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SUMMARY

Induction of broadly neutralizing antibodies (bnAbs)
is a primary goal of HIV vaccine development.
VRC01-class bnAbs are important vaccine leads
because their precursor B cells targeted by an engi-
neered priming immunogen are relatively common
among humans. This priming immunogen has
demonstrated the ability to initiate a bnAb response
in animal models, but recall and maturation toward
bnAb development has not been shown. Here, we
report the development of boosting immunogens de-
signed to guide the genetic and functional matura-
tion of previously primed VRC01-class precursors.
Boosting a transgenic mouse model expressing
germline VRC01 heavy chains produced broad
neutralization of near-native isolates (N276A) and
weak neutralization of fully native HIV. Functional
and genetic characteristics indicate that the boosted
mAbs are consistent with partially mature VRC01-
class antibodies and place them on a maturation
trajectory that leads toward mature VRC01-class
bnAbs. The results show how reductionist sequential
immunization can guide maturation of HIV bnAb
responses.
INTRODUCTION

Elicitation of a broadly neutralizing antibody (bnAb) response is

thought to be a highly desirable feature of an effective HIV vac-

cine (Burton et al., 2005; Pantaleo and Koup, 2004). Passive

transfer of bnAbs to non-human primates (NHPs) can provide
Cell 166, 1459–1470, Septe
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sterilizing protection against challenge by chimeric simian/

human immunodeficiency viruses (SHIVs). Thus, it is widely ex-

pected that vaccine induction of sustained titers of potent bnAbs

would protect humans against diverse HIV strains (Burton and

Hangartner, 2016; Mascola and Haynes, 2013).

Several major challenges must be overcome to meet this goal.

First, potent bnAbs targeting relatively conserved epitopes on

the HIV envelope (Env) trimer develop in only a minority of in-

fected individuals, whereas narrowly neutralizing Abs targeting

variable epitopes on the infecting virus develop in all or most

cases of infection (Richman et al., 2003; Wei et al., 2003).

Furthermore, bnAbs have not been induced by vaccination in

humans or standard animal models, while strain-specific neutral-

izing antibodies have been induced by vaccination with native-

like trimers (Hessell et al., 2016; Sanders et al., 2015). Thus, elic-

itation of bnAbs will likely require strategies to focus responses

to relatively conserved epitopes and may also require suppres-

sion of responses to variable epitopes. Second, bnAb inferred-

germline precursors are generally not broadly cross-reactive

to wild-type Env proteins: such precursors typically show no

detectable affinity for wild-type Env proteins tested (Hoot et al.,

2013; Jardine et al., 2013; McGuire et al., 2013; Pancera et al.,

2010; Scheid et al., 2011; Xiao et al., 2009; Zhou et al., 2010)

or bind to one or a limited number of Env proteins (Andrabi

et al., 2015; Bhiman et al., 2015; Doria-Rose et al., 2014; Gorman

et al., 2016; Haynes et al., 2012; Liao et al., 2013). Thus, elicita-

tion of responses similar to known bnAbs will likely require

‘‘germline-targeting’’ priming immunogens specifically designed

or selected for their ability to activate the appropriate precursor B

cells (Andrabi et al., 2015; Bhiman et al., 2015; Dimitrov, 2010;

Doria-Rose et al., 2014; Gorman et al., 2016; Haynes et al.,

2012; Jardine et al., 2013, 2015, 2016a; Liao et al., 2013; Ma

et al., 2011; McGuire et al., 2013, 2014, 2016; Pancera et al.,

2010; Xiao et al., 2009; Zhou et al., 2010). Third, although HIV

bnAbs target several different epitopes and use a variety of
mber 8, 2016 ª 2016 The Authors. Published by Elsevier Inc. 1459
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germline segments, all known bnAbs share one or more unusual

genetic features: very long heavy-chain CDR3 loops; short light-

chain CDR3 loops; and a high level of somatic hypermutation

(SHM), including SHM-associated insertions or deletions (indels)

(Doria-Rose et al., 2014; Falkowska et al., 2014; Kepler et al.,

2014; Liao et al., 2013; Pancera et al., 2014; Scharf et al.,

2014; Scheid et al., 2011; Sok et al., 2014; Walker et al., 2009,

2011; Wu et al., 2010). The high level of SHM in most bnAbs in-

dicates a protractedmaturation process inwhichmemory B cells

undergo multiple rounds of stimulation and affinity maturation

driven by constantly mutating Env. Induction of highly mutated,

broadly reactive antibodies by vaccination will likely require a

multi-step immunization strategy in which successive distinct

boosting immunogens follow a germline-targeting prime to drive

antibody maturation toward a broadly neutralizing phenotype

(Dimitrov, 2010; Haynes et al., 2012; Jardine et al., 2013, 2015,

2016b; McGuire et al., 2013; Pancera et al., 2010; Zhou et al.,

2010).

VRC01-class bnAbs targeting the CD4 binding site (CD4bs)

on HIV Env are attractive leads for HIV vaccine design, as

they are among the most broad and potently neutralizing (Mas-

cola and Haynes, 2013; Scheid et al., 2011; Wu et al., 2010,

2011) and they can protect against infection in NHPs (Pegu

et al., 2014; Rudicell et al., 2014; Shingai et al., 2013) and sup-

press viremia in NHPs (Barouch et al., 2013; Shingai et al.,

2013) and humans (Caskey et al., 2015). VRC01-class bnAbs

derive from VH1-2 alleles present in �96% of humans and

encode an unusually short (five amino acid) light-chain CDR3

loop, providing a well-defined germline target for an engineered

priming immunogen (Jardine et al., 2013; McGuire et al., 2013).

One such immunogen, eOD-GT8 60-mer, has been shown to

target true human naive VRC01-class precursors at a frequency

of 1 in 400,000 to 2.4 million naive human B cells, correspond-

ing to 15 to 90 precursors per resting human lymph node (Jar-

dine et al., 2016a). Thus VRC01-class bnAb precursors are

abundant in humans, and we have at least one immunogen to

target them.

We recently demonstrated that eOD-GT8 60-mer immuniza-

tion primes relatively rare VRC01-class precursors in a trans-

genic mouse model expressing the VRC01 germline-reverted

heavy chain (VRC01 gH) (Jardine et al., 2015). In this heterozy-

gous knockin mouse model, �85% of the B cells express the

VRC01 gH chain paired with diverse mouse light chains, while

�15% of the B cells express diverse mouse heavy and light

chains. Owing largely to the low frequency of mouse light chains

with a 5AA CDR3 loop (�0.1%), the frequency of VRC01-class

precursors in the VRC01 gH mouse is estimated to be only

�5-fold higher than in humans. Furthermore, in contrast to ho-

mozygous knockin mice, the VRC01 gHmouse imposes compe-

tition from diverse mouse B cell specificities that is reduced by a

factor of only seven relative to a normal mouse. Despite these

challenges, we found that a single immunization of eOD-GT8

60-mer in the VRC01 gH mouse resulted in activation of B cells

encoding antibodies with VRC01-class genetic features, induc-

tion of specific somatic mutations shared with mature VRC01-

class bnAbs, and production of mutated VRC01-class memory

B cells with at least weak affinity for potential boost immuno-

gens. As expected, although a subset of GT8-specific mono-
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clonal antibodies (mAbs) isolated from memory-phenotype

B cells in immunized VRC01 gH mice showed weak cross-reac-

tivity to near-native Env, none of the mAbs acquired neutralizing

activity (Jardine et al., 2015). The VRC01 gH mouse is thus

an attractive model to evaluate boosting strategies to induce

VRC01-class bnAbs following an eOD-GT8 60-mer prime, and

the results in this mouse should have potential relevance to

human vaccination.

