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Mutations in superoxide dismutase (SOD1) cause amyotrophic
lateral sclerosis (ALS), a fatal neurodegenerative disease character-
ized by the loss of upper and lower motor neurons in the brain and
spinal cord. It has been suggested that the toxicity of mutant SOD1
results from its misfolding and accumulation on the cytoplasmic
faces of intracellular organelles, including the mitochondria and
endoplasmic reticulum (ER) of ALS-affected tissues. Recently, mac-
rophage migration inhibitory factor (MIF) was shown to directly
inhibit the accumulation of misfolded SOD1 and its binding to
intracellular membranes, but the role of endogenous MIF in
modulating SOD1 misfolding in vivo remains unknown. To elucidate
this role, we bred MIF-deficient mice with SOD1G85R mice, which
express a dismutase-inactive mutant of SOD1 and are considered
a model of familial ALS. We found that the accumulation of mis-
folded SOD1, its association with mitochondrial and ER membranes,
and the levels of sedimentable insoluble SOD1 aggregates were
significantly higher in the spinal cords of SOD1G85R-MIF−/− mice than
in their SOD1G85R-MIF+/+ littermates. Moreover, increasing MIF ex-
pression in neuronal cultures inhibited the accumulation of mis-
folded SOD1 and rescued from mutant SOD1-induced cell death. In
contrast, the complete elimination of endogenous MIF accelerated
disease onset and late disease progression and shortened the life-
span of the SOD1G85R mutant mice. These findings indicate that MIF
plays a significant role in the folding and misfolding of SOD1 in vivo,
and they have implications for the potential therapeutic role of up-
regulating MIF within the nervous system to modulate the selective
accumulation of misfolded SOD1.
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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenera-
tive disease characterized by a selective loss of upper and

lower motor neurons in the brain and spinal cord. Most cases of
ALS are sporadic and lack any apparent genetic linkage, but 10%
of cases are dominantly inherited, known as familial ALS (fALS)
(1). Of these familial cases, ∼20% have been attributed to muta-
tions in a gene encoding for the ubiquitous cytoplasmic copper/
zinc superoxide dismutase (SOD1) (2), and overexpression of the
human mutant SOD1 in mouse models of fALS invariably results
in motor neuron loss, muscle wasting, and hindlimb paralysis (3).
Although the mechanism underlying SOD1-mediated toxicity is

still unknown, many of the pathways that were hypothesized to
underlie motor neuron degeneration in ALS involve damage in-
curred by the accumulation of misfolded SOD1 (4), as determined
by using antibodies that recognize epitopes unavailable in the
natively folded protein, and that bind preferentially or exclusively
to misfolded conformers (5–7).
Whereas the wild-type (WT) SOD1 is a ubiquitous cytoplasmic

protein, a common feature of the SOD1 mutants is that they are
localized to the mitochondria (8–13) and/or endoplasmic re-
ticulum (ER) (14–17), specifically in nervous system tissues. For
instance, an association between mutant SOD1 and the ER has
been implicated in the induction of ER stress (14–17), and

misfolded mutant SOD1 has been found in fractions enriched for
mitochondria derived from ALS-affected tissues, but not from
unaffected ones (8, 10, 12, 13, 18, 19). In addition, misfolded
mutant SOD1 in its nonaggregated, soluble form has been found
deposited on the cytoplasmic face of the outer membrane of spinal
cord mitochondria (10, 12), and this deposition was accompanied
by altered mitochondrial shape and distribution (19). These phe-
nomena may be caused, at least in part, by binding of misfolded
SOD1 directly to the mitochondrial voltage-dependent anion
channel 1 (VDAC1), because such binding inhibits the ability of
VDAC1 to transfer adenine nucleotides across the outer mito-
chondrial membrane (9). Another possible cause is an interaction
between misfolded SOD1 and other components in the outer
membrane of the mitochondria, including Bcl-2 (20) and the
protein import machinery (21).
The molecular determinants that underlie the selective accu-

