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Abstract

Motivation: The identification of microRNA (miRNA) target sites is fundamentally important for

studying gene regulation. There are dozens of computational methods available for miRNA target

site prediction. Despite their existence, we still cannot reliably identify miRNA target sites, partially

due to our limited understanding of the characteristics of miRNA target sites. The recently pub-

lished CLASH (crosslinking ligation and sequencing of hybrids) data provide an unprecedented op-

portunity to study the characteristics of miRNA target sites and improve miRNA target site predic-

tion methods.

Results: Applying four different machine learning approaches to the CLASH data, we identified

seven new features of miRNA target sites. Combining these new features with those commonly

used by existing miRNA target prediction algorithms, we developed an approach called TarPmiR

for miRNA target site prediction. Testing on two human and one mouse non-CLASH datasets, we

showed that TarPmiR predicted more than 74.2% of true miRNA target sites in each dataset.

Compared with three existing approaches, we demonstrated that TarPmiR is superior to these

existing approaches in terms of better recall and better precision.

Availability and Implementation: The TarPmiR software is freely available at http://hulab.ucf.edu/re

search/projects/miRNA/TarPmiR/.

Contacts: haihu@cs.ucf.edu or xiaoman@mail.ucf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The prediction of microRNA (miRNA) target sites is critical in

understanding miRNA function and their involvement in various

biological processes (Lewis et al., 2003). MiRNAs are short noncod-

ing RNAs that bind and regulate their target mRNAs in a variety of

biological processes, such as cell development, differentiation, pro-

liferation and apoptosis pathways (Sassen et al., 2008; Schanen and

Li, 2011). The binding of miRNAs to their target mRNAs degrades

the target mRNAs and/or prevents the target mRNAs from being

translated into proteins, and thus modulates gene expression at the

post-transcriptional level (Axtell et al., 2011; Bartel, 2009; Muljo

et al., 2010; Wang et al., 2011). By identifying miRNA target sites,

the target mRNAs and the potential functional roles of miRNAs

may thus be discovered.

Several features are commonly believed to be important for pre-

dicting miRNA target sites. Among them, seed match, the exact se-

quence matching between the positions 2–7 of an miRNA and a

segment of 6 nucleotides (nt) long in target mRNAs, has been re-

ported to be essential for miRNA–mRNA binding (Brennecke et al.,

2005). Accessibility, which measures how likely a region in an

mRNA sequence is ‘open’ or accessible for an miRNA to bind, is

well known to be important for functional miRNA–mRNA binding

(Kertesz et al., 2007). In addition, other features such as AU content

(Grimson et al., 2007), folding energy (Enright et al., 2004;
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Grimson et al., 2007; Yousef et al., 2007) and conservation

(Helwak et al., 2013) are also regarded as informative indicators of

functional miRNA–mRNA bindings.

Dozens of tools for miRNA target site prediction have been de-

veloped in the past decade, based on different subsets of the afore-

mentioned features (Peterson et al., 2014). For instance, miRanda

(Enright et al., 2004) utilizes the features of seed match, conserva-

tion and free energy for target site prediction. TargetScan (Friedman

et al., 2009; Grimson et al., 2007) uses seed match, pairing of

mRNAs with 30 of miRNAs, local AU content, etc., for target site

identification. In addition to these traditional miRNA target site pre-

diction tools, recently, several tools based on next-generation

sequencing technologies have been developed (Chou et al., 2013;

Vejnar and Zdobnov, 2012; Wang et al., 2014). For instance,

miRTarCLIP (Chou et al., 2013) identifies miRNA target sites from

the data generated by high-throughput sequencing of RNA isolated

by crosslinking immunoprecipitation (HITS-CLIP) experiments (Chi

et al., 2009; Licatalosi et al., 2008) and photoactivatable-

ribonucleoside-enhanced crosslinking and immunoprecipitation

(PAR-CLIP) experiments (Hafner et al., 2010).

Despite the existence of dozens of computational methods, com-

putational identification of miRNA target sites remains a challeng-

ing problem partially due to our limited understanding of the

characteristics of miRNA target sites. For instance, although match-

ing seed is not always sufficient for a functional miRNA–mRNA

interaction (Brennecke et al., 2005; Didiano and Hobert, 2006), it

has been thought to be necessary for most animal miRNA–mRNA

binding. However, studies have shown non-canonical pairings that

allow G:U wobbles and even mismatches can be functional

(Brennecke et al., 2005; Didiano and Hobert, 2006). Recent cross-

linking ligation and sequencing of hybrids (CLASH) experiments

(Helwak et al., 2013) have further shown that seed match, including

canonical and non-canonical seed-matching, is not required for cer-

tain miRNA–mRNA interactions.

