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Interactions between UCP2 SNPs 
and telomere length exist in the 
absence of diabetes or pre-diabetes
Yuling Zhou1, David Simmons2,3, Brett D. Hambly4 & Craig S. McLachlan1

Mitochondrial uncoupling protein 2 (UCP2) can affect oxidative stress levels. UCP2 polymorphisms are 
associated with leukocyte telomere length (LTL) in Type 2 Diabetes, which also induces considerable 
background oxidative stress. The effects of UCP2 polymorphisms on LTL in populations without 
diabetes have not been well described. Our aims are to evaluate the interaction between LTL and 
UCP2 polymorphisms in 950 subjects without diabetes. The monochrome multiplex quantitative PCR 
method was used to measure relative LTL. Taqman SNP genotyping assay was applied to genotypes 
for UCP2 rs659366 and rs660339. We found shorter LTL associated with increased age (P < 0.001) and 
triglyceride levels (P = 0.041). After adjustment for cardiovascular risk factors, rs659336 GG genotype 
carriers demonstrated a shorter LTL (1.257 ± 0.186), compared to GA carriers (1.288 ± 0.230, P = 0.022) 
and AA carriers (1.314 ± 0.253, P = 0.002). LTL was shorter in the CC rs660339 genotype (1.254 ± 0.187) 
compared to TT (1.297 ± 0.242, P = 0.007) and CT carriers (1.292 ± 0.229, P = 0.016). The T allele of 
rs660339 is associated with a longer LTL of approximately 0.04 compared to CC homozygotes. Thus, 
UCP2 rs659366 A allele and rs660339 T allele are both related to longer LTL in subjects without diabetes, 
independent of cardiovascular risk factors.

Telomeres are thousands of tandem repeats of “TTAGGG” DNA sequence and associated proteins, ranging from 
a few to 15 kilobases in length, at the end of eukaryotic chromosomes, that maintain the replicative potential of 
somatic cells. Shortened telomeres are associated with physiological aging and oxidative stress1,2. It is well known 
that mitochondrial reactive oxygen species can lead to shortening of telomeres3,4. Less is known about the genetic 
control of mitochondrial ROS and its interactions with cellular aging, i.e. shorter telomeres.

It is not surprising that insulin resistance, metabolic syndrome and type 2 diabetes mellitus (T2DM) have been 
linked to telomere shortening in cross sectional population studies5–7. Both oxidative stress and shorter telomere 
length are risk factors for age-related diseases, such as T2DM1,8,9 and related cardiovascular disease in T2DM10,11.

Mitochondrial uncoupling protein-2 (UCP2) is a widely expressed inner mitochondrial membrane protein 
that influences the regulation of reactive oxygen species (ROS), inflammation, cell death and mitochondrial 
membrane potential12–15. ROS may activate UCPs and cause a mild bio-energetic uncoupling of mitochondrial 
function. Mild mitochondrial uncoupling via UCP2 acts as a potential “safety factor” by providing negative 
feedback to dampen down further mitochondrial ROS production16,17. For example, reduced functional UCP2 
expression is associated with elevated levels of oxidative stress and inflammation in translational studies18,19.

The most reported UCP2 nucleotide polymorphisms are rs659366 (-866G >​A) in the promoter region and 
rs660339 (C to T transition, Ala55Val) in the exon 4. Both these polymorphisms have been associated with T2DM 
and related complications. Rs659366 occurs in a cis regulatory element controlling UCP2 mRNA expression in 
adipocytes in vivo and correlates with obesity20, UCP2 expression in beta cells21, insulin levels22, risk of coro-
nary disease23 and low density lipoprotein cholesterol24. Rs660339 is associated with insulin levels25 and energy 
expenditure cost of excise26,27. However, there have been inconsistent results for an association with T2DM 
risk28,29.

To date, two studies have examined the relationship between UCP2 genotypes and leukocyte telomere length 
(LTL). The first study30 examined the relationship between the genotypes for both rs659366 and rs660339 and 
LTL in a diabetic patient cohort. The presence of the rs659366 A allele was found to be associated with shorter 
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LTL, while no association was seen with the rs660339 genotype. This paper did not report on any association 
within the control groups. The second study31 examined the rs659366 genotype in participants with and without 
diabetes, but did not see any association with LTL. Similarly, these investigators did not see any association within 
the control group. Thus, the important question concerning whether an association exists between these UCP2 
genotypes and LTL remains unanswered in those without insulin resistance and/or diabetes.

