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Recent advances in neuroscience have given us unprecedented
insight into the neural mechanisms of false memory, showing that
artificial memories can be inserted into the memory cells of the
hippocampus in a way that is indistinguishable from true memories.
However, this alone is not enough to explain how false memories
can arise naturally in the course of our daily lives. Cognitive psy-
chology has demonstrated that many instances of false memory,
both in the laboratory and the real world, can be attributed to
semantic interference. Whereas previous studies have found that
a diverse set of regions show some involvement in semantic false
memory, none have revealed the nature of the semantic represen-
tations underpinning the phenomenon. Here we use fMRI with
representational similarity analysis to search for a neural code
consistent with semantic false memory. We find clear evidence
that false memories emerge from a similarity-based neural code in
the temporal pole, a region that has been called the “semantic
hub” of the brain. We further show that each individual has a
partially unique semantic code within the temporal pole, and this
unique code can predict idiosyncratic patterns of memory errors.
Finally, we show that the same neural code can also predict vari-
ation in true-memory performance, consistent with an adaptive
perspective on false memory. Taken together, our findings reveal
the underlying structure of neural representations of semantic
knowledge, and how this semantic structure can both enhance
and distort our memories.

false memory | semantic | temporal pole | fMRI | pattern similarity

Each of us has a vast store of semantic knowledge that we apply
to incoming sensory data to extract meaning from the world

around us. Semantic representations are capable of capturing
important structural features of the world at many different levels
of abstraction, which allows for rapid and flexible responses to a
diverse array of environmental challenges. This preexisting
knowledge structure guides ongoing cognition, which usually aids
performance, but under some circumstances can lead us into error
(1–3). A striking example is the widely studied DRM (Deese,
Roediger, and McDermott) false-memory illusion (4, 5). In a
typical DRM task, subjects are asked to memorize a set of words
such as “snow,” “winter,” “ice,” and “warm.” After a delay, sub-
jects will typically falsely remember having seen the semantically
related word “cold.” It is widely agreed that this memory illusion is
driven by the semantic relatedness between words contained in
the encoding list (e.g., “snow”) and falsely remembered words that
were not actually presented (e.g., “cold”). As such, it is thought
that each list item automatically, but weakly, activates the se-
mantically related concept (Fig. 1A). This activation leads to
memory confusion, either through a cumulative priming of the
related lure (5, 6) or the encoding of the semantic overlap as a
“gist” memory (3), resulting in a false memory unless the error is
detected by some internal monitoring process (7). As such, the
DRM effect provides a powerful method for investigating the
nature of false memories, as well as the structure of semantic
knowledge and its effects on cognition.

Despite the well-characterized cognitive mechanisms involved in
the DRM effect (7), its neural basis is currently not well un-
derstood. Previous neuroimaging and patient studies have provided
robust evidence that a core network of regions in the medial and
lateral temporal lobe, as well as frontal and parietal regions (8–16),
is involved when encoding or retrieving semantic false memories.
However, a mechanistic understanding of how these regions gen-
erate false memories is lacking. In particular, although it is known
that the semantic relatedness between the different words drives
the illusion (3, 6, 7), little is known about the neural basis of this
semantic relatedness. Computational models of semantic cognition
propose that concepts are represented by a similarity-based code in
an amodal “semantic hub,” situated in the apex of the ventral
processing stream in the temporal pole (TP) (17, 18). Although
other regions, such as the temporo-parietal cortex (19), have also
been linked to the representation of abstract conceptual knowl-
edge, the TP is most consistently implicated in both patient and
neuroimaging studies (17, 20, 21).
These computational models therefore make clear predictions

about the expected neural basis of semantic false memory.
Namely, the TP semantic hub should contain a similarity-based
code, such that the neural representations of DRM words reflect
the known semantic relatedness between those words. Further-
more, the likelihood that a given word list will generate a false
memory should be directly related to the degree of neural
overlap. This prediction has not previously been investigated,
despite the clear implications for understanding both false
memory and the structure of semantic knowledge. Here we used
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fMRI to measure the neural overlap between DRM lists and
related lures, allowing us to directly test this prediction.