The CLASH experiments (Helwak et al., 2013) provide an un-

precedented opportunity to advance our understanding of miRNA

target sites and to develop better computational methods for

miRNA target site prediction. Compared with other high-

throughput experimental approaches such as HITS-CLIP (Chi et al.,

2009; Licatalosi et al., 2008) and PAR-CLIP (Hafner et al., 2010)

that identify miRNA target sequences only, CLASH experiments

provide both miRNAs and their corresponding target sequences.

With thousands of target sequences for dozens of miRNAs in one

CLASH experiment, new features of miRNA target sites may be

inferred and better computational methods for miRNA target site

prediction may be developed.

In this study, we developed a new approach for miRNA target

site prediction called Target Prediction for miRNAs (TarPmiR).

TarPmiR applies a random-forest-based approach to integrate six

conventional features and seven new features to predict miRNA tar-

get sites. These features were learned from the only CLASH dataset

in mammal that is made publically available by Helwak et al.

(2013). By cross-validation, we showed that TarPmiR had an aver-

age recall of 0.543 and an average precision of 0.181. Tested on

three independent datasets, including two human PAR-CLIP data-

sets and one mouse HITS-CLIP dataset, we demonstrated that

TarPmiR identified more than 74.2% of known miRNA target sites

in each dataset. Compared with three existing approaches, we found

that TarPmiR is superior to existing approaches, in terms of both

higher recall and higher precision. The TarPmiR method is imple-

mented in a python package, which is freely available at http://

hulab.ucf.edu/research/projects/miRNA/TarPmiR/.

2 Materials and Methods

2.1 Training and testing data

We downloaded 18 514 miRNA target sites of 399 miRNAs from

CLASH experiments (Helwak et al., 2013). These target sites were

considered as positive target sites. We also generated 18 514 corres-

ponding negative or ‘false’ target sites in a manner similar to a previ-

ous study (Li et al., 2014), with the following criteria: (i) A positive

site and its corresponding negative site are on the same mRNA; (ii)

The positive and its corresponding negative site has similar CG di-

nucleotide frequency; (iii) The positive and its corresponding nega-

tive site has similar number of the nucleotide G; (iv) A negative site

does not overlap with any positive site; and (v) With multiple candi-

date negative sites in an mRNA, select the one with the lowest fold-

ing energy.

We performed cross-validation to determine which machine

learning method to be used in TarPmiR and to assess the accuracy

of TarPmiR. To determine which method to be used, we randomly

chose 10 000 positive sites and 10 000 negative sites for training

and the remaining positive and negative sites for testing. We re-

peated this process five times and selected the method with the F2

scores. To test TarPmiR, we used the same five training datasets.

For a corresponding testing dataset, we input the mRNA sequences

that contain the corresponding remaining 8514 positive sites and the

remaining 8514 negative sites for testing. The final model used to

predict miRNA target sites by TarPmiR in this study was trained

using the first set of randomly chosen 10 000 positive sites and 10

000 negative sites.

We also collected two independent PAR-CLIP datasets from the

human HEK293 cell line for testing. PAR-CLIP datasets were used

because a large number of potential miRNA target regions called

crosslink-centered regions (CCRs) could be obtained from PAR-

CLIP. CCRs were considered as positive target sites. One PAR-CLIP

dataset with 17 310 CCRs was from Hafner et al. (2010). Only 16

041 of these CCRs were able to be mapped to mRNAs and resulted

in 10 023 target mRNAs. In this dataset, 60 miRNAs accounted for

more than 90% of total miRNA reads and 120 miRNAs accounted

for 99% of total miRNA reads. In other words, depending on the

cutoff to define active miRNAs, there were mainly 60 or 120

miRNAs related to these 17 310 CCRs. The other PAR-CLIP dataset

with 44 497 CCRs was obtained from Kishore et al. (2011). Only

43 251 of the 44 497 CCRs were able to be mapped to mRNAs and

resulted in 17 794 target mRNAs. Same as the first PAR-CLIP data-

set, depending on the cutoff to define active miRNAs, there were

mainly 60 or 120 related miRNAs in this dataset.