The role of genetic UCP2 mitochondrial polymorphisms and their contribution to the pathogenesis of tel-
omere shortening remains incompletely understood. Deciphering telomere length and the role of UCP2 gene 
contributions requires a non-insulin resistant state to remove any influence of disease-related background oxi-
dative stress and associated inflammation. Our aims are to determine genetically whether there is an interaction 
between underlying LTL and UCP2 polymorphisms in the absence of diabetes and pre-diabetes. Sub studies will 
control for cardiovascular risk factors, which may promote inflammation and/or oxidative stress and thereby 
influence LTL.

Results
Baseline characteristics and UCP2 SNPs genotyping.  The study population of 950 subjects older than 
25 years was obtained from a largely (>​95%, Australian Census 2011) Caucasian rural Australian community, 
with an average age of 50.2 ±​ 15.2 years and 59.6% female. For UCP2 rs659366 100% of samples were genotyped 
successfully, and for UCP2 rs660339 99.26% (943/950). Reference to the Hapmap database (release 28 Phase 
II +​ III, August 10, on NCBI B36 assembly) revealed that the A allele frequency for rs659366 and rs660339 with 
European ancestry, are 37% and 42%, respectively. Our data show a similar frequency of the A allele for rs659366 
(37%) and the A allele for rs660339 (41%), respectively, which is expected given the high levels of European 
ancestry in our rural population (>​95%). Genotype rs660339 deviates from the Hardy-Weinberg equilibrium 
(P =​ 0.002), whereas rs659366 (P =​ 0.172) does not.

Baseline demographics, UCP2 and LTL.  Baseline demographics and mean cardiovascular risk factors 
across genotype subgroups rs659366 and rs660339 revealed no significant differences, with the exception of triglyc-
eride levels for rs660339 (Table 1). Across rs660339 genotypes, TT, CT and CC carriers, mean blood triglyceride 
levels were 1.52 ±​ 1.74 mmol/L, 1.27 ±​ 0.71 mmol/L and 1.35 ±​ 0.83 mmol/L, respectively (P =​ 0.028). As base-
line cardiovascular risk factors show no difference between SNP genotype subgroups (apart from triglycerides),  
selection bias across samples was minimal.

We then explored known cardiovascular risk factors and demographic factors that influence telomere length 
(Table 2). As expected, chronological age was associated with shorter telomere length in our model (P <​ 0.001). 
The only cardiovascular risk factor that was associated with mean LTL was triglycerides levels (P =​ 0.041), while 
gender, smoking status, BMI, waist circumference, HDL and SBP did not have a significant interaction on LTL.

Telomere Length and UCP2 SNPs genotype.  We observed a mean difference between genotypes 
rs659366 and rs660339 with respect to mean LTL (P =​ 0.017 and P =​ 0.026, respectively, ANOVA) (Fig. 1). This 
difference remained significant after adjustments for all known cardiovascular risk factors in the General Linear 
Models (including CVD risk that did not demonstrate significant interactions initially) (Table 3). Adjustments 
were made for age and gender (Table 3). The mean relative LTL of rs659366 GG genotype carrier is 1.257 ±​ 0.186. 
We also note for rs659366 A allele a corresponding increase in LTL. For example, the mean LTL of one A 
allele carriers is 1.288 ±​ 0.230 and of two A alleles carriers is 1.314 ±​ 0.253. However, by comparison with the 
rs660339 CC genotype, CT or TT genotypes result in a longer LTL of similar size, for example, with a mean LTL 
of 1.254 ±​ 0.187, 1.292 ±​ 0.229 and 1.297 ±​ 0.242, respectively. When we combine the CT and TT genotypes, 

overall

rs659366

P

rs660339

PAA GA GG TT CT CC

participants, n 950 138 422 390 183 413 347

age, years† 50.2 ±​ 15.2 51.0 ±​ 15.4 50.2 ±​ 15.4 49.9 ±​ 14.8 0.735 51.2 ±​ 15.4 49.9 ±​ 15.3 50.0 ±​ 14.9 0.590

