
ORIGINAL RESEARCH
ADULT BRAIN

Quantitative Susceptibility Mapping and R2* Measured
Changes during White Matter Lesion Development in Multiple

Sclerosis: Myelin Breakdown, Myelin Debris Degradation and
Removal, and Iron Accumulation

X Y. Zhang, X S.A. Gauthier, X A. Gupta, X W. Chen, X J. Comunale, X G.C.-Y. Chiang, X D. Zhou, X G. Askin, X W. Zhu, X D. Pitt,
and X Y. Wang

ABSTRACT

BACKGROUND AND PURPOSE: Quantitative susceptibility mapping and R2* are sensitive to myelin and iron changes in multiple sclerosis
lesions. This study was designed to characterize lesion changes on quantitative susceptibility mapping and R2* at various gadolinium-
enhancement stages.

MATERIALS AND METHODS: This study included 64 patients with MS with different enhancing patterns in white matter lesions: nodular,
shell-like, nonenhancing � 1 year old, and nonenhancing 1–3 years old. These represent acute, late acute, early chronic, and late chronic
lesions, respectively. Susceptibility values measured on quantitative susceptibility mapping and R2* values were compared among the 4
lesion types. Their differences were assessed with a generalized estimating equation, controlling for Expanded Disability Status Scale score,
age, and disease duration.

RESULTS: We analyzed 203 lesions: 80 were nodular-enhancing, of which 77 (96.2%) were isointense on quantitative susceptibility
mapping; 33 were shell-enhancing, of which 30 (90.9%) were hyperintense on quantitative susceptibility mapping; and 49 were nonen-
hancing lesions � 1 year old and 41 were nonenhancing lesions 1–3 years old, all of which were hyperintense on quantitative susceptibility
mapping. Their relative susceptibility/R2* values were 0.5 � 4.4 parts per billion/�5.6 � 2.9 Hz, 10.2 � 5.4 parts per billion/�8.0 � 2.6 Hz,
20.2 � 7.8 parts per billion/�3.1 � 2.3 Hz, and 33.2 � 8.2 parts per billion/�2.0 � 2.6 Hz, respectively, and were significantly different (P �

.005).

CONCLUSIONS: Early active MS lesions with nodular enhancement show R2* decrease but no quantitative susceptibility mapping change,
reflecting myelin breakdown; late active lesions with peripheral enhancement show R2* decrease and quantitative susceptibility mapping
increase in the lesion center, reflecting further degradation and removal of myelin debris; and early or late chronic nonenhancing lesions
show both quantitative susceptibility mapping and R2* increase, reflecting iron accumulation.

ABBREVIATIONS: Gd � gadolinium; GRE � gradient-echo; QSM � quantitative susceptibility mapping

The pathologic changes in active white matter MS lesions include

inflammatory infiltration with immune cells, myelin breakdown

and removal by microglia/macrophages, and iron accumulation in

immune cells within the lesion and the lesion periphery.1,2

MR imaging staging of white-matter MS lesions uses gadolin-

ium (Gd) enhancement to differentiate between active (enhanc-

ing) and nonactive (nonenhancing) lesions. However, enhance-

ment provides only a short window into inflammatory activity
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because it is preceded and outlasted by infiltration with immune

cells. Enhancement on T1WI � Gd reflects BBB damage, whereas

conventional MR imaging (T2WI and T1WI) sensitizing water

mobility does not reflect specific microstructural and composi-

tional changes in active lesions.3 In contrast, gradient-echo (GRE)

imaging is sensitive to the magnetic fields induced by inhomoge-

neous myelin and highly paramagnetic iron, offering the potential

to study microstructural and compositional changes in active MS

lesions.4-11 GRE imaging data can be processed to generate quan-

titative susceptibility mapping (QSM)12,13 and R2* maps. QSM

measures the underlying total magnetic susceptibility sources in a

voxel.7,12 R2* reflects the sum of the T2 relaxation rate that de-

pends on cellular content14 and the field dispersion associated

with susceptibility microstructural heterogeneity multiplied by

TE.6,12 Breakdown of intact myelin decreases R2* but does not

change QSM signal, whereas degradation of diamagnetic myelin

debris within macrophages and removal of degraded myelin in-

crease susceptibility measured on QSM. Finally, iron accumula-

tion increases both R2* and QSM.6,7,9,15,16 Therefore, by using

both QSM and R2*, we would be able to differentiate between

acute myelin breakdown, advanced myelin degradation and re-

moval, and iron accumulation in MS lesions.