mulation and binding of misfolded mutant SOD1 to the spinal
cord mitochondria and ER remain unknown; however, we recently
found that macrophage migration inhibitory factor (MIF) acts as a
cytosolic chaperone that inhibits mutant SOD1 misfolding onto
the mitochondria and ER, with extremely low MIF levels within
the cytosol of motor neurons (22).
MIF knockout (KO) mice, in which exons 2 and 3 of MIF are

disrupted (23), did not develop obvious phenotypes when back-
crossed onto a C57BL6 background (24). In the present study, we
used these MIF KO mice and the transgenic mutant SOD1G85R

mice (25) to study how endogenous MIF affects the course of
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disease and the accumulation and localization of misfolded SOD1.
We report here that overexpression of MIF in neuronal cultures
suppresses the accumulation of misfolded SOD1 and rescues from
mutant SOD1-induced cell death. In contrast, completely elimi-
nating MIF significantly enhances the accumulation of misfolded
SOD1 and its association with mitochondrial and ER membranes
and ultimately accelerates disease onset and decreases survival in
SOD1G85R mice.

Results
Increased MIF Expression Suppresses the Accumulation of Misfolded
SOD1 and Enhances the Survival of Neurons Expressing Mutant
SOD1G93A. To test in vitro whether increased synthesis of MIF can
prevent the accumulation of misfolded SOD1 and protect against its
toxicity in neurons, human SH-SY5Y neuroblastoma cells were
transfected to express the human WT (SOD1WT) or mutant
(SOD1G93A) SOD1 transgenes, with or without cotransfection with
a plasmid encoding for the human MIF. The accumulation of
misfolded SOD1 was detected by immunoprecipitation (IP) with
B8H10, a monoclonal antibody that recognizes epitopes within exon
3 that are exposed only on misfolding or denaturation of SOD1 (6,
26) and thus allows the detection of misfolded SOD1 forms by IP
or immunofluorescence. Cell survival was quantified with the
XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-

5-carboxanilide) assay or, in a different set of experiments
(wherein GFP-tagged versions of SOD1WT or SOD1G93A were
used), by counting cells with the Operetta High-Content Imaging
System (PerkinElmer).
Whereas expressing SOD1G93A without MIF resulted in the

intracellular accumulation of misfolded SOD1, coexpressing it
with MIF reduced the accumulation of misfolded SOD1 without
affecting the overall level of SOD1 (Fig. 1A). Concomitantly,
expressing mutant SOD1G93A without MIF reduced cell survival
by ∼30% compared with the expression of SOD1WT, which did
not affect cell survival, whereas coexpressing it with MIF rescued
the cells from this toxic effect (Fig. 1B). Similar results were
obtained when MIF was expressed in motor neuron-like NSC-34
cells in the presence of GFP-tagged versions of SOD1WT or mutant
SOD1G93A (Fig. 1 C and D).

Endogenous MIF Suppresses the Association of Misfolded SOD1 to
Spinal Cord Mitochondria and ER Membranes and Reduces Its
Intracellular Aggregation. To determine in vivo whether the accu-
mulation of misfolded SOD1 alters the course and pathogenesis of
fALS, we bred the dismutase-inactive SOD1G85R transgenic mice
withMIF−/− (KO) mice, which completely lack MIF expression (24)
(Fig. S1). The SOD1G85R mouse line used in this study (25) de-
velops a slowly progressive adult-onset fatal paralysis, which results
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Fig. 1. Increased MIF expression enhances the survival of neurons expressing a mutant SOD1 by inhibiting the accumulation of misfolded SOD1. SH-SY5Y
neuroblastoma cells were transfected to express the human SOD1WT, the human mutant SOD1G93A, or neither (control), in each case either with (+) or without (–)
cotransfection with MIF. (A) Misfolded SOD1 was detected by immunoblotting of immunoprecipitates produced with the B8H10 antibody, which recognizes
only the misfolded forms of SOD1. (B) A cell viability analysis, performed with the CellTiter 96 AQueous One-Solution cell proliferation assay with ELISA at
490 nm. Quantitative analysis from triplicates of different biological repeats (n = 3) was performed using Student’s t test. ***P < 0.001. (C) Representative
images of NSC-34 motor neuron-like cells transfected with GFP-tagged SOD1WT or SOD1G93A, with or without cotransfection with MIF. At 48 h after trans-
fection, the cells were nuclear-stained with DAPI and then segmented with the Operetta High-Content Imaging System, using the Find Nuclei method. (Scale
bars: 200 μm.) (D) The number of cells was quantified using the Operetta system. Quantitative analysis from triplicates of different biological repeats (n = 3)
was performed using Student’s t test. ***P < 0.001.
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from the expression of the mutant SOD1G85R. Importantly, levels of
SOD1G85R accumulation in these mice are similar to those of
endogenous mouse SOD1, thus closely mimicking the levels of mu-
tant SOD1 accumulation in human fALS patients.
We also determined the intracellular localization of MIF in the

