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Abstract

Motivation: Recent advances of next-generation sequence technologies have made it possible to

rapidly and inexpensively identify gene variations. Knowing the disease association of these gene

variations is important for early intervention to treat deadly diseases and provide possible targets

to cure these diseases. Genome-wide association studies (GWAS) have identified many individual

genes associated with common diseases. To exploit the large amount of data obtained from

GWAS studies and leverage our understanding of common as well as rare diseases, we have

developed a knowledge-based approach to predict gene–disease associations. We first derive

gene–gene mutual information by utilizing the cooccurrence of genes in known gene–disease asso-

ciation data. Subsequently, the mutual information is combined with known protein–protein inter-

action networks by a boosted tree regression method.

Results: The method called Know-GENE is compared with the method of random walking on the

heterogeneous network using the same input data. For a set of 960 diseases, using the same train-

ing data in testing in 3-fold cross-validation, the average recall rate within the top ranked 100 genes

by Know-GENE is 65.0% compared with 37.9% by the state of the art random walking on heteroge-

neous network. This significant improvement is mostly due to the inclusion of knowledge-based

mutual information.

Availability and Implementation: Predictions for genes associated with the 960 diseases are avail-

able at http://cssb2.biology.gatech.edu/knowgene.

Contact: skolnick@gatech.edu

1 Introduction

Complex diseases such as Parkinson’s Disease (PD) are attributed to

both genetic and/or environmental causes (Goldman, 2014).

Environmental toxins cause disease through their effects on genes

(Qi et al., 2014). Knowing the genes associated with a disease is use-

ful for preventing and curing the disease. It is also fundamentally im-

portant for understanding the biological functions of genes.

Genome-wide association studies (GWAS) posit that multiple, com-

mon small-risk variants interact to cause common diseases (Reich

and Lander, 2001; TA et al., 2010). GWAS relies on testing several

hundred thousand common genetic variants found throughout the

human genome in large-control cohorts. Over the past few years,

many gene loci have been implicated as associated with various

human diseases by GWAS (www.genome.gov/gwastudies/) as well

as linkage studies (Morton, 1955).

Despite the fruitful insights provided by GWAS, heritability esti-

mates have shown that large proportions of genetic risk underlying

complex disease have not yet been explained (Manolio et al., 2009).

This is due to lack of the ability to detect ‘common disease by rare

variants’ using a GWAS approach. The introduction of next-

generation sequencing technologies allows cost-effective sequencing

of entire genomes and has led to the discovery of numerous rare

variants in the human genome. The disease associations of these rare

variants cannot be inferred by GWAS for further experimental veri-

fication. Thus, alternative computational methods that predict the

association of gene with a given disease have been developed
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(Köhler et al., 2008; Li and Patra, 2010; Natarajan and Dhillon,

2014; Qian et al., 2014; Singh-Blom et al., 2013; van Driel et al.,

2006; Vanunu et al., 2010). The general idea of prediction methods

is the ‘guilt by association’ principle (Wolfe et al., 2005) with respect

to a set of known genes related to the given disease. The most fre-

quently used types of evidence for inference of association are (Piro

and Di Cunto, 2012): (i) text mining of the biomedical literature; (ii)

phenotype relationships such as disease–disease similarity; (iii) pro-

tein–protein interactions; (iv) regulatory information and (v) gene

expression information. For example, Van Driel et al. (2006) used a

text-mining approach to associate genes with human phenotypes

found in the Online Mendelian Inheritance in Man (OMIM) data-

base (Hamosh et al., 2002). Köhler et al. found gene–disease associ-

ations by using a global network distance measure—a random walk

analysis—for the definition of similarities in protein–protein inter-

action networks (the ‘interactome’). Encouragingly, they find that

this approach significantly outperforms previous methods based on

local distance measures in the interactome (Köhler et al., 2008). A

slightly modified approach called ‘network propagation’ that differs

from a random walk only in the normalization of the adjacency ma-

trix W representing the interactome (Qian et al., 2014; Vanunu

et al., 2010) has also been developed. The random walk method nor-

malizes the adjacency matrix W by columns (the summation of each

column equals to one), whereas the network propagation normalizes

W by the diagonal matrix: Wij ¼Wij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D i; ið ÞD j; jð Þ