To test TarPmiR on general datasets, we compared the TarPmiR

predictions with the experimentally validated miRNA targets by

general methods in TarBase 7.0 (Vlachos et al., 2014). There are

421 086 POSITIVE TarBase 7.0 miRNA–mRNA interactions in

human. We chose the top 100 and 50 miRNAs, which had the larg-

est number of interactions in TabBase 7.0, for further analyses. The

rationale to choose top miRNAs was that we had more experimen-

tally validated target mRNAs of these miRNAs and thus could as-

sess the accuracy of TarPmiR and other tools better. The top 100

and 50 miRNAs in TarBase 7.0 accounted for 100 608 (23.9%) and

60 818 (14.4%) of human TarBase 7.0 interactions, respectively.

There were 9869 and 9823 mRNAs associated with these 100 and

50 top miRNAs, respectively. We ran TarPmiR and other tools with

the 100 or 50 miRNAs and the corresponding mRNAs they inter-

acted as input to predict miRNA target sites.

In addition to the human datasets, we collected an independent

HITS-CLIP dataset from the mouse cortex cell (Chi et al., 2009).
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This dataset provided an Argo–miRNA–mRNA ternary interaction

map related to 20 miRNA families, 2953 mRNAs and 11 080

miRNA–mRNA interactions. We further downloaded the corres-

ponding 119 miRNAs from the 20 miRNA families from miRBase

(Griffiths-Jones et al., 2006).

2.2 Potential features considered
We considered the following 18 features of miRNA target sites in

miRNA–mRNA duplexes: (i) folding energy; (ii) seed match; (iii) ac-

cessibility; (iv) AU content; (v) stem conservation; (vi) flanking con-

servation; (vii) difference between stem and flanking conservation;

(viii) m/e motif; (ix) the total number of paired positions; (x) the

length of the target mRNA region; (xi) the length of the largest con-

secutive pairs; (xii) the position of the largest consecutive pairs rela-

tive to the miRNA 50; (xiii) the length of the largest consecutive

pairs allowing 2 mismatches; (xiv) the position of the largest con-

secutive pairs allowing 2 mismatches; (xv) the number of paired pos-

itions at the miRNA 30 end, where 30 miRNA end was defined as the

last 7 positions of the miRNA; (xvi) the total number of paired pos-

itions in the seed region and the miRNA 30 end; (xvii) the difference

between the number of paired positions in the seed region and that

in the miRNA 30 end and (xviii) exon preference (Ding et al., 2015).

The first seven features had been used in existing tools (Peterson

et al., 2014), we thus considered them as conventional features.

Remaining features that had not been commonly used by miRNA-

target prediction tools were defined as ‘new’ features.

The detailed definition of all 18 features and how to calculate

their values are provided in the Supplementary File S1. We briefly

explain the m/e motif feature here, as it is not as self-evident as

others. The m/e motif describes how different positions in miRNAs

match the corresponding positions in target sites. Here two positions

match means that nucleotides at the two positions are complement

to each other. For instance, nucleotides at positions in miRNA seed

regions tend to match the nucleotides at the corresponding positions

in target sites and nucleotides at positions in other miRNA regions

tend to form mismatches or bulges with the corresponding positions

in target sites. We thus have a sequential pattern composed of two

letters ‘m’ and ‘e’ to describe preferred matching and non-matching

positions, respectively. To calculate the m/e scores, for each position

in miRNAs, we calculate a probability pi that this position matches

the corresponding position in target sites by using all positive target

sites in the training dataset. The m/e motif score of a potential target

site is calculated as score ¼ 1
x

Xx

i¼1
logpi, where x is the length of

the miRNA and x is smaller than 24.

2.3 Four computational methods for feature selection
Not all of the aforementioned 18 features are effective for target site

prediction. To select important features, we applied the following

four machine learning methods: step-wise logistic regression

(Ralston and Wilf, 1960), least absolute shrinkage and selection op-

erator (LASSO) (Tibshirani, 1996), randomized logistic regression

(Meinshausen and Bühlmann, 2010) and random forests (Svetnik

et al., 2003). The step-wise logistic regression repeatedly eliminates

the least significant feature until all significant features are found,

which is performed by using the GLM package in R (http://data.

