreased lens stiffness (Maddala et al., 2015b). 

Interestingly, ankyrin-B disruption in the lens also affects the levels of perixain. Similarly, in 

periaxin knockout lenses, there is a dramatic decrease in actin, spectrin and ankyrin-B 

protein levels and staining signals at the fiber cell membrane (Maddala et al., 2011b; 

Maddala et al., 2015b). In periaxin and ankyrin-B mutant lenses, packing and shape of fiber 

cells appears normal at 3 weeks of age, and dramatic defects in cell shape occur with age, 

indicating that EPPD complexes and ankyrin-B are not needed for the initial packing of fiber 

cells, but are required for maintaining fiber cell shape, perhaps by helping to stabilize the 

membrane skeleton (Maddala et al., 2015b).

Cadherin-based adherens junctions interact with the lens actin cytoskeleton to maintain 

epithelial cell morphology and polarity and to influence fiber cell differentiation (Leonard et 

al., 2011; Pontoriero et al., 2009). F-actin and adherens junctions exist in complexes 

between epithelial-epithelial, epithelial-fiber and fiber-fiber cell membrane contacts (Lo, 

1988). Lens epithelial cells mainly express E-cadherin, while fiber cells utilize N-cadherin 

(Xu et al., 2002), and these cadherin junctions are associated with the actin cytoskeleton via 

the β-catenin linker (Cain et al., 2008; Leonard et al., 2011; Straub et al., 2003). N-cadherin 

becomes increasingly associated with cytoskeletal proteins during lens development (Leong 

et al., 2000), and the formation of N-cadherin junctions in epithelial cells undergoing 

differentiation into lens fiber cells triggers changes in the actin cytoskeleton (Ferreira-

Cornwell et al., 2000). Dlg-1, a homolog of Drosophila tumor suppressor discs-large (dlg), 

colocalizes with N-cadherin and E-cadherin in mouse lens epithelial and fiber cells (Nguyen 

et al., 2005). Similar to lens N-cadherin conditional knockouts (Pontoriero et al., 2009), loss 
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of Dlg-1, a PDZ (PSD-95-Dlg-ZO-1) domain protein, in lenses leads to vacuole formation 

and abnormal orientation of secondary fiber cells (Rivera et al., 2009). Dlg-1 knockout lens 

fibers display disrupted F-actin and N-cadherin staining along with decreased levels of α-

catenin, a linker between cadherins and the actin cytoskeleton (Rivera et al., 2009). This 

study suggests that Dlg-1 is needed for normal adherens junctions and actin cytoskeleton 

organization in the lens.

Cortactin binds to and regulates assembly of F-actin by activating the actin nucleator Arp2/3 

(Higgs and Pollard, 2001; Pollard et al., 2000; Ren et al., 2009; Uruno et al., 2001; Weaver 

et al., 2001). Both Arp3 and cortactin are recruited to N-cadherin junctions as fiber cells 

begin to undergo differentiation and are enriched at the vertices of these hexagonal cells. 

Arp3 only co-immunoprecipitates with N-cadherin and cortactin in lens fibers but not 

epithelial cells, suggesting that Arp3 plays a role in fiber cell differentiation to remodel cell-

cell adhesions (Leonard et al., 2011). Experiments with an N-cadherin function-blocking 

antibody in embryonic chick lens explants shows that N-cadherin-directed F-actin assembly 

is required for fiber cell elongation (Leonard et al., 2011).