p
, where

D i;kð Þ ¼
P

kWik. An extension of the random walk approach is

walking on a heterogeneous network that includes protein–protein

interaction, disease–disease and gene–disease networks (Li and

Patra, 2010). Singh-Blom et al. (2013) have developed a truncated

version of the random walking on a heterogeneous network by using

a limited steps for the walks but it also includes phenotypes from

multiple species. The method uses simple dampening coefficients for

longer walks and learns the coefficients for longer walks using a sup-

port vector machine (SVM) (Cortes and Vapnik, 1995). Natarajan

and Dhillon (2014)developed an inductive method that uses a ma-

chine learning approach to incorporate different biological sources

of evidence such as microarray expression data, gene functional

interaction data and disease-related textual data from human as

well as other species. The best performing of the aforementioned

methods for prioritizing genes associated with a given disease is the

inductive matrix completion developed by Natarajan and Dhillon

(2014). It has an average recall rate of 25% within the top 100

ranked genes. There are also many disease specific methods that

focus on a single or group of diseases to prioritize genes for further

experimental validation. For a survey of methods for predicting

gene–disease association, please see Piro and Di Cunto (2012).

Here, we develop a new type of approach for prioritizing candi-

date genes associated with a given disease. Our approach applies the

idea of word association in the context of texts (Church and Hanks,

1990) to gene–gene association in the context of diseases and then

employs gene–gene association to infer gene–disease association.

This is a knowledge-based approach that learns gene–gene associ-

ation propensity in diseases from known gene–disease association. It

is also analogous to methods of knowledge-based statistical poten-

tials for protein structure prediction that learn residue–residue or

atom–atom pairwise interaction potentials from experimental pro-

tein structures (Lu and Skolnick, 2001; Zhou and Zhou, 2002).

Mutual information (Fano, 1961) is used to measure the strength of

gene–gene association in a given disease. Owing to the increasing

amount of data for known gene–disease associations, the mutual in-

formation of gene–gene pairs can be derived from these known asso-

ciations. Subsequently, mutual information is combined with the

properties of the protein–protein physical interaction network by

means of boosted tree regression (Roe et al., 2006). The resulting

method called Know-GENE is then benchmarked in 3-fold cross-

validation (training on 2/3 of the known gene–disease associations

and testing on the remaining 1/3) and compared with network

propagation, random walking on the interactome as well as on the

heterogeneous network-based methods. For 960 diseases defined by

the medical subject headings (MeSHs) ontology with at least two

known seed genes associated with a given disease [as provided by

the OMIM and GWAS databases (Mottaz et al., 2008; Ramos et al.,

2014; Zhang et al., 2010)], using the same input evidence (known

gene–disease association and interactome), Know-GENE achieves a

significantly better recall rate (65.0%) within the top 100 ranked of

15 948 total screened genes compared with the network propaga-

tion (19.2%), the random walk on interactome (18.1%) and the

random walk on heterogeneous network (37.9%) methods. Thus,

Know-GENE is a promising method for prioritizing candidate genes

associated with a given disease. Then, we apply Know-GENE in pre-

diction mode (training on all known gene–disease associations) to

predict and rank genes in the human exome for each of the 960 dis-

eases. Likewise, our predictions can rank diseases for a given gene, a

useful feature for diagnosing diseases in a given mutated gene. It is

also useful for predicting and understanding possible side effects of

drug targets. Predictions are available for academic users at http://

cssb2.biology.gatech.edu/knowgene.

2 Materials and methods

This work is based on the assumption that gene–disease association

can be inferred from gene–gene functional interactions and protein–

protein physical interactions given a set of genes known to be associ-

ated with a given disease. We will utilize the known protein–protein

physical interaction network and known gene–disease associations

as provided by GWAS (Reich and Lander, 2001; TA et al., 2010)

and linkage studies (Morton, 1955).