spinal cords of these mice. Endogenous MIF clearly colocalized
with mutant SOD1 in the cytosol of some, but not all, spinal cord
cell types (Fig. S2). For example, MIF accumulation was very low
within spinal neuronal cells (Fig. S3), confirming our previous
observations using rat spinal cord tissues (22).
To test whether endogenous MIF inhibits the association of

mutant SOD1 with intracellular membranes, we collected spinal
cord or liver tissue specimens from SOD1G85R/MIF−/− and
SOD1G85R/MIF+/+ mice at different stages of the disease and iso-
lated the mitochondrial and ER membranes (see schematic in Fig.
2A). At disease onset, a significant amount of SOD1G85R accu-
mulated in mitochondrial (Fig. 2 B and C) and ER (Fig. 2 E and F)
membranes isolated from the spinal cords of SOD1G85R/MIF−/−

mice, but accumulation was much lower in their SOD1G85R/MIF+/+

littermates. In contrast, in the symptomatic disease stage, SOD1G85R

levels were not increased in ER membranes and were increased
only slightly (in mitochondrial membranes) in SOD1G85R/MIF−/−

mice, whereas a dramatic increase was observed in their SOD1G85R/
MIF+/+ littermates. At both disease stages, the deletion of endogenous
MIF did not affect the amounts of SOD1G85R in liver mitochondrial
membranes (Fig. 2D) and very slightly increased SOD1G85R levels
in liver ER membranes (Fig. 2G).
To determine whether endogenous MIF plays a role in the ag-

gregation of mutant SOD1 in vivo, we removed spinal cords from
SOD1G85R/MIF−/− mice and their SOD1G85R/MIF+/+ littermates
at different disease stages, and then homogenized and separated
them in detergent-soluble and -insoluble fractions (Fig. S4A). At

both disease onset and the symptomatic stage, the accumulation of
SOD1G85R aggregates in the spinal cords was much higher in the
SOD1G85R/MIF−/− mice compared with their SOD1G85R/MIF+/+

littermates (Fig. S4B).

Endogenous MIF Inhibits the Accumulation of Misfolded SOD1 in the
Spinal Cords of SOD1G85R Mice. To examine whether MIF deletion
enhances the accumulation of misfolded SOD1 in different tissues
of SOD1G85R mice, we used the B8H10 antibody to identify mis-
folded SOD1. An IP study (Fig. 3A) revealed that compared with
their SOD1G85R/MIF+/+ littermates, SOD1G85R/MIF−/− mice
showed increased misfolded SOD1 accumulation in the spinal cord
at all disease stages (Fig. 3B), in the brain at the symptomatic and
end stages (Fig. 3C), and even (albeit less evidently) in the liver (Fig.
3D). An immunofluorescence study revealed misfolded SOD1 ac-
cumulation in motor neurons and in other spinal cord cells already
at the presymptomatic stage in SOD1G85R/MIF−/− mice (Fig. 4 A–C
and G), but not in their SOD1G85R/MIF+/+ littermates Fig. 4 D–G).