Rho GTPase family members regulate both cadherin junctions and F-actin assembly (Fukata 

et al., 1999; Nagafuchi et al., 1994). Activated Rac GTPase stimulates the c-abl-interactor 

(Abi) family of adaptor proteins that interact with c-abl kinase to regulate F-actin assembly 

and dynamics via WAVE-mediated Arp2/3 activation (Leng et al., 2005; Miki and 

Takenawa, 2003; Stradal et al., 2004; Stuart et al., 2006). Loss of either Rac1 or Abi-2 

causes secondary fiber cell migration and orientation defects in neonatal lenses (Grove et al., 

2004; Maddala et al., 2011a), demonstrating the importance of F-actin polymerization and 

organization during lens fiber cell migration and elongation. Abi may function as a link 

between adherens junctions and actin polymerization by interacting with both diaphanous 

(Dia)-related formins, which act as F-actin nucleators, and β-catenin, which regulate 

cadherin-based actin networks (Ryu et al., 2009). Interestingly, the overexpression of 

secreted frizzled-related protein 2 (Sfrp2), a Wnt signaling antagonist, also leads to 

secondary fiber cell orientation defects very similar to Rac1 or Abi-2 knockout lenses (Chen 

et al., 2008). There is a decrease in Rac1 staining in the cortex of transgenic Sfrp2 lenses 

along with a loss of RhoA and Cdc42 enrichment at fiber cell tips (Chen et al., 2008). 

Decreased protein levels of Rho GTPases in these Sfrp2 transgenic lenses provides evidence 

that Wnt/planar cell polarity pathways are important for F-actin cytoskeletal organization 

during fiber cell differentiation (Chen et al., 2008).

2.3 Mature secondary fiber cells

As secondary fiber cells undergo differentiation and maturation, domains of interlocking 

membrane protrusions with various conformations (balls-and-sockets, protrusions, paddles 

and square arrays) form between neighboring fiber cells along the broad and short sides 

(Dickson and Crock, 1972; Kistler et al., 1986; Kuszak et al., 1980; Kuwabara, 1975; Lo and 

Harding, 1984; Willekens and Vrensen, 1981, 1982, 1985). Along broad sides of cortical 

differentiating fiber cells, ball-and-socket membrane interdigitations consist of a small 

protrusion on one cell precisely fitted into the socket indentation of the neighboring cell, and 

these processes increase in size as fiber cells mature (Harding et al., 1976; Kuszak et al., 
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1980; Lo and Reese, 1993; Willekens and Vrensen, 1981, 1982, 1985). In addition to balls-

and-sockets along broad sides, cortical fiber cells also develop small interlocking protrusions 

at their vertices (tricellular junctions) adjacent to the short sides (Kistler et al., 1986; Kuszak 

et al., 1980; Kuwabara, 1975; Leeson, 1971; Lo et al., 2014; Zhou and Lo, 2003). Actin is 

highly enriched in small interlocking protrusions at these vertices (Lo et al., 1997; Zhou and 

Lo, 2003), but its role has not been well studied in balls-and-socket protrusions on the broad 

sides.

Early stages in small protrusion formation at the vertices are believed to involve plasma 

membrane invagination similar to clathrin-AP2-mediated endocytic pit formation 

(Kirchhausen, 1999, 2000; Kirchhausen et al., 1986; Pearse et al., 2000; Smith and Pearse, 

1999). Indeed, clathrin and AP2 coat the cytoplasmic surface of fiber cell membrane 

indentations, and F-actin is observed on the cytoplasmic surface of the neighboring fiber cell 

membrane inside each protrusion (Zhou and Lo, 2003). It has been hypothesized that Arp2/3 

may drive branching of F-actin in protrusions to generate a pushing force that would be 

coordinated with the pulling force generated by clathrin complexes along the concave 

membrane surface enveloping protrusions from the adjacent cell. The branched F-actin 

network would then presumably stabilize the interlocking protrusion/invagination structure 

(Zhou and Lo, 2003). Loss of Tmod1 and CP49 leads to a reduction in small protrusions at 

the vertices of mature fiber cells (Nowak et al., 2009), suggesting that both actin and 

intermediate filaments are needed for normal formation or stabilization of these 

interdigitations. Recent studies have localized aquaporin-0 and N-cadherin to small 

protrusions in mature fiber cells (Biswas et al., 2015; Lo et al., 2014), suggesting that these 

membrane proteins may be required for normal formation of protrusions at fiber cell 

vertices. However, the pathways and mechanisms that regulate the formation of these 

complex fiber cell interdigitations remain unclear.