2.1 Datasets and sources
Protein–protein physical interactions (interactome) are compiled

from the HIPPIE database (http://cbdm.mdc-berlin.de/tools/hippie/

hippie_current.txt) (Schaefer et al., 2012) and the work of Menche

et. al. (2015) (http://www.sciencemag.org/content/347/6224/12576

01/suppl/DC1). In total, there are 246 502 human protein–protein

interactions involving 15 948 genes/proteins that are experimentally

documented to involve regulatory, metabolic pathway and kinase–

substrate interactions. Among these, 3179 genes are known to be

associated with at least one disease. The interactome data can be

found at http://cssb2.biology.gatech.edu/knowgene.

We then compiled 960 diseases defined by the MeSH ontology

that have at least two associated genes (proteins) in the interactome

from two sources as in: (i) Ref. (Zhang et al., 2010) (http://www.bio

medcentral.com/1755-8794/3/1) that also uses the MeSH disease

definition and (ii) Ref. (Menche et al., 2015) (http://www.science

mag.org/content/347/6224/1257601/suppl/DC1). The primary sour-

ces of these data are from the genetic association databases (Becker

et al., 2004), the OMIM database (Hamosh et al., 2002) and the

GWAS databases (Mottaz et al., 2008; Ramos et al., 2014). This

provides 31 993 gene–disease associations for 3171 genes. Of these,

283 genes are known to be associated with only one disease, and the

disease association of the remaining 15 948 genes is unknown. The

known association data can also be found at http://cssb2.biology.

gatech.edu/knowgene.
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2.2 Core genes of a disease
It was found that even with an incomplete interactome, genes associ-

ated with given disease tend to interact with each other and form

connected clusters (Menche et al., 2015). A connected cluster con-

sists of genes directly connected (that is interact) to one another in

interactome space. Genes in the largest interacting cluster of a dis-

ease are called core genes. To measure if a cluster is formed by

chance or due to intrinsic properties of the disease, we conduct the

same statistical test as in Ref. (Menche et al., 2015). For the size

S (number of genes) of the cluster, we calculate the z-score:

z� score ¼ S� < Srand >

rðSrandÞ (1)

where<Srand> and r(Srand) are the average largest cluster size value

and SD of randomly picked Ng number of genes in the interaction

network. Here, Ng is the number of known genes of the considered

disease. To calculate the z-score, we simulate the random process

10 000 times. Each time, Ng genes were randomly selected from the

15 948 screened genes. Then, the size Srand of the largest connected

cluster from these Ng genes was obtained. The process was repeated

10 000 times. A cluster with z-score>1.65 (P-value<0.05) is con-

sidered significant. This leads to 537 of the 960 diseases having a

statistically significant cluster. The largest significant cluster of each

disease gives the core set of genes: i.e. core genes of the disease. The

average number of known genes for the 537 diseases having core

genes is 25.5; whereas for the 423 diseases not having core genes, it

is 9.4. Thus, a disease having core genes usually has more known

genes than diseases lacking core genes.

2.3 Gene–gene pairwise mutual information
Borrowing the idea of measuring word association strength (Church

and Hanks, 1990), to measure the strength of functional association

of two genes in diseases that might include the effect of direct phys-

ical interactions, we use their mutual information (Fano, 1961)

defined as:

Iðgx; gyÞ ¼ log
Pðgx; gyÞ

PðgxÞPðgyÞ
(2)

where P(gx), P(gy) are the probabilities of observing genes gx and gy,

independently in a given disease, and P(gx,gy) is the probability of

observing genes gx and gy, together in a given disease. If there is a

genuine association between genes gx and gy, then the joint probabil-

ity P(gx,gy) will be larger than that by chance, P(gx)P(gy). Thus,

I(gx,gy) will be>0.