Based on structure-function studies of VRC01-class bnAbs

(Diskin et al., 2011, 2013; Georgiev et al., 2014; Jardine et al.,

2016b; Lyumkis et al., 2013; West et al., 2012; Zhou et al.,

2010, 2013), we have formulated a working-concept sequential

immunization strategy for how to induce VRC01-class bnAbs

(Jardine et al., 2016b). The strategy proposes a sequence of

four types of immunogens, each with specific objectives for af-

finitymaturation: (1) germline-targeting nanoparticles, to activate

VRC01-class germline precursors and select sufficient VRC01-

class mutations for low-affinity recognition of N276(�) Env lack-

ing the N276 glycosylation site; (2) native-like N276(�) trimers, to

selectmutations that enable neutralization of N276(�) viruses; (3)

native-like N276(+) trimers produced in GnTI�/� cells (or insect

cells) to present oligomannose glycans, for selection of light-

chain CDR1 mutations and/or deletions to accommodate the

base of the N276 glycan and to allow neutralization of viruses

passaged in GnTI�/� cells; and (4) native-like trimers bearing

native glycans, for selection of light-chain FW3 mutations to

accommodate the distal portions of theN276 glycan and to allow

neutralization of viruses bearing native glycans.

In the present work, we focused on the first two steps of this

strategy. We hypothesized that the eOD-GT8 60-mer prime

might fail to generate memory B cells capable of being activated

by native-like N276(�) trimers. Supporting this hypothesis, mAbs

induced by eOD-GT8 60-mer in the VRC01 gH mouse showed

affinity for an N276(�) core gp120 (Jardine et al., 2015) but not

for native-like N276(�) trimers (not shown). Thus, we sought to

develop immunogens that could serve as a bridge between the

eOD-GT8 60-mer prime and near-native N276(�) trimers.

We report the development and testing of two such boosting

immunogens, BG505 core-GT3 nanoparticle (NP) and BG505

SOSIP-GT3 trimer. We show that sequential immunization

schemes employing these bridging boost immunogens drove

the maturation of eOD-GT8 60-mer primed B cells toward

VRC01-class bnAbs and induced broad neutralization of near-

native (N276A) viruses and weak neutralization of a fully native

virus in VRC01 gH mice. The results demonstrate that reduc-

tionist sequential immunization can initiate and guide maturation

of pre-defined neutralizing antibody specificities. Furthermore,

our findings provide a foundation on which to develop a vaccine

to induce VRC01-class bnAbs.

RESULTS

Engineering a Boosting Immunogen to Follow eOD-GT8
60-mer Priming of VRC01-Class Abs
We sought to develop a boost immunogen to activate eOD-GT8

60-mer-induced memory B cells, cause the formation of new

germinal centers, and select for a pool of more highly mutated

memory B cells that could subsequently be boosted by



native-like N276(�) trimers. To achieve this goal, we designed

‘‘bridging’’ molecules, which, while still germline-targeting,

display a more native CD4bs epitope in order to drive maturation

toward mature VRC01-class bnAbs. We allowed fewer overall

mutations than in eOD-GT8 while retaining native VRC01-class

contact residues wherever possible. Engineered mutations at

non-contact positionswere selected to improve affinity for germ-

line-reverted (GLrev) Abs via conformational stabilization or

removal of occluding glycans (Figure 1A). Two design platforms

were chosen: core gp120 and SOSIP native-like trimer. The core

gp120 platform was selected as an intermediate presentation of

the CD4bs, in terms of epitope completeness and steric restric-

tion, between the minimal eOD and the native-like trimer; use of

core gp120 would also minimize boosting of off-target re-

sponses, as core gp120 shares little exposed, non-glycosylated

surface with eOD or the native-like trimer beyond the CD4bs

epitope (Figure 1B) (Jardine et al., 2013, 2015; McGuire et al.,

2014, 2016). The SOSIP trimer platform was used to test the ef-

fect of including more native-like epitope and steric access re-

strictions in this bridging boost immunogen. The BG505 strain

was selected for both core gp120 andSOSIP platforms, primarily

for the purpose of conserving T-help with the subsequent boost

of BG505 SOSIP N276D (Figure 1C), although changing to

BG505 from the HXB2 strain used as the base strain for eOD-

GT8 was also considered potentially advantageous for mini-

mizing off-target responses (Figure 1B). To conserve T-help

with the eOD-GT8 60-mer prime, we planned to display the

core-gp120 on the same nanoparticle (lumazine synthase) as

eOD-GT8 (Jardine et al., 2013, 2015), thus using the underlying

nanoparticle for conserved T-help. For the trimer platform, we

added an exogenous T-help epitope (PADRE) (Alexander et al.,

1994, 1998) to the C terminus of both the eOD-GT8 60-mer prime

and the SOSIP boost (Figure 1C).

Protein engineering was initially carried out by yeast display

directed evolution on the core gp120 platform. We generated

combinatorial libraries of core BG505 gp120 containing muta-

tions that we had previously noted in the development of core

BaL-GT1 and eOD-GT8 (Jardine et al., 2013, 2016a). These

libraries were displayed on yeast and screened for binding to a

panel of GLrev VRC01-class mAbs. Three rounds of optimization

resulted in BG505 core-GT3 (Figure S1), a construct withmodest

affinity for GLrev VRC01-class Abs (Figure 1D). Unlike eOD-GT8,

which displayed similar affinity for both GLrev and mature

VRC01-class mAbs (Jardine et al., 2016a), BG505 core-GT3

bound VRC01-class bnAbs with >1,000-fold higher affinity than

their GLrev counterparts. Thus, BG505 core-GT3 displayed a

strong affinity gradient for mature bnAbs over GLrev Abs and

was therefore promising as a boost to select productive somatic

hypermutation (Figure 1D). We produced nanoparticles of

BG505 core-GT3 by genetic fusion to lumazine synthase, as pre-

viously reported for eOD-GT6 and eOD-GT8 (Jardine et al., 2013,

2015). However, to accommodate the larger core-gp120, nano-

particles included �20 mol% ‘‘naked’’ lumazine synthase. Thus,

we estimate that there were �48 copies of core-GT3 displayed

on the nanoparticles. BG505 core-GT3 nanoparticles (NPs) dis-

played approximately the expected molecular weight in solution,

according to SECMALS analysis, andmaintained antigenicity for

GLrev VRC01-class Abs (Figure S2).
To generate a native-like trimer variant of GT3 with more

native-like epitope features and CD4bs steric access restric-

tions, we transferred the BG505 core-GT3 mutations onto

BG505.D664 SOSIP and added aC-terminal PADRE epitope, re-

sulting in BG505 SOSIP-GT3-PADRE, from now on referred to as

BG505 SOSIP-GT3 (Figure S1). Overall, BG505 SOSIP-GT3 was

trimeric by SECMALS and showed an antigenic profile similar to

BG505 SOSIP.D664, with the added ability to bind VRC01-class

GLrev Abs and with a similar VRC01-class affinity gradient as for

BG505 core-GT3 (Figure S3). The melting temperatures of

BG505-SOSIP-GT3 (66.3�C) and BG505 SOSIP.D664 (66.7�C),
were similar. By negative-stain EM analysis, BG505 SOSIP-

GT3 was indistinguishable from BG505 SOSIP.D664 (Figure S3).

Thus, to develop a sequential immunization scheme with con-

siderations of gradual epitope change toward a native config-

uration, T-help conservation, and minimizing the boosting of

off-target responses, two boost candidates were designed to

follow the eOD-GT8 60-mer and precede the BG505 SOSIP

N276D native-like trimer.