MATERIALS AND METHODS
Patients
The Weill Cornell Medical College institutional review board ap-

proved this MR imaging study of patients with MS from August

2011 to April 2015. The inclusion criteria were patients who 1)

had undergone, within 12 months, 2

successive MRIs that included T2WI,

and pre- and post-Gd T1WI, with the

second MR imaging including a multi-

echo GRE imaging; and 2) had new hy-

perintense white matter lesions on the

second T2WI. A total of 65 patients met

the inclusion criteria; 1 patient was ex-

cluded a posteriori because of motion

artifacts on GRE images. The mean age

of the 64 patients (13 men and 51

women) was 35.29 � 8.12 years, with

age ranging from 11–51 years. Patients

were receiving the steroid Solu-

Medrol intravenous injection (3 mg/

day for 3 to 5 days). All their disease

durations ranged from 0 –17 years

(6.0 � 4.71 years) and the Expanded

Disability Status Scale scores ranged

from 0 – 6 (median, 1.5; interquartile

range, 3).

Imaging Protocol and
Reconstruction
MR imaging was performed on a 3T MR

scanner (Signa HDxt; GE Healthcare,

Milwaukee, Wisconsin) with an 8-chan-

nel head coil. The sequences for each pa-

tient were: 1) T2-weighted FSE (TR/

TE � 5250/86 msec, flip angle � 90°,

3-mm-thick section at 0 intervals, 416 � 256 matrix, 24-cm

FOV); 2) pre- and 3) post-Gd 3D inversion recovery-prepared

T1-weighted fast echo-spoiled gradient-echo (TR/TE � 8.8/3.4

msec, flip angle � 15°, 256 � 256 matrix, 24-cm FOV, 0.45 �

0.45 � 1.2 mm3 resolution); and 4) 3D T2*-weighted spoiled

multiecho GRE sequence. Imaging parameters for the multiecho

GRE sequence were as follows: TR � 57 msec; number of

echoes � 11; first TE � 4.3 msec; TE spacing � 4.8 msec; flip

angle � 20°; bandwidth � 244 kHz; FOV � 24 cm; thickness � 2

mm; acquisition matrix � 416 � 320; acquisition voxel size �

0.5 � 0.5 � 2 mm3. The GRE sequence was performed before Gd

injection, and the post-Gd T1WI was performed at 4 minutes

after Gd injection.

QSM was reconstructed from the data acquired with the GRE

sequence by using the morphology-enabled dipole inversion17

method, and R2* maps were generated by using a Gauss-Newton

least-squares mono-exponential fit of the 11 echoes.18 QSM and

R2* were reconstructed to a matrix of 512 � 512, resulting in a

voxel size of 0.47 � 0.47 � 2 mm3. All images of 1 patient were

registered to the QSM image by using the FMRIB Linear Image

Registration Tool (FLIRT; http://www.fmrib.ox.ac.uk/).19

Lesion Analysis
New white matter MS lesions were identified on the second MR

imaging, which was performed at 0.77 � 0.37 year after the first

MR imaging. Three neuroradiologists (J.C., A.G., and G.C.-Y.C.,

with 18, 9, and 8 years of experience, respectively) independently

FIG 1. Example of ROIs of an MS lesion and reference at normal-appearing WM in a 44-year-old
woman with MS. A, T2WI 8 months before the appearance of the enhancing lesion. B, T2WI, and
C, T1WI � Gd image of 1 enhancing MS lesion. D, T2WI, E, QSM, and F, R2* images with ROIs of the
enhancing lesion (left side) and the normal-appearing WM (right side). The vein inside the selected
normal-appearing WM is excluded.

1630 Zhang Sep 2016 www.ajnr.org



reviewed all images of the selected patients and classified new

lesions into 3 groups based on enhancement on T1WI � Gd

(nodular-enhancing [solid in 2D], shell-enhancing [ringlike in

2D],20 and nonenhancing � 1 year old). By comparison to an MR

imaging � 3 years old, lesions 1–3 years old (1.57 � 0.46 years;

error, 0.88 � 0.34 years) from the same cohort were identified as

a fourth group. The method of estimating lesion age referred to a

previous study.7 All these lesions were independently assessed by

the 3 neuroradiologists to be hyperintense or isointense on QSM

images. These 3 readings were combined, with all differences re-

solved by majority votes.

ROIs of the lesions were placed on the lesion’s hyperintense

area on T2-weighted images, but the edema around was not in-

cluded. If a lesion had a hypointense rim on T2WI, we also ex-

cluded this rim (example is shown on Fig 1). ROIs as normal-

appearing white matter references were drawn on the

contralateral mirror site of the lesions with similar shape and size.