As fiber cells continue to mature, they undergo complex degradative processes to eliminate 

all intracellular organelles, including nuclei, to remove light-scattering structures from the 

light path (Bassnett, 1992, 1995; Bassnett and Beebe, 1992; Bassnett and Mataic, 1997). 

Along with the removal of cellular organelles, there is degradation and/or proteolytic 

trimming of many cytoskeletal proteins, including microtubules, vimentin intermediate 

filaments and beaded intermediate filaments (Blankenship et al., 2001; Bradley et al., 1979; 

FitzGerald, 2009; Kuwabara, 1968; Oka et al., 2008; Rafferty, 1985; Sandilands et al., 

1995). While α2- and β2-spectrin are cleaved by calpains and caspases into two large 

fragments (De Maria et al., 2009; Lee et al., 2000; Lee et al., 2001; Nowak et al., 2009), F-

actin and Tmods (Tmod1 in mouse lenses and Tmod4 in chicken lenses) are not proteolysed 

and remain associated with the plasma membranes of mature fiber cells after denucleation 

and organelle loss (Lee et al., 2000; Lee et al., 2001; Nowak et al., 2009). These data suggest 

that the F-actin network likely plays a role in stabilizing and maintaining membrane 

integrity of mature fiber cells.

Maintenance of the actin cytoskeleton in mature fiber cells may rely on appropriate 

interactions with lens crystallin proteins. Crystallins comprise 90% of total lens proteins and 

are classified as α-, β- and γ-crystallins (Bloemendal et al., 2004). Alpha-crystallins, 

consisting of heteromers with αA- and αB-crystallin subunits, belong to the small heat 
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shock protein family and are hypothesized to help maintain life-long lens transparency by 

sequestering denatured proteins and thereby preventing abnormal protein aggregation 

(Horwitz, 1992). Alpha-crystallins are reported to be associated with actin in lens lysates 

(Bloemendal et al., 1984; Del Vecchio et al., 1984; Gopalakrishnan and Takemoto, 1992; 

Kibbelaar et al., 1979), and mutations in αA-crystallin alter its association with actin 

(Andley et al., 2014; Brown et al., 2007), suggesting that actin may be a native substrate of 

α-crystallins. Beta- and γ-crystallins are members of the β/γ superfamily of proteins and 

function as structural proteins in the lens (Bloemendal et al., 2004). Immunoprecipitation 

experiments reveal a possible link between β- and γ-crystallins and major cytoskeletal 

proteins in the lens, including actin (Rao et al., 2008). Gamma-crystallins may play a role in 

stabilizing F-actin in mature lens fiber cells. In mature fiber cells, the γB-S11R mutation 

leads to reduced F-actin staining (Li et al., 2008) while loss of γS-crystallin in mouse lenses 

leads to F-actin depletion and aggregation (Fan et al., 2012). In vitro experiments suggest 

that γS-crystallins stabilize F-actin and protect filaments against depolymerization (Fan et 

al., 2012).

3. Approaches and future directions for studying actin in lens cells

3.1 Actin cytoskeleton networks and actin-associated proteins in the lens

While it is clear that actin plays important and diverse roles during lens development and in 

maintaining lens integrity, there remain a host of unknowns about actin organization in the 

lens. In other systems, such as striated muscle, precise locations of actin filament ends and 

associated cross-linking and binding proteins have been documented in detail (Clark et al., 

2002; Ono, 2010). We can use similar techniques to reveal the structural organization of the 

actin cytoskeleton in the lens. Comparing the localization of barbed-end capping proteins, 

such as adducin (Kaiser et al., 1989; Matsuoka et al., 2000), CapZ (dos Remedios et al., 

2003) or gelsolin (Andley et al., 2014; Nag et al., 2013), vs. the pointed-end capping protein 

Tmod1 (Nowak et al., 2009; Woo and Fowler, 1994) could help establish locations of barbed 

and pointed ends of actin filaments, respectively, although this may require super-resolution 

microscopy approaches if filaments are short and/or arranged in irregular orientations (see 

below).