women, %* 59.6 63.0 57.8 60.3 0.521 63.3 58.1 59.1 0.471

smokers, %* 17.2 11.6 18.2 17.9 0.171 14.2 17.2 18.4 0.466

BMI, kg/m2 27.1 ±​ 5.0 27.2 ±​ 4.8 26.7 ±​ 4.8 27.4 ±​ 5.4 0.204 27.1 ±​ 4.9 26.8 ±​ 4.7 27.3 ±​ 5.4 0.379

waist, cm 91.9 ±​ 13.5 91.6 ±​ 12.1 91.3 ±​ 12.7 92.6 ±​ 14.7 0.397 91.2 ±​ 12.4 91.5 ±​ 12.6 92.7 ±​ 14.9 0.354

SBP, mmHg 128.2 ±​ 21.2 127.5 ±​ 22.4 127.5 ±​ 21.0 129.3 ±​ 21.2 0.457 127.4 ±​ 22.8 128.0 ±​ 20.7 129.0 ±​ 21.1 0.686

DBP, mmHg 71.2 ±​ 9.9 70.4 ±​ 10.5 70.1 ±​ 9.3 72.0 ±​ 10.2 0.112 70.5 ±​ 10.4 70.9 ±​ 9.3 71.9 ±​ 10.3 0.187

cholesterol, mmol/L 5.31 ±​ 0.98 5.34 ±​ 1.02 5.29 ±​ 1.01 5.31 ±​ 0.94 0.854 5.37 ±​ 1.06 5.27 ±​ 0.98 5.31 ±​ 0.94 0.570

HDL-C, mmol/L 1.48 ±​ 0.38 1.48 ±​ 0.36 1.48 ±​ 0.36 1.47 ±​ 0.41 0.976 1.47 ±​ 0.35 1.49 ±​ 0.37 1.45 ±​ 0.40 0.264

triglyceride, mmol/L 1.35 ±​ 1.03 1.42 ±​ 1.08 1.34 ±​ 1.19 1.33 ±​ 0.81 0.645 1.52 ±​ 1.74 1.27 ±​ 0.71 1.35 ±​ 0.83 0.028

HbA1c, % 5.11 ±​ 0.22 5.09 ±​ 0.22 5.10 ±​ 0.22 5.11 ±​ 0.22 0.470 5.10 ±​ 0.22 5.10 ±​ 0.22 5.12 ±​ 0.22 0.608

Table 1.  Characteristics of participants. §P value of ANOVA to compare quantitative variables or the Chi-
square test for categorical variables between genotype subgroups. †All values expressed as mean ±​ standard 
deviation when describing quantitative variables, unless otherwise indicated. BMI, body mass index; SBP, 
systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high density lipoproteins-cholesterol; HbA1c, 
glycated haemoglobin. *Percentage.
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rs660339 T allele carriers (CT/TT genotype) have an increased mean relative LTL of approximately 0.04, com-
pared to non-T allele carriers (CC genotype; P =​ 0.004).

Discussion
Our study findings demonstrate that the UCP2 rs659366 A allele is associated with longer LTL in a rural pop-
ulation without diabetes or pre-diabetes. Furthermore, we have shown that rs659366 AA genotype carriers 

Coefficient* 95% CI Std. Error P

age −​0.004 (−​0.005, −​0.003) 0.001 <​0.001

gender −​0.016 (−​0.055, 0.023) −​0.020 0.431

smokers −​0.028 (−​0.064, 0.009) 0.019 0.138

BMI −​0.001 (−​0.007, 0.005) 0.003 0.819

waist <​0.001 (−​0.002, −​0.003) 0.001 0.927

SBP −​3.964E−​05 (−​0.001, 0.001) <​0.001 0.933

DBP <​0.001 (−​0.002, 0.002) 0.001 0.784

cholesterol 0.010 (−​0.006, 0.026) 0.008 0.219

HDL−​C 0.024 (−​0.021, 0.068) 0.023 0.300

triglyceride −​0.016 (−​0.031, −​0.001) 0.008 0.041

HbA1c 0.004 (−​0.062, 0.069) 0.033 0.911

Table 2.   Relationship between mean telomere length and CVD risk factors. *Relationship was evaluated 
using General Linear Model without adjustment.