MIF Deletion Accelerates Disease Onset and Progression in Mutant
SOD1G85R Mice. After establishing that (i) MIF acts as a chaperone
for misfolded SOD1 (22) and protects from mutant SOD1-
induced cell death (Fig. 1), (ii) endogenous MIF inhibits the as-
sociation of misfolded SOD1 with intracellular membranes (Fig. 2),
and (iii) endogenous MIF suppresses the accumulation of mis-
folded SOD1 (Figs. 3 and 4), we examined how the deletion of
endogenous MIF affects the course of disease by following disease
onset and progression in SOD1G85R/MIF−/− mice (n = 21) and
SOD1G85R/MIF+/+ mice (n = 19) (Fig. 5). The SOD1G85R/MIF−/−

mice, compared with their SOD1G85R/MIF+/+ littermates, showed a
22-d acceleration in disease onset (285 ± 7 d vs. 307 ± 7 d, re-
spectively; Fig. 5 A andD), a 21-d acceleration in the progression to
an early point (i.e., 10% weight loss) of the disease (316 ± 8 d vs.
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337 ± 7 d, respectively; Fig. 5B), an 11-d acceleration in the
progression from the early point of the disease to its end stage (14 ±
3 d vs. 25 ± 2 d, respectively; Fig. 5F), and a 32-d acceleration in the
age of disease end stage (330 ± 9 d vs. 362 ± 7 d, respectively; Fig.
5C). The progression from disease onset to an early disease point
was not different between the two groups of mice (Fig. 5E).

Discussion
One of the most important unsolved questions in ALS pathogen-
esis is what determines the selective, age-dependent degeneration
of motor neurons. In cases related to mutant SOD1, such a de-
generation is accompanied by the misfolding of mutant SOD1 and
its association with intracellular membranes. We recently determined
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that the association of mutant SOD1 with the mitochondria and
ER can be suppressed by cytosolic MIF, which inhibits the accu-
mulation of misfolded SOD1 (22). In addition, we have shown that
MIF levels are low within the cell bodies of motor neurons, and
that increasing MIF levels extends the survival of motor neurons
in culture. The low levels of MIF in motor neurons correlate with
the accumulation of misfolded SOD1 species and with their in-
creased association with various intracellular organelles.
In the present study, we demonstrate that completely elimi-

nating the expression of endogenous MIF in vivo accelerated
disease onset and late disease progression and shortened the
lifespan of the SOD1 mutant mice. Importantly, the acceleration
of disease onset was accompanied by the accumulation of mis-
folded SOD1 as early as the presymptomatic stage. In addition,
the association of the mutant SOD1 with mitochondrial and ER
membranes in the spinal cords of MIF-deficient mice was strongly
increased, and the levels of sedimentable insoluble SOD1 aggre-
gates were higher. Late disease progression was also accelerated in
these mice, suggesting the involvement of endogenous MIF in
preventing the toxicity of misfolded SOD1 within nonneuronal
cells as well. In that context, the accumulation of misfolded SOD1
in glial cells has been proposed previously (27), and its in-
volvement in late disease progression is well established (4, 28).

MIF is a 12-kDa protein that has been implicated in both ex-
tracellular and intracellular functions and is synthesized as a cy-
toplasmic protein (22). The cytokine activity of MIF is achieved by
posttranslational sequestration of the cytoplasmic MIF into vesi-
cles, followed by its release, through an as-yet unidentified
mechanism, in response to a variety of signals (29). Intracellularly,
MIF was previously shown to act as a chaperone protein (30) and
as a thiol-protein oxidoreductase (31).
Although MIF KOmice have been widely used in the context of

various diseases, here we have studied the effects of MIF in a
neurodegenerative disease model. Given the critical involvement
of MIF in processes related to misfolding and neurodegeneration,
as reported herein, it will be interesting to test whether MIF also
can function as a protein modifier in other neurologic diseases in
which misfolded proteins play a central role, such as Alzheimer’s,
Parkinson’s, and Huntington’s diseases.
Of note, a previous study has shown that reducing the levels of

aggregated misfolded SOD1 by deleting cyclophilin D does not
ameliorate the pathogenesis of ALS in mutant SOD1 mouse
models (32). Therefore, SOD1 toxicity in vivo appears to derive
from the soluble form of the misfolded SOD1, rather than from its
highly aggregated form. Indeed, we demonstrate here that reducing
MIF levels accelerates disease onset and progression, and that this
acceleration is accompanied by increased levels of the soluble
misfolded SOD1, which accumulates and associates with mito-
chondrial and ER membranes. Altering the expression levels of
other chaperones previously linked to SOD1, including hsp70,
hsp90, hsp27, and aB-crystallin, failed to significantly affect the
disease course in different mutant SOD1 mouse models (33–37);
however, it was recently shown that overexpression of hsp110 in
neurons extends the survival of SOD1G85R-YFP and SOD1G93A