Results
We used a representational similarity analysis approach, which uses
the neural pattern similarity between pairs of stimuli to infer the
representational similarity (22). This method is therefore well-
suited for assessing neural overlap between semantic representa-
tions (23–25), as the degree of overlap should be directly reflected
in the representational similarity. We used this approach to mea-
sure the degree of neural overlap between each set of DRM words
and their related lure word (Fig. 1). Crucially, each DRM list is
known to have a different probability of inducing a false memory,
with some much greater than others (26, 27). If our prediction is
correct, then we should find a brain region displaying a direct
correspondence between the degree of neural overlap and false-
memory likelihood across the different DRM word lists. To
measure the neural representations of the DRM word lists, 18
participants viewed 40 separate four-word DRM lists, along with
the 40 associated lure words (Table S1), while we collected fMRI
data. While viewing the words, subjects performed an incidental
categorization task (man-made or natural) to ensure that all words
were processed at the semantic level. We used the canonical false-
recognition scores reported in ref. 27 as our measure of false-
memory likelihood, and applied a searchlight analysis (28) across
the whole brain to establish whether any brain region displayed
the predicted positive correlation between neural overlap and
false-memory likelihood.
This analysis revealed a significant cluster in the left TP, with no

other significant information anywhere else in the brain. This re-
sult provides evidence that this specific region is responsible for

encoding the semantic relatedness between thematically related
words (Fig. 2). Furthermore, this result shows that the precise
level of neural overlap in the TP predicts the probability that a
false memory will be constructed for a given DRM list. This
result is therefore fully consistent with the computational ac-
counts of semantic cognition, and demonstrates that a simi-
larity-based code in the TP is capable of generating false
memories. Strikingly, our measure of false-memory likelihood
is a canonical measure taken from an independent set of sub-
jects (26, 27), yet we can nevertheless successfully predict this
information based purely on the neural data of our group of
subjects. This result clearly demonstrates a robust level of
agreement across different individuals in the neural represen-
tation of the concepts contained within the DRM lists. Thus, it
appears that the TP is responsible for representing a shared
conceptual space, which is a vital component of successful
communication. For completeness, we also looked for regions
displaying a negative correlation between neural overlap and
false-memory likelihood, although it is not clear that any such
correlation is theoretically meaningful. This analysis revealed a
single significant cluster in the right superior frontal gyrus
[peak Montreal Neurological Institute (MNI) coordinates: 24,
20, 50; T = 4.71; cluster extent = 163 voxels].
To ensure that TP neural data are really capturing meaningful

semantic representations, we ran an additional set of control
analyses based on the functionally defined TP region of interest
(ROI). We examined four issues. First, if the neural data are
capturing semantic relatedness between the lure and list items,
we should find that each lure is more similar to its own list than
any other list, regardless of any differences in false-memory
strength. To assess this hypothesis, we directly compared the
neural similarity within and across the 40 DRM sets. As expected,
this analysis revealed a significant within-set increase in simi-
larity (Z = 3.11, P < 0.001). Second, to ensure that the neural
effects were not driven by extraneous factors, such as the word
frequency or the visual similarity of the lure and list words, we
investigated whether either of these factors correlated with the
TP neural overlap. Neither of these variables significantly pre-
dicted the neural data (word frequency: Z = 0.02, P = 0.98; visual
similarity: Z = 1.72, P = 0.085), suggesting that they are not
significant drivers of neural similarity in this region. Third, the
task performed in the scanner while subjects viewed the words
was a semantic category judgment task (man-made or natural).
Although the categorical nature of the encoding task was
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B