In Know-GENE (knowledge-based approach for predicting

gene-disease association), the probabilities P(gx), P(gy) are estimated

by counting the number of genes gx, gy associated with diseases

N(gx) and N(gy), normalized by the number of diseases, Nd (here,

Nd¼960) and P(gx,gy) is estimated by counting the number of cooc-

currences of genes gx, gy associated with the disease N(gx, gy) nor-

malized by Nd.

2.4 Gene–disease association measures
We first consider the network distance of a gene to a given disease.

A unit network distance is defined as a path from one protein to an-

other with a direct connection in the interactome. We bin the short-

est distances of an unknown gene to all the known genes of a given

disease from 1 to 10 and fill each bin with the number of genes

known to be associated with the given disease, i.e. we have a vector

(n1, n2,. . ., n10) with Rni¼Ng, Ng is total number of known genes

and ni is the number of genes in the known set with shortest distance

i to the unknown gene. A similar histogram is also done for the core

genes (if there is no core gene, all 10 histogram values are zero).

We then consider the functional association strength of an un-

known gene gx to a given disease D that is defined as:

SðD; gxÞ ¼
X

gy2D

Pðgx; gyÞIðgx; gyÞ (3)

where the summation is over all known genes of the disease. P(gx,gy)

and I(gx,gy) are the probabilities of observing two genes associated

with a disease together and the resulting mutual information

[Equation (2)], respectively.

To combine the above network distances and functional associ-

ation strength, we employ the boosted tree regression machine learn-

ing method. Boosted tree regression has been employed in many

applications (Friedman and Meulman, 2003; Roe et al., 2006) and

has been shown to be much better than SVMs (Cortes and Vapnik,

1995) and random forests (Breiman, 2001) in predicting genomic

breeding values (Ogutu et al., 2011). It involves generating a se-

quence of decision trees; each grows on the basis of the residuals of

all previous trees (Roe et al., 2006; Thusberg et al., 2011). Here, a

decision tree regression is implemented with a maximal depth of

eight. The scoring function is represented as a boosted decision tree

(Roe et al., 2006):

f ðxÞ ¼
XNtree

m¼1

eTmðxÞ (4)

where Tm is a decision tree, e is the shrinkage factor or learning rate,

Ntree is the number of trees and x represents a set of features. In this

application, Ntree is set to 500 and e¼0.01. The following 23 fea-

tures are derived from the above network distances and mutual

information:

(a) 11 features: histogram of network distances to all known

genes (n1, n2,. . .,n10) plus the mean value R (ni� i)/Ng;

(b) 11 features: histogram of network distances to all core genes

(n1
c, n2

c,. . .,n10
c) plus the mean value R(ni

c� i)/Rni
c
; these values are

set to zero for diseases without core genes;

(c) 1 feature for the functional association strength S(D,gx) by

Equation (3).

2.5 Training and testing
We considered 960 diseases and 15 948 genes having protein–pro-

tein interactions. There are 15 310 080 gene–disease pairs with 31

993 known associations. To test our method, we perform 3-fold

cross-validation. All gene–disease pairs are randomly partitioned

into three approximately equal size sets. For each set, we use the

other two sets for training the boosted tree regression model and

predict scores for the third, testing set. In the training process, all

known associations are assigned an objective function value of 1

and unknown pairs assigned 0. This might introduce a few false

negatives because unknown ones could be true associations.

However, since the number of unknown associations is much larger

than possible true associations, the chance of a false negative is

small. In the 2/3 of training data pairs, only 0.2% of total gene–dis-

ease pairs are positives (assigned a value of 1). If all pairs are used

for training, the model will be overwhelmingly dominated by nega-

tive samples. Thus, we shall use only a partial set (�4%) of the nega-

tive pairs in the training data for actual training. This results in a

ratio of 1:20 positives versus negatives in the actual training data. In

either training or testing, when calculating the network distances,

the gene is removed from known set of genes for the given disease if

it is a known gene of the disease. Any known association is not
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counted in mutual information derivation by Equation (2) if it is

being tested. The predicted scores are then used to rank genes for

each disease. Similarly, one can also use the score to rank diseases of

a given gene.