The locations of actin filament side-binding proteins can also shed light on the organization 

of actin cytoskeletal networks. Alpha-actinin is a crosslinking protein for anti-parallel actin 

filaments that interact with myosin II bipolar filaments in loose bundles to generate 

contractile force (FitzGerald and Casselman, 1990; Lo et al., 1997; Sjoblom et al., 2008). F-

actin bundles containing α-actinin are found in cortical lens fiber cells and are commonly 

localized near the vertices on the short sides of hexagonal fiber cells, perhaps serving to 

stabilize the hexagonal cell shape (Lo et al., 1997). The functions of these bundles, or 

whether other actin-associated proteins are associated with bundled or non-bundled F-actin 

in fiber cells, remain to be studied. For example, the presence of other actin-bundling 

proteins, such fascin (Jayo and Parsons, 2010) and fimbrin (aka plastin) (Delanote et al., 

2005), would indicate bundles of filaments aligned in parallel orientations, while the 

presence of filamin (Hirata et al., 2014), would indicate looser networks of isotropically 
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oriented filaments, each with distinct structural, mechanical and cellular functions 

(Matsudaira, 1994; Ridley, 2011; Tseng et al., 2005).

Locations of actin-nucleating proteins, such as Arp2/3 or formins, or depolymerizing 

proteins, such as ADF/cofilin, could indicate F-actin networks undergoing active assembly/

disassembly and remodeling in specific cells or subcellular regions (Carlier et al., 2015; 

Ono, 2007; Pollard, 2007; Pollard and Cooper, 2009). Current data suggest that dynamic 

branched F-actin networks nucleated by Arp2/3, and α-actinin-stabilized anti-parallel actin 

filament bundles are both present at or near the vertices of fiber cells (Leonard et al., 2011; 

Lo et al., 1997), implying the complexity of F-actin organization and function at these fiber 

cell domains. While formins have been detected in developing lens tissue, and loss of 

formins may lead to fiber cell degeneration (de la Pompa et al., 1995; Woychik et al., 1990), 

it remains unclear which isoforms of this large and diverse family are required for 

establishing and maintaining the lens.

Another important and relatively poorly understood area is how F-actin networks are linked 

to plasma membranes of lens cells to control their complex topologies and functional 

domains. Ezrin-radixin-moesin (ERM) proteins, which link actin filament networks to the 

plasma membrane (Bretscher et al., 2000) and interact with N-WASP, an activator of 

Arp2/3-nucleated actin assembly (Manchanda et al., 2005), are present in the lens (Bagchi et 

al., 2004; Ingraffea et al., 2002; Rao et al., 2008; Straub et al., 2003). Immunoprecipitation 

experiments (Straub et al., 2003) indicate that plectin may serve as an important linker 

between ERM proteins, intermediate filament (Wiche et al., 2015; Wiche and Winter, 2011) 

and actin filament networks (Andra et al., 1998; Fontao et al., 2001; Jiu et al., 2015) in the 

lens. A recent study indicates that polymorphisms and genetic variations in ezrin are linked 

to human age-related cataracts (Lin et al., 2013), but the mechanism for these opacities and 

any links to the actin cytoskeleton will require further study. In addition, more work is 

needed to understand the subcellular localization and functions of other components of the 

spectrin-based membrane skeleton in the lens, such as tropomyosin (Nowak et al., 2009; 

Woo et al., 2000), band 3 (Allen et al., 1987), band 4.1 (Aster et al., 1986; Aster et al., 1984; 

Bagchi et al., 2004; Beebe et al., 2001), band 4.2 (Sung and Lo, 1997) and band 4.9 (Faquin 

et al., 1988).