Prime and Boosting of VRC01-gH Mice
To quantify the ability of BG505 core-GT3 NP and BG505

SOSIP-GT3 to recall VRC01-class precursor B cells primed

with eOD-GT8 60-mer, we sequentially immunized the VRC01

gH mouse with eOD-GT8 60-mer, BG505 core-GT3 NP, and

BG505 SOSIP N276D trimer according to the immunization

schedule described in Figure 2A. Twenty VRC01 gH mice were

primed with eOD-GT8 60-mer prime followed by either BG505

core-GT3 NP or BG505 SOSIP-GT3 boost. Eight mice were

sacrificed following the initial boost, while 12 mice (six boosted

with core-GT3 NP and six boosted with SOSIP-GT3) received

two additional boosting immunizations of BG505 SOSIP N276D.

For a serological probe, we developed a resurfaced HXB2

core gp120 (r1-core-N276D) with improved VRC01-class anti-

genicity compared to RSC3 (Wu et al., 2010) (Figure S4). The

resurfacing should minimize the binding of antibodies induced

by our immunization protocol against epitopes other than the

VRC01-class epitope. A VRC01-class epitope knockout variant

(r1-core-KO) with substantially depressed affinities for VRC01-

class bnAbs was also engineered, by adding the mutations

D368R and N279A in the CD4bs (Li et al., 2007, 2011).

Following the third boost, we evaluated serum antibody bind-

ing to r1-core-N276D and r1-core-KO (Figures 2B and S5). Areas

under the curve (AUC) were calculated for each serum sample,

and the differences in AUC between r1-core-N276D and

r1-core-KO are shown in Figure 2B. Although there was substan-

tial intragroup variation, the greatest differential was observed

for BG505 core-GT3 NP delivered with Ribi adjuvant. Similar

epitope-specific serum responses were seen in mice boosted

with BG505 core-GT3 NP without adjuvant and BG505 SOSIP-

GT3 delivered with Ribi adjuvant. In contrast, BG505 SOSIP-

GT3 delivered without adjuvant produced relatively modest

responses and the smallest difference in reactivity between r1-

core-N276D and r1-core-KO.

These differences in serum antibody responses were mirrored

in the frequencies of epitope-specific memory B cells. Spleno-

cytes and lymph nodes from immunized animals were harvested

and stained for IgG memory B cells. Single cells were then
Cell 166, 1459–1470, September 8, 2016 1461
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antigen-sorted by flow cytometry using the baits listed in Figures

2C and 2D. When comparing IgG memory B cell frequencies

following the first boost, BG505 core-GT3 NP delivered in Ribi

adjuvant showed the highest frequency of epitope-specific

memory B cells (Figure 2C). The same group showed the highest

frequency of epitope-specific memory B cells upon completion

of the full boosting schedule (Figure 2D).

Selection of Productive Mutations with Boosting
To determine whether consecutive boosting with tailored immu-

nogens selects for productive mutations, we divided the immu-

nized VRC01 gHmice into two test groups: (1) mice that received

only the eOD-GT8 60-mer prime and a single boost of BG505

GT3 (either SOSIP or NP), and (2) mice that received the com-

plete immunization protocol outlined in Figure 2A (with either

GT3 SOSIP or NP as the initial boost).We also analyzed four con-

trol groups of VRC01-gH mice that received the following regi-

mens: (1) a single immunization of eOD-GT8 60-mer, (2) three

successive immunizations of eOD-GT8 60-mer, (3) a single prim-

ing immunization of BG505 core-GT3NP, and (4) a single priming

immunization of BG505 SOSIP-GT3. Overall, we recovered 681

heavy-chain sequences, 753 light-chain sequences, and 430

paired heavy-light-chain sequences. In animals primed with

eOD-GT8 60-mer, the majority of paired sequences were

VRC01-like (defined as using VH1-2 and encoding a 5AA

LCDR3) (Figure 3A). In contrast, only one of seven mice primed

with BG505-GT3 (either SOSIP or NP) generated VRC01-like an-

tibodies, demonstrating the necessity of a high-affinity germline-

targeting prime (Figure 3A). Although single or multiple immuni-

zations with eOD-GT8 60-mer alone failed to induce substantial

SHM, heterologous boosting resulted in significantly mutated

antibody sequences, with the most mutated heavy-chain

sequence containing 17 amino acid mutations (17.3%) and a

mean amino-acid mutation frequency of 8.6% in mice that

were primed with eOD-GT8 60-mer and boosted with BG505

GT3 and twice with BG505 SOSIP N276A (Figures 3B and 3C).

We next examined whether vaccine-induced SHM was pro-

gressing toward mature VRC01. For each VH1-2 sequence, we

determined the total number of amino-acid mutations and

the number of amino-acid mutations shared with a panel of

VRC01-class mAbs (VRC01, PGV04, PGV20, VRC-CH31,

3BNC60, and 12A12) (Jardine et al., 2015) (Figure 3D). In order

to compare the observed frequency of shared VRC01-class

mutations to the frequency expected by random SHM, we per-

formed extremely deep antibody repertoire sequencing on two

healthy HIV-naive individuals and used that information to

compute the frequency of randomly incorporated VRC01-class

mutations in human VH1-2 antibody sequences (Figure 3D). In
Figure 1. Design of a Sequential Immunization Strategy Employing BG

(A) Design of boosting immunogens (BG505 GT3 and SOSIP N276D) presenting

nogen eOD-GT8.

(B) BG505 core-GT3 and SOSIP-GT3 were also designed to minimize off-target

(C) Conservation of T-help between sequential immunogens.When using BG505 c

while BG505 core gp120 is shared between the first and second boost. When usi

first boost.

(D) Affinity of germline-reverted (GLrev) and mature VRC01-class antibodies for

See also Figures S1, S2, and S3 and Tables S1 and S2.
animals given a single or triple immunization of eOD-GT8

60-mer alone, the frequency of VRC01-class mutations was

similar to that expected by chance. This finding was anticipated,

because eOD-GT8 has similar affinity for GLrev and mature

VRC01-class antibodies (Jardine et al., 2016a) and likely places

minimal selective pressure on the incorporation of VRC01-class

mutations. In animals boosted with more native-like immuno-

gens, however, VRC01-class mutations were selected much

more frequently than would be expected by chance: 126 of

130 VRC01-like heavy/light-chain paired antibody sequences

from animals boosted with GT3 and SOSIP N276A (2x) incorpo-

rated VRC01-class mutations at a frequency higher than the

calculated 95% confidence interval of random SHM. The step-

wise increase in SHM after each boost and the general failure

of GT3 to prime VRC01-class responses suggested efficient

recall of previously stimulated responses rather than recruitment

of primarily naive B cells upon each boost.

We also interrogated vaccine-elicited light chains for evidence

ofmaturation towardmature VRC01. This analysis is less straight-

forward than with heavy chains, because the light chains were

derived from mouse germline genes that would not be expected

to follow the same maturation pathway as human VRC01-class

light chains. Instead, we assessed two critical features: the distri-

bution of LCDR1 lengths and sequence convergence in LCDR3.

VRC01-class bnAbs encode relatively short LCDR1 loops (2AA–

8AA) by utilizing germline variable genes with short (6AA–8AA)

LCDR1s and in some caseswith further shortening bySHM-asso-

ciated deletions (Table S3) (West et al., 2012; Zhou et al., 2013).