princeton.edu/R/glms.html). LASSO constructs a linear model and

shrinks the coefficients of non-important features to zero. All fea-

tures with non-zero regression coefficients are ’selected’ as import-

ant features. We used the glmnet package (http://cran.r-project.org/

web/packages/glmnet/index.html) in R for the LASSO analysis. The

randomized logistic regression randomly chooses a portion of the

training samples and performs the logistic regression to select signifi-

cant features. It repeats this procedure many times and counts the

number of times each feature is selected, which is regarded as the im-

portance of the features. The randomized logistic regression was

performed with the scikit-learn package (http://scikit-learn.org/sta

ble/) in python. The random forests method grows many classifica-

tion trees and assigns a new object to the class most trees vote for

this object. We used the random forest model from sklearn package

(http://scikit-learn.org/stable/) in python. Each of the four methods

has been applied to select features in previous studies (Chen and Lin,

2006; Chou et al., 2001; D�ıaz-Uriarte and De Andres, 2006; Kim

and Kim, 2004; Kokaly and Clark, 1999; Ma and Huang, 2008;

Saeys et al., 2007; Yeo et al., 1995) and demonstrated good per-

formance in feature selection. We claim a feature as an important

feature if at least two of the four methods consider this feature im-

portant. By applying the four methods to the training data, we se-

lected 13 important features (Section 3.1).

2.4 TarPmiR, a random-forest-based approach for

miRNA target site prediction
With the 13 selected features, we developed a random-forest-based

approach called TarPmiR for miRNA target site prediction. We

chose the random forests method because we applied the above four

approaches to the aforementioned training and testing datasets and

found that random forests gave the best performance (Section 3.2).

TarPmiR predicts miRNA target sites in three steps with the in-

put of a set of miRNAs and a set of mRNAs. First, TarPmiR gener-

ates candidate target sites based on seed match or minimal folding

energy (Enright et al., 2004; Grimson et al., 2007; Yousef et al.,

2007). For a given miRNA, TarPmiR scans an mRNA sequence

with the seed region of the miRNA (positions 2–7) to find perfect

seed-matching sites. These sites are defined as the first set of candi-

date target sites. In addition, TarPmiR applies RNA-duplex from

the Vienna RNA package (Hofacker, 2003) to obtain the top target

sites with the lowest folding energy. These energy-based sites are

defined as the second set of candidate target sites. The combination

of seed match and folding energy helps TarPmiR to pick up almost

all true target sites from the beginning. Second, for each candidate

target sites, TarPmiR calculates the values of the 13 selected features

(Supplementary File S1). Finally, TarPmiR applies the trained

random-forest based predictor to predict target sites. The output of

the random-forest model is the predicted probability that a candi-

date target site is a true target site. We have compared nine probabil-

ity cutoffs to define target sites using the F2 score, since we put

more emphasis on the recall than the precision. The cutoffs 0.5 and

0.6 have almost the similar F2 scores, while the cutoff 0.5 has the

largest recall (Supplementary File S2). Therefore, we used 0.5 for the

following analyses. We provide a parameter –p in TarPmiR, users

can choose other cutoffs based on their own needs.

2.5 Comparisons with other methods
We compared TarPmiR with the following methods: targetScan

V2010 (Friedman et al., 2009; Grimson et al., 2007), targetScan

V2015 (Agarwal et al., 2015), miRanda (Enright et al., 2004) and

miRmap (Vejnar et al., 2013; Vejnar and Zdobnov, 2012). The

targetScan and miRanda are two of the most widely used miRNA tar-

get prediction tools. We used the following commands to run them:

targetScan V2010-perl targetscan.pl<miRNA.><mRNA>

<targetscan_out>, perl targetscan_60_context_scores.pl<miRNA>

<mRNA><targetscan_out><targetscan_context_score_out>;

targetSan V2015- perl targetscan_70.pl<miRNA><mRNA>
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<targetscan_out>, targetscan_70_BL_bins.pl<Mrna>><BL_bins_

out>, targetscan_70_BL_PCT.pl<miRNA><targetscan_out><BL_

bins_out>><PCT_out>, perl targetscan_count_8mers.pl<mir>

<Mrna_ORF>>ORF_out, perl targetscan_70_context_scores.pl

<miRNA><Mrna><PCT_out><tar.lengths.txt><ORF_out>

<contextþ score>; perl and miranda<miRNA><mRNA> -sc 120 –

en 1. MiRmap is a recently developed tool, which takes high-through-

put sequencing data as input to predict miRNA target sites. MiRmap

provides a python library and users can write a script to output

miRmap predictions with the functions in the library. We used similar

parameters as in Vejnar and Zdobnov (2012) when running miRmap.