Figure 1.  Comparison of relative telomere length for UCP2 SNPs rs659366 and rs660339. ANOVA was 
applied to measure the difference between sub-genotypes of rs659366 (P =​ 0.017) and rs660339 (P =​ 0.026), 
followed by post hoc multiple comparisons via the LSD method of which P values were presented in the figure.

TL ± Std. Deviation Coefficient* 95% CI Std. Error P

rs659366

  AA 1.314 ±​ 0.253 0.065 (0.024, 0.105) 0.021 0.002

  GA 1.288 ±​ 0.230 0.033 (0.005, 0.062) 0.015 0.022

  GG 1.257 ±​ 0.186 0

  AA/GA 1.295 ±​ 0.236 0.041 (0.014, 0.068) 0.014 0.003

  GG 1.257 ±​ 0.186 0

rs660339

  TT 1.297 ±​ 0.242 0.051 (0.014, 0.089) 0.019 0.007

  CT 1.292 ±​ 0.229 0.037 (0.007, 0.066) 0.015 0.016

  CC 1.254 ±​ 0.187 0

  TT/CT 1.294 ±​ 0.233 0.041 (0.014, 0.069) 0.014 0.004

  CC 1.254 ±​ 0.187 0

Table 3.   Relationship between mean telomere length and UCP2 SNPs polymorphism. *Relationship was 
evaluated using General Lineal Model, and adjusted by age, gender, smokers, BMI, waist, SBP, DBP, cholesterol, 
HDL, triglyceride, HbA1c.
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are associated with longer relative mean LTL (1.314 ±​ 0.253) in comparison to GA (1.288 ±​ 0.230) and GG 
(1.257 ±​ 0.186) genotype carriers. This finding is not surprising as the UCP2 gene rs659366 is located in the UCP2 
promoter region, and includes a putative UCP2 transcription initiation site that regulates UCP2 mRNA expres-
sion levels20. A simplistic physiological interpretation of these results is that the A allele rs659366 favourably 
increases functional cellular mitochondrial UCP2 expression. This in turn may reduce oxidative stress via mild 
mitochondrial uncoupling and in doing so protects telomeres from shortening during periods of oxidative stress.

In contrast to our data, Salpea et al. (2011) found that rs659366 A allele carriers had shorter LTL than GG 
genotype carriers30. However, also in contrast to our own study, this study was conducted in Caucasian type 2 
diabetes patients. In our current study on 950 participants free from diabetes and pre-diabetes, longer LTL is 
associated significantly with AA and GA genotype, in comparison to GG. Notably, accumulated evidence has 
provided strong support for a significant direct association between telomere shortening and type 2 diabetes32–35. 
Consequently, the presence of diabetes within the Salpea et al. study group would act as a strong confounding 
factor when examining the association between this SNP and telomere length. Thus, it is reasonable to hypoth-
esize our findings are the opposite to the report of Salpea et al. due to the difference in type 2 diabetes status of 
participants in the two studies.

Our data also show that participants carrying rs660339 TT or CT genotype have longer LTL (1.297 ±​ 0.242 
for TT and 1.292 ±​ 0.229 for CT) than the CC genotype (1.254 ±​ 0.187), suggesting that the T allele is associated 
with longer LTL. The rs660339 UCP2 gene causes a single amino acid change at position 55 of the UCP2 protein. 
Currently, there are no studies that demonstrate any functional and/or expression change in UCP2 directly asso-
ciated with this specific single amino acid change36. A possible explanation is that rs660339 acts as a tag SNP, with 
a corresponding region being a haplotype block (or haploblock) containing related UCP2 SNPs such as rs659366. 
For example, the rs659366 lies in a 17-kb block covering the entire gene and its flanking sequences and linkage 
disequilibrium remains high for the more distal rs660339 SNP (D′​ =​ 1.0; r2 =​ 0.83) 37. This suggests that rs659366 
is a more informative SNP for the entire UCP2 gene.