Super-resolution microscopy techniques, such as structured illumination microscopy (SIM) 

(Brown et al., 2011; Gao et al., 2012; Gustafsson, 2000) and stimulated emission depletion 

(STED) microscopy (Chereau et al., 2015; Hell and Wichmann, 1994), could reveal more 

precise localization of F-actin and actin-binding proteins to determine whether multiple 

types of actin networks overlap at fiber cell vertices and/or along cell broad and narrow 

sides, or form distinct subdomains. In addition, recent advances in correlative light and 

electron microscopy (CLEM) can couple information about protein localization obtained 

using fluorescence microscopy with highly detailed ultrastructural electron microscopy 

information (de Boer et al., 2015) to revolutionize the study of F-actin and other proteins 

required to form the complex membrane geometry of fiber cell interdigitations, and to 

coordinate diverse F-actin structures at the interfaces between migrating fiber cell tips and 

the apical domains of lens epithelial cells.
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3.2 F-actin dynamics and stability

In most cells (Pollard et al., 2000; Pollard and Borisy, 2003), including lens cells, a large 

fraction of actin remains unassembled and associated with monomer-sequestering proteins, 

but is available for filament assembly upon appropriate signals, to coordinate cell migration, 

adhesion and other morphogenesis events (Ireland et al., 1983; Ramaekers et al., 1981). 

While previous studies have demonstrated that G- to F-actin assembly driven by signaling 

through the Rho family of proteins (Sections 1 and 2.2) is needed for lens development and 

fiber cell elongation, it remains unclear whether the ratio of G-actin to F-actin is important 

to maintain adult lens homeostasis and integrity. By comparing relative proportions of 

cytosolic G-actin vs. membrane-bound F-actin in subcellular fractions of lens lysates 

(Nowak et al., 2009; Woo et al., 2000), or evaluating the G/F-actin ratio in lysates using 

DNaseI (Blikstad et al., 1978; Kibbelaar et al., 1979; Ramaekers et al., 1981), we can 

investigate whether genetic mutations or lens aging affects global actin polymerization or 

filament stability. In addition, comparison of relative fluorescence intensity levels of 

phalloidin vs. DNase I staining can be used to reveal the F- to G-actin ratio (i.e., relative 

extent of F-actin polymerization) (Fischer et al., 2003a) in specific layers of lens fiber cells 

(Fan et al., 2012). Here we note that actin has often been used as a loading control for 

Western blots and as a membrane marker for lens sections. However, as we have illustrated 

in this review, many proteins directly interact with or indirectly affect the actin cytoskeleton. 

Therefore, using actin as a control is likely not appropriate for all studies. We suggest the 

use of Ponceau S staining for total proteins as a loading control for Western blots (Gilda and 

Gomes, 2013), while fluorescently labeled wheat germ agglutinin is a bright and easy-to-use 

membrane marker that outlines lens epithelial and fiber cells in fluorescent microscope 

images (Bond et al., 1996).

Another powerful approach to elucidate F-actin network assembly, stability and functions in 

the lens is the use of actin- or myosin-disrupting drugs. For example, disruption of myosin II 

binding to F-actin via blebbistatin inhibition of myosin ATPase (Kovacs et al., 2004), or via 

ML-7 inhibition of MLCK activity, leads to a decrease in whole lens stiffness (Won et al., 

2015) and changes in focal length in chick lenses (Luck and Choh, 2011), and causes 

nuclear cataracts in mouse lenses due to changes in fiber cell morphology (Maddala et al., 

2007). Treatment of chick lenses with latrunculin A, which binds and sequesters G-actin, 

preventing actin polymerization (Coue et al., 1987; Morton et al., 2000; Spector et al., 

1989), also leads to a decrease in lens stiffness (Won et al., 2015), suggesting that a dynamic 