3 Results

3.1 All but one conventional features and seven new

features were selected by different approaches
We applied four approaches to select important features from the 18

potential features. Each approach selected a similar but slightly dif-

ferent subset of features (Supplementary File S3). By defining fea-

tures selected by at least two approaches as important features, we

discovered 13 important features (Fig. 1) . They are: (i) folding en-

ergy; (ii) seed match; (iii) accessibility; (iv) AU content; (v) stem con-

servation; (vi) flanking conservation; (vii) m/e motif; (viii) the total

number of paired positions; (ix) the length of the target mRNA re-

gion; (x) the length of the largest consecutive pairings; (xi) the pos-

ition of the largest consecutive pairings relative to the 50 end of

miRNA; (xii) the number of paired positions at the miRNA 30 end.

Recall miRNA 30 end meant the last 7 positions of a miRNA and

(xiii) the difference between the number of paired positions in the

seed region and that in the miRNA 30 end.

An interesting observation from Figure 1 was the removal of one

and only one conventional feature, the difference between stem and

flanking conservation. This feature was used in previous studies

(Helwak et al., 2013; Pollard et al., 2010). The removal of this fea-

ture may be explained by the fact that most positive target sites from

CLASH experiments were from coding regions and there was not

much difference in terms of conservation between the seed regions

and the flanking regions of target sites in coding regions. Because

true target sites were functional and conserved, two features related

to the conservation in miRNA–mRNA stem regions and in flanking

regions around the stems, respectively, were selected.

In addition to the six selected conventional features (folding en-

ergy, seed-matching, accessibility, AU content), four new features

were selected by all four approaches (Fig. 1). These features were

the m/e motif, the length of the target site, the length of the largest

consecutive pairings and the difference between the number of

paired positions in the seed region and that in the miRNA 30 end.

The inclusion of the m/e motif implied that there existed preferred

matching positions shared by all miRNAs. The length of the target

site was selected, showing the importance of the binding preference

of miRNAs to mRNA regions with specific lengths. The length of

the largest consecutive pairing positions mattered, which extended

the concept of seed match, as seed match was just a simple case with

a long consecutive pairing positions. The difference between the

number of paired positions in the seed region and that in the

miRNA 30 end also suggested that the seed match may be unimport-

ant, given a high-quality 30 end region matching. This also sup-

ported the idea that a long consecutive matching region is critical

for functional miRNA target sites.

We further investigated the importance of the 13 selected fea-

tures by the rank-sum test (Mann and Whitney, 1947) (Fig. 1). In

brief, for each selected feature, we calculated its value for all positive

target sites and for their corresponding negative target sites. We

then compared the two groups of numbers by the rank-sum test.

The numbers on the right side of Figure 1 showed the P-values of

the corresponding features. All 13 selected features had a significant

difference between the positive target sites and negative sites (P-val-

ue<1.95e�5). Some significant features based on the rank-sum test

were not selected by the four machine learning methods, which may

be due to the fact that the contribution from the combination of the

selected 13 features can already replace that of these removed fea-

tures. In fact, we calculated the correlation between every pair of the

18 features and found that the discarded significant features correl-

ate well with certain important features (Supplementary File S3).

3.2 TarPmiR had a >55% recall and a >19.1% precision
With the 13 selected features, we developed the TarPmiR method to

predict miRNA target sites in the entire regions of mRNAs.

TarPmiR applied the random-forest-based approach for target site

Fig. 1. Features selected by four different methods
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prediction. It applied the random forests approach instead of the

other three approaches because when tested on five testing datasets,

the random-forests-based approach always gave better recalls and

precisions (Table 1).

To investigate the recall and precision of TarPmiR, we tested it

on the five testing datasets described in Material and Methods . The

precision and recall of TarPmiR in each set of test data were shown

in Table 1. Since the TarPmiR predictors built on each of the five

training datasets had similar precision and recall, we chose the first

TarPmiR predictor in our developed tool and in the following ana-

lyses. TarPmiR had a 55.1% recall and a 19.1% precision, which

were higher than the recall and precision of existing methods re-

viewed in Reczko et al. (2011). Note that TarPmiR had a much

smaller precision and recall than the above four methods (columns

2–5 in Table 1), because it predicted target sites from the entire

mRNA sequences instead of the 8514 sites that were not used for

training.