Fig. 1. Neural predictions arising from the DRM false-memory illusion.
(A) For three DRM lists, we illustrate the semantic relatedness between pre-
sented list items on the periphery, and the unseen related concept at the
center. Beneath each, we show the likelihood that this word list will produce a
false memory for the related lure concept. As semantic relatedness increases, so
does the false-memory likelihood. (B) We hypothesize that the neural repre-
sentation of DRM list items should overlap with the neural representation of
the related lure concept. The extent of overlap should directly reflect the se-
mantic relatedness and false-memory likelihood of each DRM lure concept. To
assess neural overlap for a DRM list, we measured the fMRI voxel pattern
similarity between the lure concept and the four related list items.
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Fig. 2. Neural overlap correlates with canonical false-memory likelihood in
the left TP. (A) A whole-brain searchlight analysis revealed a significant
cluster in the left TP (peak MNI coordinates: −51, 17, −25; T = 5.33; cluster
extent = 92 voxels), with no other region displaying any significant in-
formation. Results are displayed on a cortical surface map using BrainNet
Viewer (50). (B) To visualize the relationship between neural overlap and
false memory, we plot the group average neural overlap for each of the 40
DRM lists against canonical false-memory likelihood, using a cross-validation
procedure over subjects to avoid artificial inflation of the effect size. There is
a clear positive correlation between the two [r(39) = 0.40, P = 0.012],
showing that the degree of semantic relatedness in the neural data predicts
variation in false-memory strength across the DRM lists. This correlation
remains [r(39) = 0.45, P = 0.005] after removing two potential outliers.
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incidental to the effect of interest, it is nevertheless possible that
neural representations related to the semantic categories are
present in the TP. To investigate this possibility, we derived a
subject-specific measure of task category similarity between the
lure and list of each DRM set based on the pattern of responses
to each word (Methods). We found no evidence for a correlation
between this variable and the neural data (Z = 0.46, P = 0.65),
suggesting that task-driven categorical representations are not
present in the TP. Finally, we investigated whether the correlation
between neural overlap and canonical false-memory strength was
still present after controlling for the three additional variables
(word frequency, visual similarity, and categorical representation).
Using a cross-validated ROI approach to avoid issues of statistical
circularity (29), we found clear evidence for a significant corre-
lation between neural overlap and canonical false memory even
after partialling out the control variables (Z = 2.03, P = 0.021).
Thus, our result cannot be explained by extraneous factors, such as
word frequency or visual similarity. We further explored each of
these three control variables using a searchlight analysis across the
whole brain, but none of these analyses revealed any significant
results. Given that our measure of neural overlap is in each case
based on the average pattern expressed over four list items, this
will greatly reduce the power of any analysis that is not explicitly
based on some shared representation, such as the semantic gist.
Thus, it is not surprising that these additional analyses did not find
any significant results.
Although our initial analysis focused on shared semantic rep-

resentations, it is also likely that each of us forms some idiosyn-
cratic semantic associations through our own individual experience.
Such quirks of experience could lead to measurable differences in
neural overlap in the TP, and consequently to unique patterns of
false-memory errors. To investigate this possibility, our subjects
participated in a DRM false-memory recognition task in a sepa-
rate session that took place several weeks before the scanning
session. The same 40 DRM word lists were used in both the be-
havioral and scanning sessions, which allowed us to directly
compare each individual’s neural data to their behavioral data. As
expected, the subjects displayed the typical false-memory effect,
and committed a large number of high-confidence false alarms to
the critical lure stimuli (Fig. 3). As a further quality-control check,
we explored the consistency of our group’s behavioral data
compared with the canonical false-memory data (26, 27). The
group false-memory likelihood correlated positively with both
the canonical data r(39) = 0.53, P < 0.001 and with the neural
data (Z = 1.68, P = 0.047), demonstrating that this subject
group’s data conform to the canonical data, as expected.
However, the key question was whether there might be a

subject-specific mapping between the TP neural overlap and

the pattern of false-memory errors, over and above any shared
semantic representations common to all subjects. To assess this
issue we used an individuation analysis (30), comparing the
within-subject neural-behavioral correlations (unique semantic in-
formation) to the between-subject neural-behavioral correlations
(shared semantic information), in each case controlling for the
canonical false-memory strength to remove additional shared se-
mantic information. This analysis revealed a significantly higher
within- than between-subject correlation (Z = 2.63, P = 0.0042).
This result was still significant after additionally partialling out the
influence of the three control variables discussed above (Z = 2.55,
P = 0.0054). This result provides clear evidence that each indi-
vidual has a partially unique set of semantic representations within
the TP that have a direct impact on memory distortions (Fig. 4).
Such a result cannot be explained by incidental differences in TP
physiology or anatomy alone (30), as these more basic properties
would not predict each subject’s false-memory behavior.
Importantly, the fMRI and behavioral data for each subject were