2.6 Comparison to other methods
We shall compare Know-GENE to methods that utilize the same in-

put data (interactome and known set of gene–disease associations)

to tease out the effects of different methods. We will not compare

methods that use multiple other sources of data (Natarajan and

Dhillon, 2014; Singh-Blom et al., 2013) since they used more data,

and the effects of the methods themselves are unclear. We imple-

mented three other methods as described in the corresponding refer-

ences for comparison: random walk (Köhler et al., 2008), network

propagation (Vanunu et al., 2010) and random walk on a heteroge-

neous network (Li and Patra, 2010). Random walk on a heteroge-

neous network requires a disease–disease similarity matrix

calculated using MimMiner (van Driel et al., 2006). In order not to

introduce additional data, we used the overlap score to measure dis-

ease–disease similarity between disease d1 and d2 without using add-

itional input data (Goh et al., 2007):

Oðd1; d2Þ ¼
Number of overlapped genesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnumber of genes in d1Þðnumber of genes in d2Þ
p

(5)

2.7 Evaluation
For each of the 960 diseases, 15 948 genes are ranked according to

their tree regression scores. We evaluated the performance of the

methods using the following three criteria: AUC (area under the

Receiver Operating Characteristics (ROC) curve–true positive (TP)

rate/false positive (FP) rate curve), area under the precision/recall

curve (AUPR) and recall rate [the ratio (predicted TPs)/(total TPs)]

within the top 100 ranked genes. AUC measures discrimination,

that is, the ability of the test to correctly classify those with and

without the association to the given disease. Of the 15 948 genes,

the majority are true negatives (TNs) for a given disease, a large

number change in the number of FPs can lead to a small change in

the FP rate [FP/(FPþTN)] used in the ROC analysis (Davis and

Goadrich, 2006). On the other hand, AUPR, by comparing FPs to

TPs rather than TNs, captures the effect of the large number of

negative examples on the algorithm’s performance [precision¼TP/

(TPþFP)]. Thus, we include AUPR as an additional performance

measure. AUPR is sensitive to FPs among the top ranked genes (the

region where FP rate has the smallest value and precision has the

largest value). The recall rate gives the experimentalist’s expectation

of TPs. Based on our earlier work for ligand virtual screening for the

human proteome, the recall rate does not depend on whether the

known set of genes for a given disease is complete or partial whereas

precision, AUC and AUPR will (Zhou et al., 2015). Thus, recall rate

can be considered as having absolute meaning whereas precision,

AUC and AUPR are meaningful only for comparing different meth-

ods (and are not good for assessing the absolute performance of a

method).

3 Results

3.1 Overall performance
The 3-fold cross-validation for the 960 diseases is shown in Table 1

in comparison with the other three methods. Know-GENE with

AUC¼0.967, AUPR¼0.405 and recall rate 65.0% is the best for

all three measures. Random walk and network propagation methods

have very similar results whereas method by walking on the hetero-

geneous network has much better performance than both the ran-

dom walk and network propagation. This performance boost is due

to the inclusion of information from the gene–disease network. The

AUPR and recall rate within the top 100 genes by Know-GENE are

almost twice those by walking on a heterogeneous network. We also

see that network propagation is slightly better than a random walk.

A scatter plot of recall rates for 960 diseases by Know-GENE versus

method of walking on a heterogeneous network is given in Figure 1.

Know-GENE wins for 651 diseases whereas walking on the hetero-

geneous network wins for 129 diseases.

The histograms of recall rates by those two methods are given in

Figure 2. For the 960 diseases, Know-GENE has 71.4% of diseases

with a recall rate�50%, whereas walking on heterogeneous net-

work has 34.3% of diseases with a recall rate�50%. The P-value

for the difference between recall rates of Know-GENE and those of

walking on heterogeneous network is 2.8�10�92. Thus, Know-

GENE gives significant improvement over extant methods using

exactly the same input data.