3.3 TarPmiR predicted the majority of true target sites in

independent datasets
To investigate whether TarPmiR was able to predict true target sites

in non-CLASH datasets, we applied it to two PAR-CLIP datasets in

the HEK293 cell (Material and Methods). There were 16 041 ‘true’

target sites in 10 023 mRNAs from the first dataset (dataset I).

Moreover, the reads of the top 60 miRNAs and top 120 miRNAs ac-

counted for more than 90% and 99%, respectively, of the total

PAR-CLIP reads in this dataset. By inputting 60 miRNAs and 10

023 mRNAs, TarPmiR predicted 240 605 target sites, which

included 74.2% of true target sites (Table 2). Similarly, by inputting

120 miRNAs and 10 023 mRNAs, TarPmiR predicted 481 135 tar-

get sites, which included 86.3% of true target sites (Table 2). The

percentages of correctly predicted true target sites should be con-

sidered underestimated, as a portion of true target sites may not be

target sites of the 60 or 120 miRNAs. By considering the 16 041

‘true’ target sites as all target sites in these mRNAs, we found that

TarPmiR had a>74% recall in this dataset (Table 2). For the second

PAR-CLIP dataset (dataset II), there were 43 251 ‘true’ target sites

in 17 794 mRNAs. Because the cell was the same as that in the first

PAR-CLIP dataset, we assumed that mainly 60 or 120 miRNAs

related to these target sites. Similarly, we found that TarPmiR was

able to identify 79.3% and 89.8% of ‘true’ target sites, when input-

ting 60 miRNAs and 120 miRNAs, respectively, together with the

17 794 mRNAs (Table 2).

The above analyses demonstrated the successful performance of

TarPmiR in the human dataset in the same cell type. It was unclear

how well TarPmiR performed in other species and in other cell

types. We thus applied TarPmiR to a third independent dataset, the

mouse HITS-CLIP dataset in the cortex cell (dataset III). There were

119 potential miRNAs and 2953 mRNAs involved in a total of 11

080 target sites. With the input of these 119 miRNAs and 2953

mRNAs, TarPmiR predicted 285 491 target sites in total. There

were 10 766 of the 11 080 (97.2%) target sites predicted by

TarPmiR (Table 2).

In addition to the above analyses on the crosslinking-based data,

we tested TarPmiR using the annotated miRNA–mRNA interactions

in TarBase 7.0 (dataset IV) (Table 2). For the top 50 miRNAs and

the corresponding 9823 target mRNAs, TarPmiR predicted 52.3%

of true target mRNAs (Methods). For the top 100 miRNAs and the

corresponding 9869 target mRNAs, TarPmiR predicted 52.6% of

true target mRNAs (Table 2) (Methods).

3.4 TarPmiR showed superior performance to existing

approaches
We compared TarPmiR with two widely used tools miRanda

(Enright et al., 2004), targetScan V2010 (Friedman et al., 2009;

Grimson et al., 2007), targetScan V2015 (Agarwal et al., 2015) and

a recently published tool, miRmap (Vejnar and Zdobnov, 2012;

Vejnar et al., 2013). The comparison was made on the CLASH data-

set, the three independent datasets and the two databases described

above. Overall, TarPmiR with the default cutoff 0.5 had a much

higher recall and precision than the three existing methods on the

CLASH dataset (Table 3). For instance, TarPmiR had a recall of

55.1%, which was at least 10% higher than other approaches.

TarPmiR had a precision of 19.1%, which was at least 0.2% higher

than other approaches.

On the three independent datasets, we compared TarPmiR with

the other three methods, including two versions of TargetScan

(Table 2). Overall, TarPmiR had a similar or much smaller number

of predicted target sites, while it had much more known miRNA tar-

get sites predicted in each dataset. By assuming the CCRs from

PAR-CLIP and target sites from HITS-CLIP were the only true

miRNA target sites in the corresponding mRNAs in the correspond-

ing datasets, we found that TarPmiR had a recall at least 3.9%

higher than other methods, and a precision at least 0.5% higher

than other methods. Note that the performance of all five methods

was relatively high in the mouse dataset than other independent

datasets, because miRNA–mRNA interactions in this dataset were

mainly inferred and majorly based on seed regions (Chi et al., 2009).

For the known miRNA–mRNA interactions in TarBase 7.0, we

also compared TarPmiR with other three methods (Table 2).