collected in separate sessions separated by many weeks, which
demonstrates that the structure of neural overlap must be stable
over at least this length of time, and plausibly for much longer than
this. This long delay also minimized any possible influence of the
initial behavioral session on the neural representations expressed
during scanning. To further ensure that there was no such influ-
ence, we leveraged the wide range of intersession delay lengths
across subjects (minimum = 21 d, maximum = 239 d) that emerged
as a consequence of differences in subject availability. If there were
an effect of the behavioral session due to memory for the items
experienced in this session, we would expect this effect to degrade
over time. We would therefore expect a negative correlation be-
tween the length of delay and the strength of neural-behavioral
mapping. In fact, we find a nonsignificant positive correlation in-
stead (r = 0.26, P = 0.30), which clearly shows that memory is not
enhancing the neural overlap data.
The main focus of this study was to investigate the neural basis of

false memory. However, an adaptive perspective on false memory
(1) would suggest that our semantic knowledge should aid cogni-
tion under most circumstances (31), rather than purely acting as a
source of memory distortion. This hypothesis would therefore
suggest that we ought to also find a positive correlation between
neural overlap and true-memory performance for the list items that
were actually presented during encoding. As predicted, we found a
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Fig. 3. DRM recognition memory results. (A) Group mean hit rate, false-alarm
rate, and false-memory rate are displayed for all responses regardless of confi-
dence (blue), and for high-confidence responses (red). Error bars represent 95%
confidence intervals, adjusted for within-subject data (51). False-memory rates
were significantly greater than false-alarm rates (Z = 3.72, P < 0.001). This is clear
evidence for the expected false-memory illusion, which is robust even for high-
confidence responses (Z = 3.72, P < 0.001). (B) The group level false-memory
likelihood across the 40 DRM lists correlated positively [r(39) = 0.48, P = 0.0016]
with canonical false-recognition rates, even after removing one potential outlier
[r(39) = 0.48, P = 0.0018]. All plots are based on a sample size of 18.
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Fig. 4. The TP contains subject-specific neural information that predicts
false memories. (A) For each subject, we calculated the correlation between
their TP neural overlap and their pattern of false memories. As a baseline,
we calculated the average between-subject correlation. This procedure is
illustrated schematically. By comparing the within-subject (red arrow) and
average between-subject (blue arrows) correlations we can determine
whether there is any subject-specific mapping between the neural and be-
havioral data. (B) The group average within- and between-subject correla-
tions are displayed for the false-memory data. Error bars display 95%
confidence intervals on a one-way t test, corrected for within-subjects sta-
tistical testing (51). The asterisk denotes a significant difference at P < 0.05.
The plots are based on a sample size of 18.
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significant mapping between TP neural overlap and true-memory
strength (Z = 2.33, P = 0.0099), which remained significant after
partialling out the three control variables (Z = 2.29, P = 0.011).
We also investigated the possibility that subject-specific TP neural
coding might predict true memory performance, using an in-
dividuation analysis (30). This analysis demonstrated a significant
individuation effect in the TP for true memories (Z = 2.16, P =
0.016) as well as false memories, and this result remained signif-
icant after partialling out the three control variables (Z = 2.11, P =
0.017). These results provide clear evidence that the semantic
similarity code within this region can be beneficial for memory
systems, as well as potentially leading to memory distortions.

Discussion
Our study demonstrates that the left TP contains partially
overlapping neural representations of related concepts, and that
the extent of this neural overlap directly reflects the degree of
semantic similarity between the concepts. Furthermore, the
neural overlap between sets of related words predicts the like-
lihood of making a false-memory error. Together, these findings
provide support for neural network models of semantic cognition
that posit that the TP uses a similarity-based coding scheme to
sustain amodal-distributed representations of individual con-
cepts and their relationships within an abstract semantic space
(17, 18). The similarity-based coding of concepts has significant
computational advantages in allowing efficient generalization of
existing knowledge to novel situations, while still allowing for the
“grounding” of each concept in a full set of domain-specific
cortical regions mediated by the hub-like connectivity of the TP
(17, 18), consistent with previous studies showing that domain-
specific semantic features are indeed distributed across a wide
range of cortical regions (32). Nevertheless, our results suggest
that the type of coding scheme underpinning the representation
of concepts within the TP has a potential cost, specifically the
emergent property of false memories.
Although the focus of our experiment was on the structure of