3.2 Effects of mutual information and core genes
We next examine the effects of some factors in Know-GENE by

removing from the features: (i) the mutual information term or (ii)

the network distances to core genes. The results are also given in

Table 1, and clearly indicate that without the mutual information

Fig. 1. Scatter plot of recall rates within the top 100 genes by Know-GENE ver-

sus the walking on heterogeneous network approach

Table 1. Performance of methods for 960 diseases against 15 948

genes

Method Average

AUC

Average

AUPR

Average recall rate

within the top

100 genes (%)

Random walk 0.780 0.053 18.1

Network propagation 0.790 0.055 19.2

Random walk on

heterogeneous network

0.930 0.138 37.9

Know-GENE 0.967 0.405 65.0

Know-GENE without using

mutual information

0.700 0.167 24.0

Know-GENE without using

core gene

0.967 0.352 63.8
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term, Know-GENE performs significantly worse. Thus, the mutual

information term derived from the gene–disease network contributes

the most to the good performance of Know-GENE. This is consist-

ent with the method by walking on the heterogeneous network that

gets boosted performance by including the gene–disease network.

The fact that Know-GENE performs significantly better than walk-

ing on the heterogeneous network indicates that mutual information

captures more important information than the random walk ap-

proach. The terms related to core genes slightly affect the AUPR

(from 0.405 to 0.352) and recall rate (from 65.0 to 63.8%).

In Table 2, we separately examined the performance of the meth-

ods for the 537 diseases having core genes and 423 diseases with no

core genes. All methods have better performance for diseases having

core genes. The performance differences between the two datasets

are relatively larger for random walk and network propagation

methods where known gene–disease associations are not utilized.

Know-GENE has the best performance for all criteria for both data-

sets. It has a 70.7% average recall rate for the 537 diseases having

core genes.

3.3 Test on singleton genes
Next, we analyze the performance of methods for singleton genes

(Natarajan and Dhillon, 2014; Singh-Blom et al., 2013) defined as

having only one known disease association in the data. In this case,

the gene will have no mutual information contribution at training

and testing times because it is removed from the known association

with a given disease. Therefore, the test on singleton genes tests the

ability of the method to predict associations for genes that have no

known association to any disease. The test results are compiled in

Table 3 using measures of the average rank of genes and number of

genes ranked within the top 100 of 15 948 genes for a given disease.

Table 3 shows that all methods perform much poorer (the best recall

rate by network propagation method is 32/283¼11%) for singleton

genes than that for genes known to be associated with diseases.

Especially for Know-GENE and walking on heterogeneous network

that utilized known gene–disease associations, the recall rate is

around 1%. This is because these methods favor genes that have

known gene–disease associations and thus drag down the relative

ranks of those genes have no known gene–disease associations.

Therefore, in practice, if a gene has no known disease association,

one should use methods like network propagation, random walk or

Know-GENE without mutual information whose recall rate is 26/

283 or 9%

3.4 Predicting new genes associated with a given

disease
In the above benchmark tests, we examine only the top 100 ranked

genes for a given disease. In practice, some of the diseases are associ-

ated with fewer than 100 genes and some diseases might have asso-

ciations with more than 100 genes. We thus optimize a cutoff score

that will give the best binary classification (associated/not associ-

ated) measured by the Matthew’s correlation coefficient (MCC) for

the training data. This results in a cutoff score value of 0.45 and a

MCC of 0.878 for the training data. We then use all the 15 278 087

predicted gene–disease pair scores with unknown associations as a

random score distribution and fit the distribution to an extreme

value distribution with l¼0.002 and r¼0.0122. A cutoff of 0.45

corresponds to a P-value of 2.2�10�16. With a 0.45 cutoff, Know-

GENE will have an average per disease recall of 53.3%, slightly

worse than 65.0% within top 100 ranked genes (notice that AUC

and AUPR are cutoff independent).