F-actin network is important for maintaining lens mechanical integrity. In addition to actin- 

and myosin-disrupting agents, there are drugs that stabilize F-actin, such as jaspaklinolide 

(Allingham et al., 2006; Bubb et al., 1994; Bubb et al., 2000; Holzinger, 2009), or 

specifically inhibit Arp2/3, formins or Rho GTPases, that will provide useful information 

about the functions of lens actin networks (Blanchoin and Boujemaa-Paterski, 2009; Hetrick 

et al., 2013; Nolen et al., 2009; Rizvi et al., 2009; Shang et al., 2013; Shang et al., 2012). 

While treatment of whole lenses can indicate global functions for F-actin assembly 

pathways and structural networks, information about F-actin in the lens with respect to 

regional cellular specializations and functions will require careful microscopic analyses of 

epithelial and fiber cells after drug treatments.
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The availability of transgenic mice with GFP-tagged cytoskeletal proteins offers yet another 

approach to studying actin dynamics regulation in the lens. By coupling high-resolution 

confocal or multi-photon fluorescence microscopy and transgenic mice expressing GFP-

tagged actin (Gurniak and Witke, 2007; Narayanan et al., 2015), or GFP- or mRFPruby-

tagged Lifeact, a F-actin binding peptide (Riedl et al., 2010), or other fluorescently-tagged 

F-actin-binding proteins (e.g., moesin or paxillin) (Abe et al., 2011), it would be possible to 

study how the actin cytoskeleton is remodeled during the epithelial-to-fiber-cell transition 

and during fiber cell elongation, migration and maturation in live lenses. Recent advances in 

the CRISPR-Cas9 technology (Sternberg and Doudna, 2015) will also greatly increase the 

number of knockout, transgenic and mutant animal models that can be applied to the study 

of the lens actin cytoskeleton.

Concluding remarks

While it is clear that F-actin plays important roles during lens development, many questions 

remain about the mechanisms that maintain actin cytoskeletal structures in quiescent anterior 

epithelial cells and those that drive F-actin remodeling as equatorial epithelial cells 

proliferate, differentiate and mature into fiber cells. Many components of F-actin networks 

have been detected in the lens, but the functions of most of these proteins in establishing or 

maintaining lens cellular architecture and functions remain unknown. Further studies are 

also needed to identify additional proteins that directly interact with the actin cytoskeleton to 

regulate dynamic G-to-F-actin transitions or network rearrangements during lens fiber cell 

differentiation, and during lens development and aging. Fiber cells at the center of the lens 

are formed during embryogenesis, and these long-lived cells must maintain homeostasis and 

transparency throughout the lifetime of an organism. Little is known about the role of the 

actin cytoskeleton in maintaining the life-long integrity of mature lens fiber cells, and 

whether changes in the actin cytoskeleton or the membrane skeleton affect age-related 

pathologies, including cataracts and presbyopia. New methods, including super-resolution 

and live-cell microscopy, transgenic and knockout mouse models and novel actin-disrupting 

agents, present opportunities to study and understand actin cytoskeletal regulation and 

dynamics in live lenses.
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Highlights

- F-actin plays important roles during lens development and maintains fiber 

cells.

- Dynamic regulation of actin is needed for normal development and fiber 

elongation.

- Actin filament stability and reorganization are essential for fiber cell packing.