semantic representations, it is likely that interactions between
regions in the medial temporal lobe and the TP are critical to the
generation of false memories. Although our data cannot speak
directly to this issue, there are two clear lines of evidence that are
suggestive. First, results from both rodent (33) and human re-
search (34) demonstrate that false memories can be established
as memory “engrams” within the hippocampus through artificial
manipulation or reconsolidation processes. Second, recent
studies have shown that recognition memory performance can be
driven by a dynamic similarity-based computation within the
medial temporal lobe at retrieval (35, 36). It is likely that both
sets of processes interact with the semantic representations in
the TP to produce semantic false memories (3, 6, 37).
Although we found clear evidence for a semantic code within

the left TP, other neighboring regions have also been found to
contain semantic-like representations, particularly the anterior
ventral temporal cortex (23, 25). We suggest that these differing
locations are likely a result of the level of semantic abstraction,
as the set of studies with results located in anterior ventral
temporal cortex all used highly concrete stimuli (either concrete
words, or direct use of pictures). In contrast, our set of words
included many abstract concepts, such as “justice” and “desire”
(see Table S1 for full list). This suggestion is supported by a
meta-analysis that contrasted regions involved in abstract versus
concrete words, and that found clear evidence that the TP was
more active in response to abstract words, whereas ventral
temporal regions showed a preference for concrete words (20).
Finally, our results show that each individual’s unique TP

representations predict idiosyncratic patterns of false-memory
errors. Given that we rely on shared semantic representation to
communicate with one another, this individual variation is per-
haps surprising. However, it does converge with other recent
reports of individual differences in semantic (30) and episodic
representation (38), and suggests that divergent personal expe-
rience is sufficient to create individually unique representations

in higher-level semantic regions. This striking finding suggests
that it will be important to further characterize both the shared
and individually unique aspects of semantic cognition to better
understand the nature of conceptual knowledge.

Methods
Participants. Eighteen participants (11 female; mean age 22, range 18–29) took
part in this study. All were right-handed native English speakers and had nor-
mal or corrected-to-normal vision. The study was approved by the University
College London Research Ethics Committee, and all participants gave written
consent to take part in the study.

Stimuli. For both testing sessions, the stimuli were drawn from 40 standard DRM
lists (26, 27). Because of time-constraints in the fMRI scanning session, we used
only four list items from each DRM list (see Fig. 3B for a comparison with pre-
vious results based on the full set of 15 list items). Where possible, these were
four list items with the highest associative strength with the lure word. However,
this full set of 40 lists contains some words that were repeated across lists, and
some words that we considered to be culturally specific in semantic relatedness
to the related concept, such as “United States” in the “army” list. Any unsuitable
list words were therefore excluded, and alternative, lower list associates were
included instead. The full set of stimuli used is displayed in Table S1. In total, the
stimulus set included 40 DRM related concept lures and 160 associated DRM list
items. For the behavioral DRM task, we also used an additional 160 unrelated
novel words, which were matched to the DRM lists in average concreteness
and frequency.

Overall Task Structure. All participants took part in two separate experimental
sessions separated by several weeks (mean 65 d,minimum= 21,maximum= 239).
The first session was a behavioral session involving a standard DRM recognition
paradigm, providing subject-specific false-memory data. The second session was
a fMRI session, where subjects viewed words taken from the DRM lists during an
incidental task. Both sessions are explained in more detail below. We elected to
run the behavioral session before the scanning session to ensure that repeated
exposure to the DRMwords during scanning did not impact the behavioral false-
memory effects. This procedure therefore provided us with a “pure”measure of
individual false memories. However, we acknowledge that this design could still
have the reverse problem, in that there could be carryover effects from the
behavioral to the fMRI session. The long delay between sessions was built in to
minimize any such issues, and further control analyses were conducted to further
rule this out as a problem (Results).

Behavioral DRM Task. The first testing session was purely behavioral and in-
volved a standard DRM recognition paradigm. During an encoding phase,
subjects were presented with 40 sets of four-word DRM lists. Participants were
instructed tomemorize asmany of the presentedwords as possible. For each list,
the four words were presented consecutively for 500ms each, with a 3-s interval
between each list. The order of the 40 lists was randomized across subjects.
Subjects were then required to perform an incidental visual discrimination task
for 15 min, to minimize explicit rehearsal of the list words. Following this dis-
traction period, subjectswere given a recognitionmemory test for the previously
presented words. All 160 DRM list words were presented, along with the 40
related concept lurewords and 160 unrelated novel words. This set of 360words
was presented one at a time, in a randomized order. Subjects were required to
decide whether they thought the wordwas old or new, alongwith a confidence
judgment (sure or unsure). The task was self-paced, with no time limit.