Now, we examine predictions of new genes for specific diseases.

One example is PD (Goldman, 2014). In our test data, there are 38

genes known to be associated with PD. Using a cutoff score of 0.45,

Know-GENE predicts 149 genes associated with PD. Thirty-two

(84.2%) of the 38 known associated genes are among the predic-

tions. For the top 10 predicted genes with unknown PD association,

we searched the literature to support or disapprove our predictions,

with the results compiled in Table 4. Eight (80%) of the top 10

genes have supporting evidence giving a prediction precision of

�80% for this particular disease.

Table 2. Performance of methods to predict disease association of

the 15 948 genes for diseases with or without core genes

Method Average

AUC

Average

AUPR

Average recall rate

within the top

100 genes (%)

537 diseases having core genes

Random walk 0.810 0.082 25.7

Network propagation 0.823 0.086 27.1

Random walk on

heterogeneous network

0.957 0.179 41.2

Know-GENE 0.980 0.533 70.7

423 diseases not having core genes

Random walk 0.741 0.016 8.4

Network propagation 0.748 0.015 9.0

Random walk on

heterogeneous network

0.896 0.086 33.7

Know-GENE 0.951 0.243 57.7

Fig. 2. Fractions of diseases having recall rates within the top 100 gen-

es�given value by Know-GENE and the walking on heterogeneous network

approach, respectively

Table 3. Performance of different methods to assign diseases for

283 singleton genes

Method Average rank # of genes ranked

within the top

100 genes

Random walk 5485 24

Network propagation 5014 32

Random walk on

heterogeneous network

6948 3

Know-GENE 8005 3

Know-GENE without

using mutual information

5699 26

Know-GENE without

using core gene

7969 1
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3.5 Predicting new diseases associated with a given

gene
We can also examine the prediction of new diseases associated with

a given gene. Diseases having a score�0.45 are used as predictions

for a given gene. First, we examine the overall performance of dis-

ease prediction for a given gene by ranking diseases. The average

AUC, AUPR and recall rate for 2888 genes having at least two

known associated diseases are 0.969, 0.644 and 77.1%, respect-

ively. We then examine the overall frequency of a gene to be associ-

ated with diseases and check its correlation with the number of

interactions the corresponding protein has. The number of inter-

actions of a protein can be derived from the interactome. Figure 3

shows the average number of interactions a gene has versus the num-

ber of diseases associated with a given gene� given threshold. The

Pearson’s correlation coefficient (C.C.) between the average number

of interactions and threshold number of diseases when using known

associations is 0.906, and when using predicted associations by

Know-GENE with the cutoff of 0.45, it is 0.994, respectively. On

average, proteins having more physical interactions tend to be asso-

ciated with more diseases.

One example of predicted new diseases for a given gene is for

p53, a tumor suppressor gene. In our data, p53 is known to be asso-

ciated with 100 diseases, and 84 of them have a score�0.45.

Another 135 diseases also have a score�0.45 for p53 but these

have unknown associations with p53. We list the top 10 new dis-

eases predicted for the p53 gene in Table 5 along with supporting

evidence. Nine diseases are supported, and one disapproved by

literature.

We also find that disease recall rate is positively correlated with

the number of known disease associations a given gene has. The

Pearson’s C.C. is 0.173 for 2888 genes, which corresponds to a

P-value of 7.7�10�21. For the 283 singleton genes, the average

AUC, AUPR and recall rate by Know-GENE are 0.431, 0.012 and

0.0%, respectively, while the average AUC, AUPR and recall rate by

Know-GENE without using mutual information are 0.841, 0.050

and 24.7%, respectively (using the cutoff¼0.32 obtained by opti-

mizing MCC of the training set). Thus, Know-GENE is not good for

predicting disease association of genes not seen in any of the diseases

used for deriving the mutual information. In such cases, it would be

better to apply Know-GENE without using mutual information or

network propagation approach or the approach of simply walking

on interactome instead of heterogeneous network.