TarPmiR had a similar or slightly larger number of predicted inter-

actions, while it predicted much more known miRNA–mRNA inter-

actions. Similar to the results on crosslinking-based datasets,

TarPmiR had a much higher recall and a higher precision than other

methods.

We also compared the running speed of the all methods. Because

TarPmiR was a machine learning based method and it calculated

more features, it was much slower than miRanda and TargetScan.

Table 1. Recall and precision of different methods on five testing datasets

Lasso logistic Randomized logistic STEP-wise logistic Random forest TarPmiR

Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

T1 0.8549 0.7765 0.8539 0.7785 0.8559 0.7795 0.8740 0.8283 0.5514 0.1905

T2 0.8736 0.7713 0.8746 0.7730 0.8751 0.7736 0.8921 0.8296 0.5227 0.1626

T3 0.8315 0.7626 0.8319 0.7898 0.8320 0.7904 0.8686 0.8253 0.5303 0.1661

T4 0.836 0.7871 0.8411 0.7903 0.838 0.7894 0.8776 0.8266 0.5507 0.1902

T5 0.8856 0.7639 0.8878 0.7662 0.8895 0.7649 0.8989 0.8173 0.5583 0.1909
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The running speed was similar to that of Mirmap, which was also a

machine learning-based method. It was worth pointing out that, al-

though TarPmiR was relatively slow, its speed was reasonable. For

instance, it took TarPmiR about 7940 CPU s to predict target sites

of 20 miRNAs in 400 mRNA sequences, on average each 2000 nt

long.

4 Discussion

In this study, we identified seven new features together with six con-

ventional features of miRNA target sites. Based on these 13 selected

features, we developed a new approach called TarPmiR to predict

miRNA target sites. We tested TarPmiR on a human CLASH data-

set, two human PAR-CLIP datasets, a mouse HITS-CLIP dataset

and a general dataset from TarBase 7.0, and showed that TarPmiR

performed at least the same or better than three existing approaches.

TarPmiR is freely available at http://hulab.ucf.edu/research/projects/

miRNA/TarPmiR/.

Not all new features were completely new. We claimed some fea-

tures as new because they were not used by most of the existing

tools, such as miRanda (Enright et al., 2004), TargetScan (Friedman

et al., 2009; Grimson et al., 2007), DIANA-microT-CDS

(Maragkakis et al., 2009; Paraskevopoulou et al., 2013), rna22-gui

(Loher and Rigoutsos, 2012), TargetMiner (Bandyopadhyay and

Mitra, 2009), PITA (Kertesz et al., 2007) and RNAhybrid (Krüger

and Rehmsmeier, 2006). However, several new features were men-

tioned in previous studies directly or indirectly. For instance,

Thomson et al. (2011) stated that ‘some validated miRNA target

sites do not have a complete seed match but instead exhibit 11–12

continuous base pairs in the central region of the miRNA’. We

observed similar target sites in the CLASH dataset and proposed the

feature ‘The length and position of the longest consecutive pairs’.

The selected new features significantly improved the prediction

accuracy of TarPmiR. To show the contribution of the new features

to the accuracy of TarPmiR, we removed the seven new features and

retrained random forests in TarPmiR. Compared with the original

TarPmiR with 13 features, the recall and precision of the modified

TarPmiR dropped 8.6% and 9.7%, respectively.