Behavioral DRM Analysis. The recognition-memory test data were analyzed to
determine whether the subjects displayed the expected false-memory effect.
To do this analysis, for each subject we calculated the proportion of words
categories as “old” for each of the three conditions (old items, new items, and
lure items). This approach provided us with a measure of the hit rate, false-
alarm rate, and for the related concept lure items, false-memory rate. To assess
whether the expected false-memory effects were present, we conducted a
series of planned pairwise comparisons between conditions using two-tailed
Wilcoxon signed rank tests. First, we tested for a basic recognition memory
effect by comparing the hit rate to the false-alarm rate. Next, we investigated
whether our subjects displayed the expected false-memory effect, by com-
paring the false-memory rate with the false-alarm rate. Following this process,
we compared false-memory and false-alarm rate using just high-confidence
trials to determine whether the task induced robust false memories. Finally,
we investigated whether the pattern of false-memory errors across the 40
DRM lists correlated with the false-memory rate reported by ref. 27, despite
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the fact that we used only the first four list associates from each DRM list, as
opposed to the full set of 15. All behavioral results are reported in Fig. 3.

fMRI Task. Several weeks later, the same subjects came in for a second testing
session in the fMRI scanner. During each of four functional runs, the 40 DRM
related concepts and160DRMlistwordswerepresentedoneata time for3 s each.
Thus, in total, each word was presented four times, to allow a more stable es-
timate of the neural pattern. The order of presentationwas randomized,with the
additional constraint that words from the same DRM set were never presented
consecutively. The behavioral task involved a semantic category decision for each
presented word. Specifically, subjects had to decide whether they thought each
word was more related to the category of “man-made” or “natural,” and in-
dicate this by pressing the relevant button. Because we were simply interested in
measuring the neural patterns expressed for each DRM concept, the task itself
was incidental. However, we reasoned that a semantic categorization task would
require the subjects to fully process the semantic meaning of each word. The fact
that each word would be repeated four times during scanning introduces a
possible source of noise because of novelty effects on the first presentation. We
therefore allowed the subjects one practice block before entering the scanner to
reduce any novelty signals in the subsequent scanning session.

MRI Scan Details. It is well known that fMRI of the TPs can be problematic
because of susceptibility artifacts (signal dropout) in this region, which can
substantially reduce blood-oxygen level-dependent (BOLD) sensitivity (39). We
therefore elected to use a 1.5 Tesla MRI scanner, which suffers from less-pro-
nounced dropout in this region, and therefore can actually have greater BOLD
sensitivity than higher field-strength scanners (40). The precise sequences used
were further optimized to reduce signal dropout in ventral anterior regions,
including the TP. All MRI data were collected using a Siemens Avanto 1.5 Tesla
MRI scanner with a 32-channel head coil at the Birkbeck-UCL Centre for Neu-
roimaging in London. The functional data were acquired using a gradient-echo
echo-planar imaging sequence in an ascending sequence, with a slice thickness
of 2 mm and a 1-mm gap, TR = 85 ms, TE = 50 ms, slice tilt = −30°, field-of-view
192 mm, and matrix size 64 × 64. The whole brain was acquired with 40 slices,
leading to a volume acquisition time of 3.4 s. The precise slice tilt was chosen as
a compromise between sensitivity, coverage, and speed (40, 41). Following
functional imaging, an anatomical image was acquired for each participant
(T1-weighted FLASH, TR = 12 ms, TE = 5.6 ms, 1-mm3 resolution).

fMRI Preprocessing. The first six functional volumes were discarded to allow for
T1 equilibration. The remaining data were slice-time corrected and spatially
realigned. Each participant’s structural image was coregistered to the first
functional image. The structural images were segmented, and the deforma-
tions estimated during this step were applied to both the structural and func-
tional images to normalize them into MNI space. All preprocessing steps were
conducted using SPM12. Default parameters were chosen for each step.