FIG 2. MR images of a nodular-enhancing lesion in a 43-year-old man
with MS. A, T1WI � Gd. B, T2WI. C, QSM. D, R2*. A nodular-enhancing
lesion (arrows) is found on the T1WI � Gd and appears QSM isoin-
tense (C, box).

FIG 3. MR images of a shell-enhancing lesion in a 51-year-old man with
MS. A, T1WI � Gd. B, T2WI. C, QSM. D, R2*. A shell-enhancing lesion
(arrows) is found on the T1WI � Gd and appears slightly QSM hyper-
intense (C, box).

FIG 4. MR images of new T2 nonenhancing lesions (� 0.7 years old) in
a 42-year-old man with MS. A, T1WI � Gd. B, T2WI. C, QSM. D, R2*.
More than 3 new nonenhancing lesions (arrows) are found by com-
paring with the former MR imaging 0.7 years ago. All of them appear
QSM hyperintense (C, box) and have hyperintense rims on R2*.

FIG 5. MR images of a nonenhancing lesion that is 1.2 years old in a
48-year-old woman with MS. A, T1WI � Gd. B, T2WI. C, QSM. D, R2*.
One lesion appears hyperintense with a thick rim on QSM and hypoin-
tense on R2*.
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One neuroradiologist (Y.Z., 4 years of experience) drew the ROIs

on T2WI and then overlaid them on QSM and R2* maps by using

in-house ROI semiautomatic software implemented for OsiriX

(http://www.osirix-viewer.com). The veins and artifacts inside le-

sions on QSM and R2* were carefully removed by hand.

Statistical Analysis
The differences in relative susceptibilities and R2* values of le-

sions in the 4 groups were assessed by a generalized estimating

equation. This model assumes a Gaussian distribution and an

exchangeable correlation structure to account for the multiple

QSM and R2* measurements per patient. A multivariable model

was used to assess the independent effect of enhancing patterns on

QSM and R2*, controlling for Expanded Disability Status Scale

score, age, and disease duration. Age, Expanded Disability Status

Scale score, and disease duration were assessed for the presence of

collinearity. All analyses were performed in SAS Version 9.4 (SAS

Institute, Cary, North Carolina). P � .05 was considered statisti-

cally significant.

RESULTS
Lesion Pattern Characteristics
A total of 205 white matter lesions (115 enhancing and 90 nonen-

hancing) were examined in the 64 patients. Two enhancing le-

sions were excluded because they were too close to the cranium

and did not appear intact on QSM. The 203 white matter lesions

analyzed consisted of 80 (39.4%) new nodular-enhancing lesions,

33 (16.3%) shell-enhancing lesions, 49 (24.1%) new nonenhanc-

ing lesions � 1 year old, and 41 (20.2%) nonenhancing lesions

1–3 years old. Of the 80 new nodular-enhancing lesions, 77

(96.2%) appeared isointense on QSM and 3 (3.8%) lesions were

hyperintense on QSM. Of the 33 new shell-enhancing lesions, 30

(90.9%) appeared hyperintense on QSM and 3 (9.1%) lesions

were isointense on QSM. All nonenhancing lesions (49 [100%]

with age � 1 year and 41 [100%] with age 1–3 years old) were

hyperintense on QSM. Example images are shown in Figs 2–5.

Lesion Susceptibility and R2* Value Analyses
The reference areas on the contralateral site of 5 new lesions (3

nodular-enhancing, 1 shell-enhancing, and 1 nonenhancing)

were covered by MS lesions, which prevented us from assessing

reference values for susceptibilities and R2*. The relative suscep-

tibilities and R2* values were measured and calculated in 198

lesions (77 nodular-enhancing, 32 shell-enhancing, 48 nonen-

hancing with age � 1 year, and 41 nonenhancing with age 1–3

years).