In our study, the ratio of LTLs for two homozygous genotypes (longest to shortest) for UCP2 SNP rs660339 
is 1.03 and rs659366 is 1.05, that are closely related, which suggests the possibility for a block gene tag area. 
Additionally, rs659366 has the larger mean difference of LTL across sub-genotypes (difference =​ 0.057) compared 
to that of rs660339 (difference =​ 0.043), consistent with rs659366 being the functional variant driving LTL.

Shortened telomeres are believed to contribute to beta-cell dysfunction6 and data confirms an association 
between shortened telomeres and T2DM38,39. Our data show an association between the rs659366 SNP and tel-
omere length, suggesting that the rs659366 SNP should also show an association with T2DM. However, a clear 
association between the rs659366 SNP and T2DM remains unclear40. Whether there is some interaction between 
UCP2 gene-defined risk and risk of diabetes requires some further investigation. On the other hand, some studies 
have reported that rs660339 is a T2DM susceptibility locus for Asian populations, but not in populations with 
European descent40.

It could be argued that the rs659336 SNP (−​866G/G genotype) may be a risk factor for diabetes and therefore 
could be associated with shorter telomeres in our population. Bulotta et al. reported a 12% associative risk of 
T2DM with the −​866G/G genotype37. Indeed, we found an association with the −​866G/G genotype and short 
telomeres. On the other hand, based on absolute risk of 12% of developing diabetes due to a −​866G/G genotype 
(using the associative risk from the Bulotta et al. study), only 47/390 subjects would be theoretically at risk of 
developing T2DM. Hence, the risk of diabetes would be considered low. Thus, pre-existing shortened telomeres 
due to this pre-determined diabetes is unlikely. Thus, we suggest that diabetes risk due to a −​866G/G genotype is 
unlikely to influence our primary associations and models with LTL and UCP2 genotypes.

Within the current study, we also find shorter LTL is associated with a higher level of triglycerides (coeffi-
cient =​ −​0.016, P =​ 0.041). Previous studies have demonstrated a mixed relationship between high triglyceride 
levels and shorter telomeres, with some studies demonstrating a significant relationship41,42, whereas other studies 
have not43,44. Interestingly, in a study of subjects with diabetes, the presence of the GG genotype of the -866G/A 
(rs659366) is associated with higher triglycerides (≥​1.70 mM), total cholesterol (≥​6.0 mM) and LDL-cholesterol 
(≥​3.35 mM) levels in T2DM patients45. In our samples we observed no significant interaction between UCP2 
rs659366 and lipids. However, a weak but significant interaction between the rs660339 SNP and triglyceride levels 
was observed in our data. Of note, our data did not observe an association between LTL and the cardiovascular 
risk factors of gender, smoking and BMI. While these associations have been frequently observed previously46–48, 
other well powered studies have also failed to observe statistically significant associations between these risk fac-
tors and LTL49–52. A possible explanation for this study not observing these associations is our modest sample size.

Our study also addresses perceived limitations, such as causality cannot be inferred from association studies 
per se. The subjects’ rural environment is unique to our population. Our findings would need to be replicated in 
a more heterogeneous population to extend these findings. We note that the rs660339 distribution frequency 
in our samples deviates from the Hardy-Weinberg equilibrium. This finding was not due to technical error, for 
example, when based on a 100 percent concordance of a 1% random selected validation sampling of the geno-
typing results, the rs660339 was determined to have been genotyped successfully. A possible explanation for the 
observed deviation from the Hardy-Weinberg equilibrium is that we may have artificially induced genetic drift 
by restricting our population to individuals with neither diabetes or pre-diabetes (with their greater likelihood of 
insulin resistance), while considering a gene (rs660339) that may be causally associated with insulin resistance53.

It is well known that telomere length is regulated and influenced by many gene pathways, physiological net-
works and biochemical pathways54–56. Previously an interaction between UCP2 SNPs and telomere length in 
diabetes patients has been reported30. In our study, by excluding those with diabetes and pre-diabetes, we have 
removed disease-related background levels of chronic inflammation and oxidative stress that could theoretically 
induce shortening of telomere length. We demonstrate that UCP2 rs659366 A allele and rs660339 T allele are 
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both related to longer LTL in subjects without diabetes, independent of cardiovascular risk factors. We thus have 
a better understanding of the direct interactions between UCP2 genotypes and telomere length.