Pattern Estimation.Wewere interested in investigating neural overlap between
the neural representations of each set of DRM list words and their related
concept. Our hypothesis was that each DRM list word should have a neural
representation that overlaps with that related concept. To assess this hypothesis,
we estimated two patterns for eachDRM set: one pattern for the related concept
itself, and another for all four of the list words combined. This latter pattern
captured the neural pattern that was common across all four list items, which
should therefore capture the representational overlap. If our hypothesis is correct,
then this pattern should correlate with the related concept pattern. To estimate
this set of patterns, we used the GLMdenoise toolbox (42), which implements a
de-noising step in addition to estimating the β-weights for each regressor. Each
pattern was estimated using an event-related regressor indicating the onset of
the related concept/set of list words across the four functional sessions. This
procedure resulted in a set of 80 β-weight images (40 DRM list patterns and 40
related lure concept patterns). These were converted to t-statistics by dividing
the parameter estimate by the estimate of the SE, thereby normalizing the re-
sponses of each voxel (43). The resulting t-statistic images were left unsmoothed
to preserve any fine-grained spatial information (44).

Searchlight Analysis. We used a searchlight representational similarity analysis
(22, 28) to search for brain regions containing the predicted neural code.
Representational similarity analysis uses the neural pattern similarity between
pairs of stimuli to infer the representational similarity. This approach is there-
fore highly appropriate for assessing neural overlap between semantic repre-
sentations, as the degree of overlap should be directly reflected in the
representational similarity. We first assessed the neural overlap between each
DRM list and its related lure concept by measuring the Pearson correlation
between the pair of voxel patterns. In each case, we normalized the similarity

data by subtracting the mean Pearson correlation between the DRM list and
each unrelated lure concept. This procedure removed any general effects of
similarity that were not driven by semantic relatedness, and resulted in a vector
of 40 neural overlap scores for the 40 DRM lists. Our prediction is that the
degree of neural overlap within the TP should reflect semantic relatedness, and
therefore predict false-memory likelihood across the 40 DRM lists. We used the
canonical false-recognition scores reported in (26, 27), as our measure of false-
memory likelihood for the 40 DRM lists. We used a searchlight approach (28) to
search across the whole brain for regions containing a neural code consistent
with our predictions. This approach involves stepping through each voxel in the
brain, and in each case running a representational similarity analysis on the
cluster of voxels surrounding that central voxel (for all analyses, we used a
spherical searchlight with 10-mm radius). We used a variation of this approach,
where the value at each voxel was the average value of all searchlight analyses
that included that voxel. This information-averaging approach more accurately
reflects the multivariate nature of the analysis, and results in a smoother image
(45). For computational efficiency, we restricted our analysis to a whole-brain
gray-matter mask, created by averaging the normalized, segmented gray-matter
images, and applying a threshold of 0.5. This searchlight approach was applied
to the analysis described above, using a Fisher-transformed Pearson correlation
to assess the mapping between neural overlap and false-memory likelihood in
each searchlight. This approach was repeated for all subjects, and statistical
significance at each voxel was assessed at the group level using a nonparametric
permutation approach (46). This procedure provides a means of applying strict
family-wise error correction for multiple comparisons without any parametric
assumptions. For this analysis, 10,000 permutations were applied with 10-mm
variance smoothing, and a standard cluster threshold of T > 3 was used to assess
statistical significance (46). Only regions that are significant at P < 0.05 with
family-wise error correction are reported.

TP ROI. To further explore the representations contained within the TP, a ROI
was created based on the initial searchlight results. The ROI included all voxels
within the TP that passed the searchlight cluster threshold of t > 3. The
resulting ROI consisted of 92 voxels.