Although indels are relatively rare (Briney et al., 2012a; Jardine

et al., 2016b) and likely will be difficult to elicit consistently by

vaccination (Jardine et al., 2016b), we were keenly interested in

whether sequential immunization could select antibodies with

short LCDR1s. Mice at all stages of the immunization program

had VRC01-like antibodies encoding 6AA LCDR1s (Figure 3G),

accomplished through the use of a variety of light-chain genes

with germline-encoded short LCDR1s (Figure 3H). We also noted

strong sequence convergence of immunogen-elicited antibodies

on a critical glutamate residue (Glu96) found in LCDR3 of VRC01

and most other VRC01-class bnAbs (Figure 3I) (West et al.,

2012; Zhou et al., 2015). While Glu96 was rarely present in light

chains recovered from GT8-primed mice (3%), the frequency

increasedupon successive boosts, and every antibody recovered

from mice primed with GT8 and boosted with GT3 and SOSIP

N276D (2x) contained the critical LCDR3 glutamate. Therefore,

mirroring thedataobtained fromheavy-chain sequences, sequen-

tial boosting successfully recalled primed VRC01-like precursors

and selected for the incorporation of specific genetic features

that evolved light chains toward VRC01-class bnAbs.
505 GT3

a CD4bs epitope that is increasingly more native-like than the priming immu-

responses.

ore-GT3NP, the nanoparticle base is shared between the prime and first boost,

ng BG505 SOSIP-GT3, a PADRE peptide is conserved between the prime and

BG505 core-GT3.

Cell 166, 1459–1470, September 8, 2016 1463



Figure 2. Immunization of VRC01 gH Mice

(A) Schedule for priming and boosting VRC01 gH

mice. Each immunization group consisted of five

animals, two of whichwere sacrificed following the

first boost (BG505 GT3 SOSIP or BG505 GT3 NP),

with the remaining three animals receiving the

entire immunization schedule before being sacri-

ficed.

(B) ELISA binding of VRC01 gH mouse serum

following boost 3. The immunogen used for boost

1 (B1) and the adjuvant used for all three boosts is

shown for each plot. Binding to r1-core-N276D

(filled circles) and r1-core-KO (filled squares) is

represented as area under the curve, and the dif-

ference ± SEM between binding to r1-core-N276D

and r1-core-KO is shown beneath each plot. Each

point represents a single animal that received the

entire immunization schedule, of which there are

three per immunization group. The value of each

point is the mean of three technical replicates. The

error bars represent mean ± SD.

(C) Frequency of epitope-specific IgG memory B

cells in VRC01-gHmice 14 days following boost 1,

asmeasured by binding to GT3 and lack of binding

to GT3-KO. Each point represents a single animal

that was sacrificed following the first boost, of

which there are two per group. The mean for each

group is indicated by a single horizontal bar.

(D) Frequency of epitope-specific IgG memory

B cells after the full immunization regimen,

measured by binding to r1-core-N276D and lack

of binding to r1-core-KO (for animals boosted

twice with GT3 and SOSIP N276D) or binding to

GT8 and lack of binding to GT8-KO (for animals

that were boosted twice with GT8). Each point

represents a single animal that received the entire

immunization schedule, of which there were three

per group. The error bars represent mean ± SD.

See also Figures S4 and S5.
Broad Serum Neutralization of N276A Viruses
Following immunization, purified serum IgG from each of the 12

mice receiving the entire immunization schedule was screened

on an 8-virus cross-clade indicator panel of near-native

(N276A) HIV isolates (Figure 4A). Ten of the 12 mice demon-

strated neutralization of at least one heterologous near-native

isolate, and six of themice developed cross-clade neutralization.

Five of six mice boosted with BG505 core-GT3 60-mer devel-

oped cross-clade neutralization compared to three of six mice

boosted with BG505 SOSIP-GT3. Interestingly, although all

boosting immunogens were derived from BG505, only two

mice acquired detectable neutralizing activity against BG505

N276D. Although five of six animals boosted with BG505 GT3

NP developed cross-clade neutralization compared to only two

of six animals immunized with BG505 SOSIP-GT3, the two

animals that exhibited the broadest neutralization were both

boosted with BG505 SOSIP-GT3.

To verify the results of the first immunization experiment, we

performed a repeat immunization with an additional 16 VRC01

gH mice, divided into two groups. All mice in the repeat experi-

ment were primed with eOD-GT8 60-mer and boosted with

BG505 core-GT3 NP according to the schedule in Figure 4B.
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One group of eight mice received BG505 SOSIP N276D for the

final two boosts, while the other group received a cocktail of

SOSIP N276D isolates, one each from clades A, B, and C

(ABC SOSIP N276D; Figure S3; Table S2). We did not observe

any difference between the two groups of mice with respect to

serum neutralization, with six mice in each group developing

cross-clade neutralization on a 7-virus panel of near-native iso-

lates (identical to the 8-virus panel used in the first round of im-

munizations, but without JRCSF) (Figure 4B). Only three mice

in each group developed neutralizing activity against BG505

N276A, suggesting that using a single isolate for the final two

boosts did not focus the immune response on the immunizing

isolate. This is also in agreement with the first immunizations,

as three of the six BG505 N276A-boosted mice that displayed

neutralizing activity developed heterologous neutralization

without acquiring detectable autologous neutralizing activity.

mAbs from Immunized Mice Broadly Neutralize
Near-Native Viruses
We expressed 25 mAbs from eight VRC01 gH mice that were

primed with GT8 and boosted with GT3 and SOSIP and tested

them for neutralizing activity on the 7-virus N276A virus panel



Figure 3. Genetic Maturation of Immunogen-Induced Anti-

bodies

(A) Frequency of VRC01-class (VH1-2 heavy chain and a 5AA long

LCDR3) antibodies among all paired heavy-light sequences

recovered per mouse, for different mice in each immunization

group. The numbers below each immunization group indicate the

number of mice from which paired sequences were recovered.

Each bubble represents antibody sequences from a single mouse

and the area of the bubble is proportional to the total number of

mAb sequences recovered.

(B) Frequency of heavy-chain nucleotide mutations for all se-

quences from all animals in each immunization group.

(C) Same as (B) but for amino acid mutations.

(D) Two-dimensional histograms of the number of VRC01-class-like

amino mutations (defined as those shared with VRC01, PGV04,

PGV20, VRC-CH31, 3BNC60, and 12A12) (Jardine et al., 2015)

versus the total number of amino acid mutations, for VH genes in all

VRC01-class pairs recovered from each immunization group. The

frequency of VRC01-class mutations expected by random SHM

(black line) is shown on each plot, as well as the 95% confidence

interval (gray shading).

(E) Locations of VRC01-class mutations (blue) and other mutations

(black) within heavy chains of all 130 VRC01-class pairs recovered

from 15 animals receiving the complete immunization schedule

(eOD-GT8 60-mer, BG505 GT3, and SOSIP N276D 2x). Positions at

which the antibody sequence was identical to GLRev VRC01 are

colored light gray.

(F) Locations of VRC01-class mutations (blue) and other mutations

(black) from 150 sequences randomly selected from a pool of 2,000

artificial antibody sequences that represent random SHM activity

layered on the VRC01 gH sequence. Synthetic mutations were only

generated in the variable gene region; hence, the lack of synthetic

mutations in CDR3 and FR4 (see STARMethods for amore detailed

explanation).

(G) Frequency of mouse light chain variable genes from paired

VRC01-class sequences recovered from different immunization

groups. Light-chain V-genes with germline-encoded short (%6AA)

LCDR1s are indicated with asterisks. See also Table S3.

(H) Frequency of light chains encoding a short (%6AA) LCDR1 for

each mouse in different immunization groups. The numbers below

each group indicate the number of mice from which paired se-

quences were recovered. Each bubble represents a single animal,

and the area of the bubble is proportional to the total number of

VRC01-like pairs.