Methods
Participants and study design.  A hypothesis generating study, UCP2 genotypes were predetermined 
to be tested in a non-diabetic population. Using the Crossroad Study data base containing clinical phenotypic 
data57, we selected all 950 participants who had neither diabetes nor pre-diabetes (impaired glucose tolerance or 
impaired fasting glucose) and where corresponding whole blood samples were available for DNA extraction to 
assess UCP2 genotypes and telomere length. All 950 participants had a fasting glucose of ≤​5.5 mmol/L, random 
glucose ≤​7.7 mmol/L and HbA1c ≤​5.6 mmol/L (American Diabetes Association criteria58).

Subjects from the data base had clinical information collected between June 2001 and March 2003 and were 
residents of Shepparton-Mooroopna and major surrounding towns in Victoria, Australia57. Historically the data 
base was constructed via a two-step process: interviews conducted with all residents in 2376 randomly selected 
households (half in the regional centre) with a 70% response rate, and then invitations were given out for all usual 
residents (resident in the area for at least 6 months) aged ≥​25 years to attend for a ‘clinic’ assessment and blood 
bio-banking with a 61% attendance rate.

Cardiovascular risk measures that were included in models: Blood pressure was measured three times using 
a standardized method and the mean of the two closest measurements recorded. Height was measured without 
shoes using a stadiometer and weight was measured without shoes and excess clothing. BMI was calculated as 
body mass divided by square of height (kg/m2). Waist circumference was measured at the level halfway between 
the lowest ribs and the iliac crest. Glucose, lipids and HbA1c level were measured as previously reported59.

Measurement of DNA.  Genomic DNA was extracted from each participant’s peripheral blood sample 
using a QIAamp DNA Blood Mini Kit (Cat No.: 51106, QIAGEN, Venlo, Netherlands). DNA binds specifically to 
the QIAamp silica-gel membrane and was dissolved in 100 μ​L DNase-free water. DNA concentration was tested 
using a Nanodrop 1000 (Thermo Scientific, MA, U.S.). DNA was stored at −​30 °C until usage. Two UCP2 SNPs 
were genotyped: rs659366 (Chromosome 11, 73983709 (Assembly GRCh38.p2)) and rs660339 (Chromosome 
11, 73978059 (Assembly GRCh38.p2)). The two UCP2 SNPs were genotyped on genomic DNA extracted from 
950 peripheral blood samples using Taqman SNP Genotyping Assay (rs659366: C_8760350_10, rs6690339: 
C_903746_1, Life Technologies, CA, U.S.), performed on a LightCycler 480 (Roche, Penzberg, Germany). The 
standard 5 μ​L PCR reaction system (including 15 ng of genomic DNA template) was prepared using TaqMan 
Universal PCR Master Mix reagent kits under the guidelines provided. 1% of samples are replicated as genotyp-
ing quality control and results maintained 100% concordance. Mean relative LTL of each samples were meas-
ured using monochrome multiplex quantitative PCR method with 15 ng of genomic DNA as template60. Briefly, 
a relative measurement of the amplification of telomeric DNA sequences (T) normalised by single copy gene  
(S, albumin gene) was produced within each reaction well, in comparison to a common serial diluted reference 
DNA sample spanning 3.75-60 ng/μ​L. All samples were analysed in triplicate and the mean of the three T/S ratios 
was recorded. Multiplex quantitative PCR was performed using QuantStudio 12K Flex System (Life Technologies, 
CA, U.S.). The overall average coefficient of variation (CV, standard deviation divided by mean) for all the samples 
measured in triplicate was 3.24%.

Statistics.  All values are expressed as mean ±​ standard deviation when describing quantitative variables, 
unless otherwise indicated. The ANOVA test was used to compare quantitative variables between subgroups and 
the Chi-square test for categorical variables. The relationship between telomere length and diabetes risk factors 
and/or SNPs was evaluated using a General Linear Model. All data analysis was performed using SPSS 22.0 (IBM, 
Armonk, New York, U.S.). A two-sided P-value <​0.05 was considered statistically significant.
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