Finally, Using Know-GENE in prediction mode, i.e. training on

all data and making predictions for all genes, we provide all

prediction results and a stand-alone program for academic users at

http://cssb2.biology.gatech.edu/knowgene. The stand-alone pro-

gram can be used to plug in new diseases with known genes for

retraining the model and for predicting new genes associated with

the already included diseases. Instructions as to how to use the pro-

gram are also provided.

4 Discussion

We have developed a knowledge-based approach Know-GENE for

prioritizing genes associated with given disease. Likewise, it can also

prioritize diseases associated with a given gene. The novelty of

Know-GENE is in the derivation of gene–gene mutual information

from the cooccurrence frequency of pairs of genes in a large number

of diseases with a known set of gene–disease associations. With this

novel technique, Know-GENE performs much better than the best

existing method of walking on the heterogeneous network using

exactly the same input information (recall rate within top 100

ranked genes: 65.0 versus 37.9%). Both Know-GENE and walking

on the heterogeneous network utilize information from the known

gene–disease associations and perform much better than methods

without using this information. For example, the network propaga-

tion method has a recall rate of 19.2%, which is about half that by

the method of random walk on the heterogeneous network. All

tested methods perform better for diseases having core genes than

Table 4. Predicted top 10 new genes for PD by Know-GENE

Gene Score Evidence of support or disapprove

NUP62_HUMAN 0.971 Supported by ref. (Zatloukal et al., 2002)

HD_HUMAN 0.953 Causes Huntington’s disease that shares the same malfunctions within the motor sector of the nervous sys-

tem as PD (Delcomyn, 1998); http://serendip.brynmawr.edu/bb/neuro/neuro98/202s98-paper3/

Sangaramoothy3.html

PANK2_HUMAN 0.953 Disapproved by ref. (Klopstock et al., 2005)

TOR1A_HUMAN 0.952 Supported by ref. (Leung et al., 2001)

TOM40_HUMAN 0.935 Supported by ref. (Bender et al., 2013)

STX6_HUMAN 0.922 Disapprove by ref. (Trinh et al., 2013)

THAP1_HUMAN 0.890 Support: THAP1 gene is part of a family of THAP proteins that bind specific DNA sequences and regulate

cell proliferation through the pRB/E2F cell cycle target genes, a pathway recently proposed to be involved

in cell death in PD (Höglinger et al., 2007; Houlden et al., 2010)

IRF4_HUMAN 0.875 Supported by ref. (Soreq et al., 2008)

E2AK3_HUMAN 0.875 Supported by ref. (Dzamko et al., 2014)

A4_HUMAN 0.862 Supported by ref. (Schulte et al., 2015)

Fig. 3. Average number of interactions a gene has versus the number of dis-

eases associated with the gene�given value. The Pearson’s C.C. between

the average number of interactions and threshold number of diseases when

using known gene–disease associations is 0.906; when using predicted asso-

ciations by Know-GENE with a score�0.45, it is 0.994, respectively
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for those lacking core genes. When used for prioritizing diseases for

a given gene, Know-GENE has an average recall rate of 77.1%.

A disadvantage of Know-GENE as well as the method of walk-

ing on the heterogeneous network is that it does not perform well

for genes that are not present in any of the diseases used in deriving

the mutual information (Table 3 test on singletons). In practice, for

such genes, we can choose an alternative method such as Know-

GENE without using mutual information or the network propaga-

tion method.

Possible further improvement of Know-GENE could come from

enriching more genes with more verified disease associations and

including them in deriving mutual information. These could be ful-

filled by literature searches for associations with high Know-GENE

prediction scores and then using the supported associations in train-

ing. This process could be iterated. For those genes without any

known disease associations, other sources for deriving their mutual

information are sought. For example, one possibility is the covari-

ation of gene expression data in individuals with a given disease.

Cooccurrence of gene pairs in pathways is another possible source.

These and other alternatives will be explored in future work.
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