(I) LCDR3 sequence logos from each paired VRC01-class mAb

in each immunization group compared to LCDR3 of VRC01.

Increasing convergence on critical LCDR3 residues found in VRC01

is highlighted.
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Figure 4. Serology of Immunized VRC01 gH

Mice

(A) Neutralization curves of total IgG purified from

sera of immunizedmice. Twelvemice were primed

with eOD-GT8 60-mer and boosted with either

core-GT3 NP or GT3 SOSIP (adjuvanted with

either Ribi or PBS) followed by an additional two

boosts with BG505 SOSIP N276D (with either Ribi

or PBS). The leftmost column describes the im-

munization regimen of the three plots immediately

to the right. Each neutralization plot shows

neutralization activity against an 8-virus panel of

near-native (N276A) virus isolates. Neutralization

values with error bars are mean ± SD for two

measurements. Total IgG concentrations are

shown in mg/ml. Best fit curves were calculated

with GraphPad Prism.

(B) Sixteen additional VRC01 gH mice were

primed with eOD-GT8 60-mer and boosted with

BG505 core-GT3 NP, followed by two boosts with

either BG505 SOSIP N276D in Ribi (top) or ABC

SOSIP N276D cocktail in Ribi (bottom). Purified

serum IgGwas screened against a 7-virus panel of

near-native (N276A) virus isolates, and ID50 values

are plotted for each mouse, as reciprocal serum

titers.
described earlier. Generally, neutralization breadth of mAbs from

each mouse correlated with the breadth of serum neutralization,

although one mouse (285) that showed no detectable serum

neutralization produced a single mAb with moderate neutraliza-

tion activity. Antibodies from several mice showed broad

neutralization on the 7-virus near-native panel, and mAbs from

mouse 286 neutralized select isolates with potency comparable

tomature VRC01 (Figure S6). ThemAbswere then screened on a

larger 25-virus panel of N276A isolates (Figure 5A). The broadest
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antibodies all came from a single mouse

that also had the broadest serum neutral-

ization (286, first boosted by SOSIP-

GT3). Three mAbs from this mouse

(Nem227, Nem10, and Nem11) were sur-

prisingly broad and potent, neutralizing

up to 48% of the viruses on the 25-virus

panel with a median IC50 of <1 mg/ml.

Because Nem10 and Nem11 neutral-

ized 191084 B7-19 N276A with potencies

comparable to mature VRC01, we tested

the ability of these twomAbs to neutralize

the fully native version of 191084 B7-19, a

tier 2 virus (Sellhorn et al., 2012; Hraber

et al., 2014). Both antibodies were able

to neutralize wild-type virus grown in

293S cells, albeit with lower potency (Fig-

ure 5B), suggesting that the mAbs can

accommodate the N276 glycan and

other CD4bs glycans when they are of

reduced size. Critically, both antibodies

also showed weak neutralizing activity

against fully native virus grown in 293T
cells (Figure 5B), which in comparison to the high potency

against 293T-grown N276A virus suggests that the antibodies

are capable of accommodating the N276 glycan to a degree

but at some energy cost to binding that precludes high-affinity

interaction. No neutralizing activity was detected for these

mAbs against the other native viruses in the 25-member panel

grown in 293T cells. It is important to note that enhanced po-

tency against virus isolates lacking the N276 glycan site is

consistent with a VRC01-like response. Mature VRC01 is



Figure 5. Neutralization by mAbs from Immunized Mice

(A) Neutralization breadth and potency of mAbs isolated from several mice

receiving the entire immunization program and screened on a 25-virus cross-

clade panel of near-native (N276A) isolates.

(B) Neutralization activity of two mAbs isolated from mouse 286. Nem10 (cir-

cles) and Nem11 (squares) neutralized wild-type 191084 B7-19 virus grown in

293T cells (black) or 293S cells (blue), as well as N276A virus grown in 293T

cells (red), with potency highest against N276A virus. In the bottom three

panels, neutralization curves for mature VRC01, F105, and b12 are shown for

comparison. Neutralization values with error bars are mean ± SD for two

measurements. Best fit curves were calculated with GraphPad Prism.

See also Figure S6 and Table S4.
substantially more potent against isolates lacking the N276

glycan, but removal of the N276 glycan site does not make tier

2 viruses more susceptible to the non-VRC01-class bnAb b12,

to CD4 IgG2, or to the CD4-binding site-directed non-neutral-

izing antibodies b6 or F105 (Jardine et al., 2016b). In summary,

an immunization program consisting of an eOD-GT8 60-mer

prime followed by boosts with BG505 GT3 (NP or SOSIP) and

SOSIP N276D elicited antibodies with broad neutralization on a

panel of near-native, tier-2 virus isolates, moderate neutraliza-

tion of one wild-type virus grown in 293S cells and weak neutral-

ization of one fully native tier-2 virus.

DISCUSSION

VRC01-class bnAbs are prototypical examples of the neutralizing

anti-HIV response that an optimal vaccine would elicit: they are
broadly and potently neutralizing; multiple VRC01-class bnAbs

have been shown to be protective against infection in animal

models; and VRC01-class naive B cell precursors are likely to be

present at a reasonable frequency in a large fraction of the popu-

lation thus offering targets to initiate vaccine elicitation. However,

induction of such responses remains a massive challenge in part

because VRC01-class bnAbs display exceptionally high levels of

somatic mutation and GLrev versions of these antibodies have

no detectable affinity for all native-like HIV Env molecules tested

thus far. A multi-step reductionist vaccine strategy has the poten-

tial to address both of these issues: an engineered germline-tar-

geting prime can activate VRC01-class precursors and generate

boostable VRC01-class memory B cells, and successive heterol-

ogous boosts with increasingly native-like immunogens can pro-

duce additive rounds of somatic mutation and gradually refine

the ability of maturing antibodies to recognize native HIV

Env. Development of minimally mutated variants of VRC01-class

antibodies that retain broad and potent neutralizing activity has

further raised expectation that a VRC01-like antibody response

is achievable by vaccination (Georgiev et al., 2014; Jardine et al.,

2016b).

We have previously reported a germline-targeting immu-

nogen, eOD-GT8 60-mer, capable of activating germline pre-

cursors of VRC01-class bnAbs. Because eOD-GT8 60-mer

requires a highly engineered CD4bs epitope to activate

VRC01-class precursors, antibodies elicited by priming with

eOD-GT8 60-mer do not show any detectable affinity for native

HIV Env (Jardine et al., 2015). Therefore, the lack of intermedi-

ate immunogens to bridge the gap between the engineered

CD4bs in eOD-GT8 60-mer and the native CD4bs in native-

like trimers like BG505 SOSIP has remained an obstacle to

the elicitation of neutralizing VRC01-class antibody responses.

Here, we report the development of core-GT3 and SOSIP-GT3,

vaccine components designed to shepherd primed VRC01-

class precursors toward intermediate VRC01-class function.

Boosting VRC01-gH mice with BG505-GT3 (NP or SOSIP)

and then with BG505 SOSIP N276D resulted in the elicitation

of highly mutated antibodies with a significant fraction of the

mutations shared with mature VRC01-class bnAbs. Enrichment

of VRC01-class mutations in heavy chains following immuniza-

tion, and convergence of light-chain CDR3 residues toward

the sequence of mature VRC01, indicate that boosting with

BG505-GT3 and SOSIP N276D establishes strong selective

pressure on specific VRC01-class mutations and places these

antibodies on a maturation trajectory consistent with partially

mature VRC01-class antibodies.