Correlation Between Canonical False Memory and Neural Overlap. In Fig. 2Bwe
report the correlation between the group average TP neural overlap for each
DRM list and the canonical false-memory likelihood (26, 27), to illustrate the
strength of the relationship. To avoid an artificial inflation of the effect size
estimate due to nonindependence in the choice of ROI, we used a leave-one-
subject-out cross-validation approach (29). On a given cross-validation fold, we
took the searchlight maps for 17 of 18 subjects, averaged the maps, and selected
the top 200 voxels. We then used these voxels as an ROI to measure the neural
overlap in the 40 DRM lists for the remaining subject (note that in this case we
did not normalize the neural overlap score by subtracting the between-list
correlation, as we consider the raw correlation values to be descriptively more
informative). This procedure was repeated 18 times, each time leaving out a
different subject. This analysis resulted in neural overlap data for all 18 subjects
based on an independently selected ROI, thereby avoiding statistical “double-
dipping” (29). We averaged the neural overlap across the subjects to create a
single summary neural overlap score for each of the 40 DRM lists. This score was
then correlated with the canonical false-memory scores, as reported in Fig. 2B.
An additional correlation was conducted after removing two potential outliers,
identified using a bootstrappedMahalanobis distance, and a threshold ofDs > 6.
Note that whereas this cross-validation approach is guaranteed to provide an
unbiased correlation, it is not guaranteed that the voxels used will be based on
the same TP region as reported in the searchlight results. We therefore in-
vestigated the number of voxels falling with the TP region [defined using the
Harvard–Oxford Atlas (47)] for each fold of the cross-validation. Every single fold
included at least some voxels within this region, ranging from 5 to 42, with an
average of 25.5. Thus, a good proportion of the neural information going into
this analysis was indeed based on the TP.

False Memory Individuation Analysis. To test for the presence of unique TP
neural information that predicts subject-specific false memories, we used an
individuation analysis (30). The logic here is that if an individual has a unique set
of TP neural representations that meaningfully influences cognition, then that
individual’s neural overlap data should predict their own pattern of false-
memory errors better than any other subject’s false-memory errors. To assess this
possibility, we created a false-memory vector for each individual subject based
on their specific pattern of false-memory errors in the behavioral DRM session.
Given that we were specifically interested in genuine false memories rather than
mistakes driven by uncertainty, we defined a false memory as a high-confidence
old response to a related concept lure. The false-memory vector was in each case
a binary vector of 40 values for the 40 DRM lists, with a 1 indicating the DRM lists

10184 | www.pnas.org/cgi/doi/10.1073/pnas.1610686113 Chadwick et al.

www.pnas.org/cgi/doi/10.1073/pnas.1610686113


that result in a false memory, and 0 elsewhere. For each subject, we calculated
the Spearman correlation between their TP neural overlap and false-memory
data (within-subject correlation). We then calculated the Spearman correlation
between that subject’s neural overlap and each other subject’s false-memory
data, and averaged across these correlation values to provide a summary
between-subject correlation. This procedure resulted in a within-subject and
between-subject correlation for every subject. To assess whether there was
significantly greater within-subject predictive information in the neural data,
we compared the within- and between-subject correlations with a Wilcoxon
sign rank test. A one-tailed test was used a result of our one-sided hypothesis
that the correlation should be greater within- than between-subject.

True-Memory Individuation Analysis. To be consistent with the false-memory
analysis, we defined a “true memory” as a high-confidence old response to a
previously presented DRM list item. The true-memory vector was created by
calculating for each DRM list the proportion of words that were judged to be
old with high confidence. This resulted in a true-memory vector of length 40 for
each individual subject. The true-memory individuation analysis was otherwise
identical to the false-memory individuation analysis described above.

Control Analyses. To ensure that the results were driven by neural similarity that
was specific to the false-memory strength and not additional extraneous factors,
we conducted three control analyses. First, we established that word frequency

(48) was not contributing to the neural data. Given that the neural overlap was
based on the similarity between each lure and the respective list items, the ab-
solute word frequency of the critical lure could not by itself explain this measure.
Instead, we calculated the average difference in word frequency between each
DRM lure and the four DRM list items. Second, we investigated whether visual
similarity between the words could be contributing to the effects. We used the
Levenshtein edit distance to assess the similarity between each pair of words, as
this has been shown to be a good predictor of various lexical effects (49) and is
therefore appropriate for assessing low-level word similarity. For each DRM set,
the visual similarity was defined as the average edit distance between the lure
and list items. Finally, we explored whether the incidental task performed in the
scanner could be driving the neural similarity results. To investigate this possibility,
for each of the 40 DRM lists we quantified the number of list words where the
subject had indicated the same category as the related lure concept for that list.
The stronger the degree of correspondence, the stronger any task category
representation should be for that particular DRM list. Each of these three control
variables was correlated with the neural overlap data to determine whether each
significantly contributed to the neural data. Additionally, all three variables were
controlled for in each analysis reported in Results.
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