Quantitative susceptibilities and R2* values are plotted in Fig 6

and are summarized in Table 1. Nodular-enhancing lesions had

relative susceptibilities near zero (0.5 � 4.4 parts per billion),

shell-enhancing lesions had increased relative susceptibilities
(10.2 � 5.4 parts per billion), nonenhancing lesions � 1 year old
had higher relative susceptibilities (20.2 � 7.8 parts per billion),
and nonenhancing lesions 1–3 years old had the highest relative
susceptibility (33.2 � 8.2 parts per billion). In the generalized
estimating equation model, after controlling for Expanded Dis-
ability Status Scale score, age, and disease duration, there were
significant differences between each 2 types of lesions (P � .0001).
The nodular-enhancing, shell-enhancing, and new nonenhancing

lesion types (� 1 year) had lower relative
susceptibilities compared with the more
stable lesions (1–3 years). These rela-
tionships were significant at all levels
(P � .0001). R2* values relative to nor-
mal-appearing WM were �5.6 � 2.9
Hz, �8.0 � 2.6 Hz, �3.1 � 2.3 Hz, and
�2.0 � 2.6 Hz of nodular-enhancing,
shell-enhancing, nonenhancing � 1
year old, and nonenhancing 1–3 years
old lesions, respectively. These relation-

FIG 6. Scatterplot of susceptibility relative to normal-appearing WM
measured on A, QSM and B, R2*. ppb indicates parts per billion.

Table 1: Quantitative susceptibility and R2* values for nodular-enhancing, shell-enhancing,
nonenhancing < 1 year, and nonenhancing 1–3 years old lesions

Nodular Shell
Nonenhancing

< 1 Year
Nonenhancing

1–3 Years
No. of lesions 77 32 48 41
No. of patients 32 21 27 20
Susceptibility relative

to NAWM, ppb
0.5 � 4.4 10.2 � 5.4 20.2 � 7.8 33.2 � 8.2

R2* values relative to
NAWM, Hz

�5.6 � 2.9 �8.0 � 2.6 �3.1 � 2.3 �2.0 � 2.6

Note:—NAWM indicates normal-appearing white matter; ppb, parts per billion.
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ships were maintained in the generalized estimating equation
model after controlling for the relevant clinical characteristics of
age, Expanded Disability Status Scale score, and disease duration.
Lesion types of nodular-enhancing, shell-enhancing, and new
nonenhancing lesions � 1 year old were associated with lower R2*
values compared with stable lesions (1–3 years), with shell-en-
hancing lesions having the largest relative decrease. All associa-
tions were significant at the P � .01 level. The results of statistical
analysis are shown in Tables 2 and 3.

DISCUSSION
Our results demonstrate the following QSM and R2* patterns for

MS lesions: nodular-enhancing lesions on T1WI � Gd that are

isointense on QSM and hypointense on R2*; susceptibility in-

creases and R2* decreases as lesions develop from nodular- to

ring-enhancing; and increase in susceptibility and R2* in lesions

that become nonenhancing. According to the imaging physics12

and the known pathophysiology of MS white matter lesions,2

these observed QSM and R2* patterns can be interpreted as se-

quential pathologic changes in myelin and iron content2 that oc-

cur during the early stages of lesion development. Our results

suggest that GRE data provide valuable information about MS

lesion pathology beyond conventional MR imaging sequences.

We used T1WI � Gd to characterize the temporal sequence of

MS lesions, which is important for pathologic interpretation of

QSM and R2* patterns. A new MS lesion initially presents as nod-

ular-enhancing on T1WI � Gd. This early stage of active lesion

development is characterized by breakdown of the BBB,21 mani-

festing as enhancement throughout the lesion on T1WI � Gd,20

and myelin damage and uptake by macrophages. The myelin

breaking down into debris leads to reduced microstructural het-

erogeneity, manifesting as R2* hypointensity. At this point, iron

does not accumulate in microglia and macrophages, making le-

sions isointense on QSM. Edema that is present in acute lesions as

detected on T2WI may dilute susceptibility contents, decreasing

both R2* and QSM. However, our data of QSM isointensity sug-

gest that edema only marginally affects QSM.

As the BBB is reconstituted starting in the center of the lesion,

within a timeframe of 1 week to several months (average 3

weeks),22,23 the enhancement pattern changes from nodular- to

shell-enhancing on T1WI � Gd.20,23,24 Myelin debris in the

lesion’s center is also being further degraded within macrophages,

some of which are moving out of the lesion into the peripheral

circulation2,25,26 (see myelin content difference between the 2 le-

sions in Fig 1 in Mehta et al27). This further reduces microstruc-

tural heterogeneity and manifests as reduction in R2*. Moreover,

loss of diamagnetic lipids increases susceptibility as measured on

QSM. Therefore, R2* decrease and QSM increase reflect degrada-

tion and removal of myelin debris.