mice (38). Importantly, there are only very few studies in which the
course of disease was altered in the SOD1 model that we used
here, which expresses mutant SOD1 at low levels similar to those of
the endogenous protein, and in which disease onset was observed
at approximately 10 mo, with a very rapid disease progression (25).
Here we propose that the reduced chaperone-like activity of MIF
in motor neurons plays a pivotal role in the accumulation of mis-
folded SOD1 and its subsequent toxicity. In addition, with the re-
cently proposed mechanism for cell-to-cell spread of misfolded
SOD1 as a means of disease propagation (5, 39, 40), chaperone
activity by extracellular MIF may act to limit such spreading.
Finally, accumulation of misfolded SOD1 has been reported by

several groups also in sporadic ALS (27, 41–47), although other
groups have reached the opposite conclusion (48–51). The identifi-
cation of MIF as a cytosolic chaperone that stimulates the folding or
refolding of misfolded SOD1 and inhibits the aggregation of mutant
SOD1 in vivo suggests new avenues for therapy in ALS, mediated by
increasing intracellular MIF levels in the nervous system.

Materials and Methods
Transgenic and KO Mice. Transgenic mice expressing the human SOD1G85R were
as described previously (25). MIF KOmice have been developed in which exons 2
and 3 of MIF are disrupted (23). These MIF KO mice, backcrossed onto a C57BL6
background (24), were used in this study. Importantly, all mouse lines were on a
pure C57BL6 background to eliminate confounding genetic influences.

Survival Analysis.MIF null mice (MIF−/−) were mated to heterozygous SOD1G85R

ALS mice, and the resulting SOD1G85R/MIF+/− mice were mated to MIF+/− mice
to obtain the experimental cohorts of SOD1G85R/MIF−/− mice (n = 19; 9 females
and 10 males) that were compared with SOD1G85R/MIF+/+ littermates (n = 21;
10 females and 11 males). Mice were weighed weekly as an objective and
unbiasedmeasure of disease course. The time of disease onset was determined
retrospectively as the time at which mice reached peak body weight, which is
observed before any motor performance decline. The time of early disease was
defined as the age at which the animals had lost 10% of their maximal weight.
Disease end stage was defined by paralysis so severe that the animal could not
right itself within 20 s when placed on its side, an endpoint frequently used for
SOD1 mutant-expressing mice. Mice were genotyped by PCR of DNA extracted
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Fig. 5. Eliminating endogenous MIF accelerates disease onset and late
disease progression and shortens the survival of SOD1G85R mice. (A–C) Mean
age (± SD) of disease onset, defined as the time when mice reached peak
body weight (P < 0.05) (A); early disease, defined as the time when mice lost
10% of their maximal weight (P < 0.05) (B); and disease end stage, defined as
the time when the mouse could not right itself within 20 s when placed on
its side (P < 0.01) (C) of SOD1G85R/MIF+/+ mice (red) and their SOD1G85R/MIF−/−

littermates (blue). (D–F) Mean (± SD) age of disease onset (P < 0.05) (D), du-
ration of early disease (from onset to 10% weight loss; P = 0.406) (E), and
duration of late disease (from 10% weight loss to end stage; P < 0.01) (F). At
each time point, the P value was determined by Student’s t test. Error bars
denote SD.
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from a tail biopsy specimen. All mice were maintained using standard proto-
cols in the animal facility of Ben-Gurion University of the Negev. All procedures
involving animals were consistent with the requirements of the Animal Care
and Use Committee of Ben-Gurion University of the Negev.

Statistics. Values are reported throughout as mean ± SEM. Comparisons of
two datasets were performed using the Student’s t test, after a normal
distribution was confirmed by the Shapiro-Wilk normality test. Significance
was set at a confidence level of 0.05. In all figures, *P < 0.05, **P < 0.01, and

***P < 0.001. All statistical analysis were performed with SigmaPlot 13.1
(Systat Software).
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