AlthoughboostedVRC01gHmice showedbroadneutralization

onapanel ofN276Aviruses, neutralizationof fully nativeviruscon-

taining the N276 glycan site was limited to a single heterologous

tier 2 isolate and was substantially less potent. While the weak

neutralization of fully native HIV indicates that there is still signifi-

cant work to be done before we are able to elicit a truly functional

broadly neutralizing response, these data strongly suggest

that the elicited responses are VRC01-class antibodies of inter-

mediate maturity. Mature VRC01, in contrast to non-neutralizing

mAbs that target the CD4bs, neutralizes N276A viruses much

more potently than fully native viruses, so the limited activity of

the elicited mAbs against fully native viruses containing the
Cell 166, 1459–1470, September 8, 2016 1467



N276 glycan site may simply be a normal feature of partially

mature VRC01-class antibodies (Jardine et al., 2016b; Kong

et al., 2016). Indeed, the observed preference for N276A is

not unexpected, as neither the prime nor any of the boosting im-

munogens contain the N276 glycan site. In mature VRC01-class

bnAbs, the N276 glycan is accommodated by use of a short

LCDR1 loop, either germline-encoded or generated through

SHM-mediated LCDR1 deletions (Jardine et al., 2016b; West

et al., 2012; Zhou et al., 2013). Encouragingly, we observed a sig-

nificant fraction of elicited mAbs with LCDR1 lengths matching

those of germline-encoded short LCDR1s inmature VRC01-class

bnAbs.

The relatively low VRC01-class precursor frequency and

substantial competition from other clones in the VRC01 gH

mouse pose a relatively high bar for elicitation of VRC01-class

responses. Thus, the ability to recall VRC01-class precursors

and drive maturation toward mature VRC01-class function vali-

dates the reductionist sequential immunization strategy and

represents a significant milestone in HIV vaccine development.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All animal studies were approved by The Scripps Research Institute Institutional Animal Care and Use Committee. VRC01 gH trans-

genic mice have been described previously (Jardine et al., 2015). Mice were 6-8 weeks old at the time of the first immunization. 63%

of the mice were male and 37% were female, with each immunization group containing a mix of male and female mice. Mice were

housed in a specific pathogen free environment.

Healthy, HIV-Negative Human PBMCs
Leukopaks from two heathy, HIV-negative individuals (a 28 year-old female and a 33 year-oldmale) were obtained from a commercial

vendor (AllCells) using a protocol approved by the Institutional Review Boards of both AllCells and The Scripps Research Institute.

Peripheral blood mononuclear cells (PBMCs) were isolated using gradient centrifugation.

METHOD DETAILS

Protein Production and Purification
eOD-GT8 and BG505 GT3 monomers and NPs were produced and purified as described previously (Jardine et al., 2015). BG505

SOSIP D664 and BG505-GT3 SOSIP gp140 trimers were produced in mammalian cells (HEK293F) by co-transfection of the trimer

gene and furin protease, at a trimer to furin ratio of 2:1. The pre-transfected cells were maintained in 293 Freestyle media (Life Tech-

nologies) in a humidified 37�CC02 incubator (8%), rotating at 135rpm at a density of�2.43 106 cells/ml. The genes were transfected

using 293fectin (Invitrogen) and harvested 4-5 days later. The cells were centrifuged at 4000rpm for 15min, filtered using 0.2 mm filter

(Millipore) and a protease inhibitor was added at ratio of 1ml per liter of supernatant (Protease Arrest, GBiosciences). The superna-

tants were purified by nickel affinity purification using His-Trap columns (GE), starting with a wash buffer (20mM Imidizole, 500 mM

NaCl, 20 mM Na2HPO4) and mixing with elution buffer (500 mM Imidizole, 500 mM NaCl, 20 mM Na2HPO4) using a linear gradient.

The trimers were then purified by semi-analytical size exclusion chromatography on a S200Increase 10-300 column (GE) in HBS

(10mM HEPES, 150mMNaCl). The trimer fractions were pooled, concentrated to 1mg/ml by using Ultracel 30K centrifugal spin con-

centrators (Millipore) and measuring concentration on a NanoDrop 2000c Spectrophotometer using the absorption signal at 280 nm,

frozen in thin-walled PCR tubes using liquid nitrogen, and then stored at �80�C. BG505 SOSIP trimers produced by this in-house

process have been thawed and analyzed by SECMALS, SPR, differential scanning calorimetry, and electron microscopy and

have been found to possess the native-like antigenic profile, thermal stability and closed trimeric structure that have been reported

by others for BG505 SOSIP purified by an antibody-affinity column followed by SEC (Julien et al., 2013; Lyumkis et al., 2013; Pancera

et al., 2014; Sanders et al., 2013).

The thermostable self-assembling lumazine sythase 60-mer (PDB ID: 1HQK), previously described for displaying eOD-GT6 (Jar-

dine et al., 2013) and eOD-GT8 (Jardine et al., 2015), was adapted to display stabilized extended HIV gp120 core (gp120core-e)

antigens from different strains. Initial expression tests with gp120core-e fused to the 1hqk sequence (gp120core-e-1hqk) via various

length linkers failed to produce fully assembled particles despite high expression levels of the subunits. We then tested co-transfec-

tion with a plasmid encoding only the base subunit of lumazine synthase to insert spacers into the 60-mer thereby reducing the

crowding on the surface. Of all gp120core-e-1hqk/base 1hqk plasmid DNA combinations tested (95/5, 90/10, 85/15, 80/20, 66/

33, 50/50, 33/60), an 80% gp120core-e-1hqk and 20% base 1hqk mixture produced the highest proportion of assembled 60mers.

Antibody Production
Antibodies were expressed in the pFUSEss human IgG1 vector (Invitrogen). Heavy- and light-chain plasmids were cotransfected (1:1

ratio) in 293 FreeStyle cells using 293fectin (Invitrogen). Transfections were performed according to themanufacturer’s protocol, and

antibody supernatants were harvested 4-5 days after transfection. Antibody supernatants were purified over Protein A Sepharose 4

Fast Flow (GE healthcare) columns, eluted with 0.1M citric acid (pH 3.0), and dialyzed against phosphate-buffered saline.

Surface Plasmon Resonance
Kinetics and affinities of antibody-antigen interactions were measured as described previously (Jardine et al., 2016a). Briefly, we

measured kinetics and affinities of antibody-antigen interactions on a ProteOn XPR36 (Bio-Rad) using GLC Sensor Chip (Bio-Rad)

and 1x HBS-EP+ pH 7.4 running buffer (20x stock from Teknova, Cat. No H8022) supplemented with BSA at 1mg/ml. We followed

the Human Antibody Capture Kit instructions (Cat. No BR-1008-39 from GE) to prepare chip surfaces for ligand capture. In a typical

experiment, about 6000 RU of capture antibody was amine-coupled in all 6 flow cells of the GLC Chip. Regeneration was accom-

plished using 3M Magnesium Chloride with 180 s contact time and injected four times per each cycle. Raw sensograms

were analyzed using ProteOnManager software (Bio-Rad), including interspot and column double referencing, and either Equilibrium

fits or Kinetic fits with Langmuir model, or both, were employed when applicable. Analyte concentrations were measured on a

NanoDrop 2000c Spectrophotometer using Absorption signal at 280 nm.
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Single-Cell Sorting by Flow Cytometry
Mice spleen and lymph node samples were processed for single B cell sorting based on previously described methods (Sok et al.,

2014; Tiller et al., 2008; Wu et al., 2011), with slight modifications. Mouse spleens were stained with primary fluorophore-conjugated

antibodies to murine CD4, CD8, F4/80, CD11c, Gr-1, CD19, B220, IgD, IgM, CD38, and GL7 markers. Memory B cells were selected

for the phenotype CD19+, B220+, CD4-, CD8-, F4/80-, CD11c-, Gr-1-, IgM-, IgD-, while CD38 and GL7 markers were monitored to

measure germinal center B cell frequencies (CD38-, GL7+). For antigen-specific staining, 50 nM of biotinylated AviTag r1-core-

N276D monomer and its CD4bs KO variant (r1-core-KO) were coupled to Streptavidin-AF488 and Streptavidin-PE (Life Technolo-

gies) in equimolar ratios, respectively. B cells of interest were single-cell sorted into 96 well plates containing lysis buffer on a BD

FACSAria Fusion sorter and immediately stored at �80�C (Sok et al., 2014; Tiller et al., 2008; Wu et al., 2011).