We also compared the predicted true target sites by different

approaches (Supplementary File S4). TarPmiR had the largest

number of predicted true sites shared by other tools. However,

the percentage of shared true target sites predicted by TarPmiR

was lower than that of other tools, suggesting that TarPmiR

Table 2. Comparison of four methods on independent datasets

Dataset # of

miRNAs

input

Performance measurement TarPmiR miRanda TargetScan V2010 miRmap TargetScan V2015

I 60 # of predictions 240 605 246 311 219 304 504 447 215 885

% of correct predictions 11 904/16 041¼
74.2%

7061/16 041¼
44.0%

6248/16 041¼
39.0%

7121/16 041 ¼
44.4%

7472/16 041¼
46.6%

Recall 0.742 0.440 0.390 0.444 0.466

Precision 0.0495 0.0287 0.0285 0.014 0.0346

120 # of predictions 481 135 476 827 461 280 906 654 446 074

% of correct predictions 13 846/16 041¼
86.3%

9683/16 041¼
60.4%

8969/16 041¼
55.9%

10 342/16 041¼
64.5%

10 614/16 041¼
66.2%

Recall 0.863 0.604 0.559 0.645 0.662

Precision 0.0288 0.0203 0.0194 0.0114 0.0238

II 60 # of predictions 469 752 453 880 437 791 971 238 399 746

% of correct predictions 34 301/43 251 ¼
79.3%

20 378/43 251 ¼
47.1%

17 556/43 251 ¼
40.6%

20 543/43 251 ¼
47.5%

19 442/43 251¼
46.1%

Recall 0.793 0.471 0.406 0.475 0.461

Precision 0.0730 0.0449 0.0401 0.0211 0.0486

120 # of predictions 961 112 902 611 922 373 1 952 258 832 842

% of correct predictions 38 821/43 251¼
89.8%

23 762/43 251¼
54.9%

24 578/43 251¼
56.8%

25 667/43 251¼
59.3%

27 980/43 251¼
64.7%

Recall 0.898 0.549 0.568 0.593 0.647

Precision 0.0403 0.0263 0.0266 0.0131 0.0336

III 119 # of predictions 285 491 439 485 875 442 341 773 382 173

% of correct predictions 10 766/11 080¼
97.2%

9069/11 080¼
81.8%

10 084/11 080¼
91.0%

7840/11 080¼
70.8%

10 334/11 080¼
93.3%

Recall 0.972 0.818 0.910 0.708 0.933

Precision 0.0377 0.0206 0.0115 0.0229 0.0270

IV 50 # of predicted interactions 184 842 172 256 141 717 173 378 149 142

% of correct predictions 31 779/60 818¼
52.3%

25 326/60 818¼
41.6%

19 873/60 818¼
32.7%

19 785/60 818¼
32.5%

23 757/60 818¼
39.1%

Recall 0.523 0.416 0.327 0.325 0.391

Precision 0.172 0.147 0.140 0.114 0.159

100 # of predicted interactions 412 149 337 863 286 667 413 213 298 004

% of correct predictions 52 955/100 608¼
52.6%

41 722/100 608¼
41.5%

32 649/100 608¼
32.5%

33 412/100 608¼
33.2%

37 616/100 608¼
37.4%

Recall 0.526 0.415 0.325 0.332 0.374

Precision 0.128 0.123 0.114 0.081 0.126
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complements existing tools by predicting sites that cannot be pre-

dicted by other tools. In fact, there are 2090 ‘non-seed-matching’

sites in the first CLASH test dataset. TarPmiR was able to identify

1585 (75.8%) of those sites. On the other hand, miRanda and

TargetScan were only able to predict 173 (8.28%) and 34 (1.6%)

sites, respectively. This also suggested that the traditional tools

like TargetScan and miRanda almost cannot predict non-seed-

matching binding sites.

It is also worth mentioning that CLASH experiments may pick

up direct and indirect miRNA target sites. The Argonaut proteins

are guided by miRNAs to bind mRNAs, which is referred to as

miRNA-dependent recruitment and results in direct miRNA target

sites. There is also a miRNA-independent Argonaut protein recruit-

ment mechanism, in which Argonaut proteins are recruited to target

mRNAs by protein–protein interaction with RNA-binding proteins

and thus miRNAs do not interact with the mRNAs directly

(Meister, 2013). In the future, one may want to distinguish these

two types of target sites from the CLASH experiments before train-

ing predictors for target site prediction. In this way, we may also ob-

tain better features and improve the prediction accuracy.

Because of the existence of indirect target sites in CLASH data,

the recall of TarPmiR on the CLASH testing datasets may be under-

estimated. In fact, TarPmiR had a much higher recall on the three in-

dependent human and mouse datasets, suggesting that TarPmiR

may have a recall larger than 74%. On the other hand, TarPmiR

had a much lower precision on the independent datasets, which may

be underestimated as well. This was because we treated all segments

other than the CCRs or identified miRNA target sites in these inde-

pendent datasets as true negative target sites, which may not be the

case.

By the time of this study, only one CLASH dataset was publicly

available (Helwak et al., 2013). This human CLASH dataset was

used to train TarPmiR. We applied TarPmiR to human and mouse

datasets and demonstrated that it works well on these datasets. In

the future, with more CLASH datasets available, more important

miRNA target site features including tissue-specific features may be

discovered and the accuracy of TarPmiR, especially its precision,

may be further improved.
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