- Disruptions of actomyosin function affect lens biomechanical properties.
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Figure 1. Actin cytoskeletal organization in the lens
A) Dissected mouse eye; red dotted circle outlines lens in the intact eye. B) Diagram of 

mouse lens (not drawn to scale). The lens equator is demarcated by black horizontal line, 

and the sutures are indicated by blue lines. C) Diagram of lens anatomy showing anterior 

epithelial cells and bulk elongated fibers. Secondary fiber cells elongate toward the anterior 

and posterior poles (gray arrows) and meet at the anterior and posterior lens sutures. Lens 

equator indicated by red shading. D) Diagram of cuboidal anterior epithelial cells. Red 

arrowhead indicates apical surface shown in F (en face view), and green arrowhead indicates 

basal surface shown in G (en face view). E) Phalloidin (F-actin) and Hoechst (nuclei, blue) 

staining of anterior epithelial cells in cross section. F-actin is abundant at apical and basal 

surfaces of these cells and forms sequestered actin bundles (yellow arrows) near the apical 

surface. F and G) Phalloidin and Hoechst staining of flat-mounted anterior epithelial cells en 
face. On their apical surfaces, anterior lens epithelial cells have cortical actin fibers and 
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sequestered actin bundles (F, yellow arrows). In contrast, on the basal surfaces of these cells, 

abundant actin stress fibers are observed (G). H) Low-magnification sagittal section of a 

mouse lens stained with phalloidin and Hoechst showing lens epithelial and fiber cell 

morphology near the lens equator. The lens fulcrum (red dotted circle and arrow) forms an 

anchorage point for the tips of many differentiating fiber cells as fiber cells rotate in 

orientation. I) Diagram of equatorial epithelial-to-fiber cell transition. Red arrows and circle 

indicate the lens fulcrum. Purple arrow pointing up and orange arrow pointing down show 

the directions of apical and basal tip migration, respectively, of elongating secondary fiber 

cells. Blue and orange triangles indicate en face focal plane in L and M, respectively. J) 

Phalloidin and Hoechst staining of the lens fulcrum (red dotted circle and arrow) showing 

elongation of newly formed secondary fiber cells. F-actin is enriched at the lens fulcrum and 

the apical junction between epithelial and secondary fiber cells. K) Phalloidin staining of the 

anterior suture of a mouse lens where tips of elongating fiber cells meet at the pole (en face 
view). F-actin is enriched at fiber cell tips. L) Diagram, and phalloidin and Hoechst staining 

of an en face view of equatorial epithelial cells. Equatorial epithelial cells rearrange from 

randomly packed cells into organized meridional rows of hexagonal cells. F-actin is 

disorganized in randomly packed equatorial epithelial cells and becomes localized to the cell 

membrane in hexagonal meridional cells. M) En face view of newly formed, phalloidin-

stained secondary fiber cell posterior tips (basal-lateral side) on the capsule showing the 

perpendicular organization of the actin stress fibers with respect to the cell boundary.
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Figure 2. Actin cytoskeletal organization in lens fiber cells
A) Diagram of a lens showing orientation of a cross section through the lens equator. B) 

Cut-away diagram of cross-sections of organized hexagonally packed fiber cells, rotated 90° 

with respect to A. An individual fiber cell is outlined with a red box. C) Diagram showing 

the broad sides (blue), short sides (red) and vertices (yellow) of an individual hexagonal 

fiber cell in cross sectional orientation as in B, red box. D) Diagram of a lens equatorial 

cross-section. Epithelial cells (Epi) are on the periphery. Each hexagonal fiber cell (red 

asterisk) has 6 neighboring cells, colored orange, yellow or blue. There is a neighboring cell 
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on each of the 4 short sides (1, 3, 4 and 6) and 2 broad sides (2 and 5). The orange cell (2) is 

a less mature cell (started elongating after the cell with the asterisk). The yellow cells (1, 3, 4 

and 6) are about the same age, and the blue cell (5) is more mature (started elongating before 

the cell with asterisk). E–I) Phalloidin-stained cross-section showing hexagonal packing of 

cells as they mature. Red boxed regions in E indicate the approximate locations where (F–I) 

higher magnification images were obtained. F-actin surrounds the entire fiber cell membrane 

and is enriched at the vertices and short sides. In cortical fiber cells (F), F-actin staining 

appears discontinuous, but, as fiber cells mature (G–I), F-actin staining becomes smooth and 

continuous.
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