Single B Cell RT-PCR, Gene Amplification, and Cloning
Reverse transcription and subsequent PCR amplification of heavy and light chain variable genes were performed using SuperScript

III (Life Technologies) according to published protocols (Sok et al., 2014; Tiller et al., 2008; Wu et al., 2011). All PCR reactions were

performed in 25 ml volume with 2.5 ml of cDNA transcript using HotStar Taq DNA polymerase master mix (QIAGEN) and mixtures of

previously described primers (Tiller et al., 2008) that were supplemented with a human VH1-2 primer (Jardine et al., 2015). Second

round nested-PCR reactions were performed using Phusion proof reading polymerase (NEB). Two additional rounds of PCR were

performed using primers with barcodes specific to the plate number and well location as well as adapters appropriate for sequencing

on an Illumina MiSeq. This reaction was performed in a 25 ml volume with HotStar Taq DNA polymerase master mix (QIAGEN). Ampli-

fied IgG heavy- and light-chain variable regions were sequenced on an Illumina MiSeq (600-base v3 reagent kit; Illumina) and reads

corresponding to the same plate/well location were combined into consensus sequences. Germline assignment and sequence anno-

tation of the consensus sequences was performed with AbStar (https://.github.com/briney/abstar).

ELISA Assays
Ninety-six-well ELISA plates were coated overnight at 4�C with 50 uL PBS containing 100 ng of antigen per well. The wells were

washed four times with PBS containing 0.05% Tween 20 and blocked with 3% BSA at room temperature for 1 hr. Serial dilutions

of sera were then added to the wells, and the plates were incubated at room temperature for 1 hr. After washing four times, goat

anti-mouse IgG F(ab’)2 conjugated to alkaline phosphatase (Pierce), diluted 1:1000 in PBS containing 1% BSA and 0.025% Tween

20, was added to thewells. The plate was incubated at room temperature for 1 hr, washed four times, and the plate was developed by

adding 50 uL of alkaline phosphatase substrate (Sigma) to 5 ml alkaline phosphatase staining buffer (pH 9.8), according to the man-

ufacturer’s instructions. The optical density at 405 nmwas read on amicroplate reader (Molecular Devices). ELISA protocol for mAbs

was as follows. ELISA plates were coated overnight at 4�C with 25 ml of 4 mg/ml anti-His Ab (Epitope TagAntibody His.H8, MA1-

21315). The wells were washed 5 times with PBST (PBS with 0.2% Tween 20) and blocked with 5% milk at RT for 1 hr. The wells

were washed 5 times with PBST. mAb were diluted to 10 mg/mL in 0.1% milk PBST then added to the plates and incubated at RT

for 1 hr. After washing 5 times in PBST, goat anti-human HRP (Jackson) was diluted 1:5000 in 0.1%milk PBST, then 25 ml was added

to each well and the plate was incubated at RT for 1hr. After washing 5 times in PBST, the plate was developed by adding 50 ml TMB

ELISA solution (Thermofisher) and then 50 ml sulfuric acid stop solution after 10 min. The optical density at 450 nm was read on a

microplate reader (Molecular Devices).

Envelope Mutations
Mutations were introduced by site-directed mutagenesis using the QuikChange site-directed mutagenesis kit (Stratagene) and mu-

tants were verified by Sanger DNA sequencing.

Pseudovirus Production and Neutralization Assays
To produce pseudoviruses, plasmids encoding Env were co-transfected with an Env-deficient genomic backbone plasmid

(pSG3DEnv) in a 1:2 ratio with the transfection reagent Fugene 6 (Promega). Pseudoviruses were harvested 72 hr post transfection

for use in neutralization assays. Neutralizing activity was assessed using a single round of replication pseudovirus assay and TZM-bl

target cells, as described previously (Li et al., 2005; Walker et al., 2011). Briefly, TZM-bl cells were seeded in a 96-well flat bottom

plate at a concentration of 20,000 cells/well. The serially diluted virus/antibody mixture, which was pre-incubated for 1 hr, was

then added to the cells and luminescence was quantified 48 hr following infection via lysis and addition of Bright-GloTM Luciferase

substrate (Promega). To determine IC50 values, serial dilutions of mAbs were incubated with virus and the dose-response curves

were fitted using nonlinear regression.

Antibody NGS on HIV-Negative Donors
Leukopaks were obtained from two healthy, HIV-negative individuals (AllCells) and peripheral blood mononuclear cells (PBMCs)

were isolated by gradient centrifugation. PBMCs from each donor were separated into aliquots of 500 m cells and total RNA was

extracted separately from each PBMC aliquot (RNeasy Maxi Kit, QIAGEN). In quadruplicate, 10uL of each RNA aliquot was sepa-

rately amplified in 100uL RT-PCR reactions (OneStep RT-PCR Kit, QIAGEN) using previously reported primers (Briney et al.,

2012b) and with the following cycling conditions: 55�C for 30 min; 94�C for 5 min; 25 cycles of 94�C for 30 s, 55�C for 30 s,
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72�C for 2 min; 72�C for 7 min. RT-PCR reactions were purified using 0.8 volumes of SPRIselect magnetic beads (Beckman-

Coulter Genomics) and replicate RT-PCR reactions were eluted together in 50ul of water. In duplicate reactions for each pooled

RT-PCR sample, Illumina sequencing adapters and sample-specific indexes were added during a second round of PCR using 2uL

of purified RT-PCR product in 100uL of total reaction volume (HotStarTaq Plus; QIAGEN) and using the following thermal cycling

program: 94�C for 5 min; 10 cycles of 94�C for 30 s, 55�C for 30 s, 72C for 2 min; 72�C for 7 min. Indexed PCR products were

purified using 75uL of SPRIselect beads and eluted in 50uL of water. Samples from each donor were quantified using fluorometry

(Qubit; Life Technologies), pooled at approximately equimolar concentrations and each sample pool was requantified. The end

result was two pools of samples, each pool corresponding to a single subject and consisting of 18-20 separately barcoded sam-

ples that represent the amplification product of approximately 500 million PBMCs. Sequencing was then performed on an Illumina

HiSeq (HiSeq Rapid SBS Kit v2, 500 cycles).

Processing of NGS Sequence Data
Using the AbStar analysis pipeline (https://github.com/briney/abstar), raw sequencing reads were quality trimmed with Sickle

(https://github.com/najoshi/sickle), adapters were removed with cutadapt (Martin, 2011), and paired reads were merged with

PANDAseq (Masella et al., 2012). Germline gene assignment and sequence annotation was performed with AbStar and output

was deposited into a MongoDB database. For each sample, which represents the antibody sequences derived from approximately

500 m PBMCs, a non-redundant database of amino-acid sequences was created, including only heavy-chain sequences encoded

by IGHV1-2. Because each PBMC aliquot was processed separately, redundant copies across samples represents independent

occurrences of the same sequence and these redundancies were retained.