As MS lesions mature into chronic lesions with a closed BBB,

iron accumulates predominantly in microglia at the lesion rim,

which has been suggested to promote proinflammatory polarization

in these cells.27,28 In contrast to demyelination that causes QSM in-

crease and R2* decrease, iron accumulation increases both QSM and

R2*. Therefore, simultaneous increase in both QSM and R2* when

lesions change from enhancing to nonenhancing may be interpreted

as iron accumulation in lesions. There may be slow removal of resid-

ual lip degradation products at the same time, but that would only

marginally increase QSM and decrease R2*.

It should be noted that BBB recovers at different rates,21,29

which may explain the few outliers that we observed. The QSM

hyperintensity in 3 nodular-enhancing lesions may be caused by

delayed repair of the BBB or accelerated degradation of myelin.

Likewise, the 3 shell-enhancing lesions that are QSM isointense

may exhibit fast repair of BBB leakage that leaves no time for

susceptibility contents (ie, myelin lipids) to change. Compared

with nodular-enhancing lesions, shell-enhancing lesions were

captured less frequently in this study and may have more complex

structures caused by dynamic pathology.30

MS lesion appearances on QSM and R2* captured at one time

point have been reported as heterogeneous or diverse.31 This di-

versity in susceptibility and R2* values may be caused by the cap-

ture of lesions in different stages of development. The dynamic

susceptibility change in MS lesion, suggested first by phase imag-

ing8 and cross-section QSM,7 has recently been confirmed in a

longitudinal QSM study.32 Our study provides further evidence

of dynamic changes in lesion susceptibility and R2*. Here, we

attempt to explore the relationship between lesion susceptibility

and R2* signal with the underlying pathophysiologic changes that

occur over time in MS lesions.2 This provides a biophysically

meaningful way to understand lesion diversity, which may be

translated into improved patient management.

For example, the data in Fig 6 suggest that 1) T2WI lesions

with relative susceptibility value near zero may be nodular-en-

hancing, opening another venue for the current exploration of

identifying enhancing lesions without Gd injection33-35 and 2)

simultaneous QSM and R2* increases indicate iron accumulation

Table 2: Statistical comparison of relative susceptibility from 4 groups of lesionsa

Comparison Nodular Shell <1 year
Shell �9.8621, (�11.7759, �7.9484), P � .0001 – –
�1 year �20.3123, (�23.0288, �17.5959), P � .0001 �10.4502, (�13.6101, �7.2903), P � .0001 –
1–3 years �32.6287, (�35.9416, �29.3159), P � .0001 �22.7666, (�26.2751, �19.2581), P � .0001 �12.3164, (�16.3345, �8.2983), P � .0001

a Data given as relative parameter estimates (�), (95% confidence limits), P value. Parameter estimates, 95% CI, and SE from multivariable generalized estimating equation,
controlling for age, Expanded Disability Status Scale score, and disease duration. � estimates were obtained by setting the reference category to different lesion group.

Table 3: Statistical comparison of relative R2* from 4 groups of lesionsa

Comparison Nodular Shell <1 year
Shell 2.3409, (1.4980, 3.1837), P � .0001 – –
� 1 year �2.4309, (�3.1174, �1.7443), P � .0001 �4.7717, (�5.7643, �3.7792), P � .0001 –
1–3 years �3.6385, (�4.6191, �2.6578), P � .0001 �5.9793, (�7.0956, �4.863.), P � .0001 �1.2076, (�2.0439, �0.3712), P � .0047

a Data given as relative parameter estimates (�), (95% confidence limits), P value. Parameter estimates, 95% CI, and SE from multivariable generalized estimating equation,
controlling for age, Expanded Disability Status Scale, and disease duration. � estimates were obtained by setting the reference category to different lesion group.
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in MS lesions, offering an in vivo tool to study iron-related in-

flammation behind a sealed BBB that cannot be demonstrated

with conventional imaging.

There were several limitations in our study. First, this study

was not based on longitudinal evaluation of MS lesions but on

cross-sectional data. Second, the number of shell-enhancing le-

sions was low compared with the other types of lesions. Thus, our

cross-sectional results warrant future longitudinal studies that

may address both limitations.

CONCLUSIONS
Early lesions that are nodular-enhancing on T1WI � Gd show de-

crease in R2* but no change in QSM, reflecting early breakdown of

myelin. As lesions evolve toward shell-enhancing, susceptibility in-

creases and R2* further decreases with progressive degradation and

removal of myelin debris. Finally, as lesions become chronic, iron

accumulation is demonstrated as both QSM and R2* increase. Thus,

combining QSM and R2* can help identify changes in myelin and

iron contents as white matter MS lesions develop.
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