Synthetic Generation of Randomly Mutated VH1-2 Heavy-Chain Sequences
Separately for each subject, each IGHV1-2 heavy chain sequence was aligned to the AbStar-assigned germline allele of IGHV1-2 and

the position and mutated residue of each mutation were noted. These mutations were then used to generate synthetically mutated

antibody sequences based on the conditional probability of actually occurring somatic mutations. For example, if the first synthetic

mutation was an Alanine at position 24 (24A), the probability distribution for the subsequent synthetic mutation was computed using

NGS sequences that contain a naturally occurring 24A mutation. If the second mutation was 36F, then the probability distribution for

the third syntheticmutation would be computed fromNGS sequenceswith both 24A and 36F. Of note, prior mutations were excluded

from the conditional probability distribution. This ensures that, for example, the 24A mutation will not happen a second time in the

same sequence. It is also important to note that, due to technical limitations on sequencing length and the annealing location of

amplification primers midway through the framework 1 region (FR1), mutations in the first portion of FR1 were not sampled and

thuswere not used inmutation probability calculations. This is evident in the lack ofmutations near the start of synthetically generated

antibody sequences (Figure 3F). Because most VRC01-class mutations occur in CDR1 and CDR2, it is not likely that excluding FR1

mutations had a significant effect on the overall frequency of randomly occurring VRC01-class mutations.

Design of CD4bs Native-like Trimer Cocktail
A five member CD4bs cocktail was engineered on gp120-core by analyzing the sequence diversity of HIV strains at VRC01-class

epitope positions, which includes the V5 loop. Each member of the cocktail incorporates mutations from a single strain, and these

five strains were chosen to best mimic the diversity of HIV at VRC01-class epitope positions. We next created a native-like trimer

cocktail (ABC) by transferring the mutations from the gp120-core cocktail and adding new mutations found proximal to the

PGV04 VRC01-class bnAbs in the Env trimer structure (PDB ID: 3J5M) as well as inclusion of the V2 loop. Three of the five trimers

formed native-like structures and antigenic profiles and were used as boosting immunogens in the VRC01-gH mice.

Negative-Stain Electron Microscopy
BG505-based SOSIP trimers were analyzed by negative stain EM by adapting a previously published protocol (de Taeye et al., 2016).

Differential Scanning Calorimetry
MicroCal VP-Capillary differential scanning calorimeter (Malvern Instruments) was used for DSCmeasurements. The protein samples

were diluted into HEPES buffer to a final concentration of 0.25 mg/ml. The experiment scanned from 20�C to 90�C at a scan rate of

90�C/h. Data were analyzed by buffer correction, normalization, and baseline subtraction (Origin 7.0).

QUANTIFICATION AND STATISTICAL ANALYSIS

When computing the frequency of random incorporation of VRC01-classmutations, we iterated temporally throughmutations (taking

the first mutation from each sequence, then the first two mutations, etc) and determined the frequency of mutations from each syn-

thetic antibody sequence that were VRC01-class. Using the range of VRC01-class frequencies at each step, we computed the mean

frequency (shown as a black line Figure 3D) and the 95% confidence intervals (shown as gray shading surrounding the mean line

in Figure 3D). Both the mean and 95% CI were computed in Python using the Numpy and Scipy packages. All other statistical
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calculations were performed in Graphpad Prism. The number of replicates, the type of data represented in figure plots, and a descrip-

tion of the statistical method are provided in the applicable figure legends.

DATA AND SOFTWARE AVAILABILITY

Data Resources
The sequences of elicited antibodies reported in this paper have been deposited at GenBank: KX779470–KX779519 and KX808478–

KX808481 as well as in the GitHub repository: https://github.com/briney/VRC01gH-GT3.
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Supplemental Figures

Figure S1. Development of Boosting Immunogen GT3.1, Related to Figure 1

Sequence alignment of BG505 SOSIP.664, BG505 GT3.1 SOSIP, BG505 core, BG505 GT3.1 core, GT6, and GT8. Engineered mutations in GT3.1 are highlighted

in green.



Figure S2. Sequence and Characterization of BG505 Core-GT3.1 Nanoparticles, Related to Figure 1
(A) Sequences of the two genes co-transfected to produce BG505 core-GT3 nanoparticles (NPs). Co-transfection is 80% BG505 core GT3 60mer and 20%

LumSyn_1hqk_naked. In the BG505 core-GT3 60-mer gene, BG505 core-GT3 (blue) is fused to the lumazine synthase gene (red) via a flexible linker (cyan) as

shown.

(B) SECMALS analysis of BG505 core-GT3 NP.

(C) ELISA binding of mature VRC01 (black) or GLRev VRC01 (red) to BG505 core-GT3 NP.



Figure S3. Characterization and Structural Analysis of BG505 GT3.1 SOSIP and ABC SOSIP Trimers, Related to Figure 1

(A) Negative-stain 2D class average images of the GT3.1 SOSIP, CD4bs-B SOSIP and CD4bs-C SOSIP are shown. 37% of GT3.1 SOSIP trimers were classified

as closed native-like trimers, 63% as open native-like trimers and 0% as non-native-like trimers.

(B) DSC thermogram of GT3.1 SOSIP.

(C) ELISA analysis of mature and GLRev VRC01-class Ab binding to BG505 SOSIP and BG505 GT3.1 SOSIP.

(D) SPR sensograms of BG505 SOSIP and BG505 GT3.1 SOSIP as analytes and non-nAbs IgGs as ligands. Maximum analyte concentrations were 990 nM and

1.3 uM for BG505 SOSIP and BG505 GT3 SOSIP, respectively, and lower concentrations teseted were 4-fold dilutions.



Figure S4. Sequence and Antigenicity of the r1-Core Resurfaced Core gp120, Related to Figure 2

(A) Sequence alignment of r1-core with gp120core-e-2CC HxB2. The r1-core is derived from the core-e-2CC HxB2 protein that we previously described (Jardine

et al., 2015) and is also known as gp120core-e-2CC_HxB2_r1. A total of 78 surface positions have been modified, out of 358 total residues. Mutations are

classified in the third row of the alignment, with ‘‘’’: denoting a conservative mutation between amino acids with similar physicochemical properties; ’’ ’’ denoting a

non-conservative mutation; and ‘‘.’’ denoting a semi-conservative mutation.

(B) Dissociation constants for core-e-2CC HxB2, r1-core, and RSC3 (Wu et al., 2010) with VRC01-class bnAbs. (C) ELISA binding of mature VRC01 to core-

N276D (core-e-2CC HxB2 with the N276D mutation; inverted triangles), r1-core-N276D (circles), r1-core (squares) and r1-core-KO (triangles). Starting con-

centration of mature VRC01 was 2 mg/ml.



Figure S5. Serum Binding to r1-Core and r1-Core-KO, Related to Figure 2
Serum binding to r1-core (red, also referred to as HXcore) and r1-core-KO (blue, also referred to as HXcore KO). Representative binding curves from twelve mice

are shown. Best fit curves for binding to r1-core and r1-core-KO were used to compute the AUC shown in Figure 2B.



Figure S6. Broad Neutralization of Near-Native Viruses by VRC01-gH mAbs, Related to Figure 5

Neutralization of a 25-virus panel consisting of near-native (N276A) viruses, with IC50 values shown in mg/ml. Antibodies are grouped by the mouse from which

they were isolated. Blank entries indicate lack of neutralization (> 10 mg/ml), and antibody/virus combinations that were not tested are noted (ND). Neutralization

by mature VRC01 is shown for comparison. Tier phenotypes for the parent viruses lacking the N276Amutation were taken from (Binley et al., 2004; Seaman et al.,

2010; Sellhorn et al., 2012; Hraber et al., 2014).
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