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Astrocytes are the major glial cell of the central nervous system (CNS), providing both metabolic and physical
support to other neural cells. After injury, astrocytes become reactive and express a continuum of phenotypes
which may be supportive or inhibitory to CNS repair. This review will focus on the ability of astrocytes to influ-
ence myelination in the context of specific secreted factors, cytokines and other neural cell targets within the

CNS. In particular, we focus on how astrocytes provide energy and cholesterol to neurons, influence synaptogen-

esis, affect oligodendrocyte biology and instigate cross-talk between the many cellular components of the CNS.
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1. Introduction support (Sofroniew and Vinters, 2010). Astrocytic regulation of

Astrocytes were long considered secondary to neurons in central
nervous system (CNS) function, and erroneously dismissed as “brain
glue” (glia is the Greek term for glue). Research over the past two
decades, however, has shown astrocytic roles extending to a range of
brain functions far beyond basic physical and metabolic neuronal
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myelination was first hypothesised by Mller in 1904, who claimed
that the demyelinating disease, Multiple Sclerosis (MS), was rooted in
astrocytic dysfunction (Miiller, 1904; Williams et al., 2007). Evidence
has since continued to grow supporting the premise that astrocytes
could be important in regulating myelination (Sofroniew and Vinters,
2010; Williams et al., 2007; Barnett and Linington, 2013; Moore et al.,
2011).

Glial fibrillary acidic protein (GFAP) has been used extensively in the
study of astrocytes. Increased GFAP expression has been associated with
astrocyte reactivity in CNS lesions and is a pathological hallmark of dis-
ease and/or injury. Fig. 1 illustrates astrocytes immunolabelled with
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Nestin GFAP and nestin, another marker thought to label reactive astrocytes
(Kamphuis et al., 2012). In experimental allergic encephalomyelitis
(EAE), a widely used animal model of MS, where demyelination is in-
duced by myelin antigens, administered together with adjuvant that
contains bacterial components (Traugott and Lebon, 1988; Tsukada
et al,, 1991; Villarroya et al., 1996), GFAP expression was seen on
more numerous and much larger astrocytic processes in chronic lesions
compared to normal appearing white matter (Webster et al., 1985; Eng
etal, 1971). Thus, the degree of GFAP immunoreactivity appears to re-
flect the level of reactive astrogliosis. This was reviewed in detail by
Sofroniew and Vinters (2010), who described a continuum of pheno-
typic changes, that range from mild to severe, the latter resulting in
glial scar formation (Sofroniew and Vinters, 2010; Nash et al., 2011a).
Attempts have also been made to define the astrocyte phenotype in
more detail along this continuum (Liberto et al., 2004). It has been sug-
gested that mild astrogliosis is associated with astrocyte “activation”
and severe astrogliosis is associated with “reactivity”, with the former
promoting recovery of CNS function after injury and the latter walling
Fig. 1. Expression of astrocyte reactivity markers. Rat neurosphere-derived astrocytes off the ln]gred area and preventing rePau_(LIbert.O etal, 20(_)4)' Al-
cultured on PLL-coated glass coverslips express the reactivity markers GFAP (green) and though activated astrocytes have been associated with less detrimental
nestin (red). effects on the CNS and reactive astrocytes as more damaging, it is clear

that these properties are not all or nothing and reactive astrocytes can
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Fig. 2. Astrocytic effects on re/myelination can be classified into 4 main groups. They contribute to re/myelination by: 1) Providing an energy source (lactate) and cholesterol for neurons.
Glucose taken up by endothelial cells lining the blood brain barrier is later transferred to astrocytes which transform it to glycogen, which can then be used to produce lactate. 2) Playing a
role in synaptic signal transmission by regulating the fluid, pH/ion (e.g. potassium, K*), glio/neurotransmitter homeostasis and contributing to synapse modulation through secreted
molecules, such as thrombospondins (THBSs). 3) Affecting the survival, proliferation and maturation of oligodendrocytes by secreting growth factors, some of which are regulated by
iron homeostasis provided by astrocytes. Chemokines may also influence oligodendrocyte membrane ensheathment of axons. 4) Altering reactivity status through their release of
chemokines/cytokines, which in turn affects the cross-talk between all neural cells including microglia.
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also be beneficial to CNS repair. Interestingly, in studies using GFAP null
mice, it was seen that animals had abnormal myelination, non-
myelinated axons in the optic nerve with an age related reduction in
myelin thickness (Liedtke et al., 1996). Non-conservative mutations in
the GFAP gene have also been linked to the white matter brain disorder,
Alexander disease (Brenner et al.,, 2001; Li et al., 2002). Therefore, the
evidence for direct or indirect astrocytic roles on re/myelination has
been established both by in vitro and in vivo studies.

Considering the limitations in the current treatments for demyelin-
ating CNS diseases and injuries, it is crucial to identify other approaches
to regulate myelination in search of novel strategies for repair. Astro-
cytes have been shown to promote myelination through their support-
ive roles on neuron survival and maintenance of neuronal activity, and
their direct action on proliferation, differentiation and migration of oli-
godendrocytes (Fig. 2). This review will focus on the interaction of as-
trocytes with neural cells to synergistically promote myelination.

2. Astrocyte reactivity
2.1. Role of cytokines and chemokines

It is apparent that astrocytes can affect myelination under a range of
normal and pathological conditions, but it is important to understand
how this is regulated. Many molecules can trigger or even regulate
astrogliosis, including large polypeptide growth factors and cytokines
(John et al., 2003; Moore et al., 2011), mediators of innate immunity
such as lipopolysaccharide (LPS) and other Toll-like receptor ligands
(Farina et al.,, 2007), neurotransmitters (Bekar et al., 2008), purines, re-
active oxygen species, and molecules related to hypoxia and glucose
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deprivation (Swanson et al., 2004). For the purpose of this review we
will focus on cytokines and chemokines. Although these compounds
are primarily considered in the context of chemotaxis in immune cells,
here we will highlight their roles on astrocyte activation and reactivity.
These molecules can be produced in an autocrine or paracrine fashion
by various cell types in the CNS including neurons, oligodendrocyte lin-
eage cells, microglia, pericytes and endothelial cells. Not only do these
factors influence astrocyte phenotype but they also can affect a range
of neural and immune cell types.

2.2. Astrocyte activation (mild astrogliosis): a pro-reparative phenotype?

Astrocytes can be activated directly or indirectly. For example, in re-
sponse to injury, microglia become activated and release the cytokine
interleukin 1@ (IL-1(3, Herx et al., 2000), which is an early injury signal
(Auron, 1998). The delay of astrocyte activation in mice lacking IL-1{3,
as well as in mice lacking IL-1 type 1 receptor suggests that microglial
activation is necessary for astrocyte activation (Herx et al., 2000). It
has also been suggested that ciliary neurotrophic factor (CNTF; a mem-
ber of the IL-6 family of cytokines)treated astrocytes in vitro had a phe-
notype that was more supportive of CNS repair and thus are, by
definition, activated (Albrecht et al., 2002; 2003; 2007). Under CNTF
treatment, astrocytes upregulate expression of classical reactivity
markers such as GFAP, vimentin, and clusterin, show cellular and nucle-
ar hypertrophy, and increase their proliferation rate (Winter et al.,
1995; Levison et al., 1996; 1998; Hudgins and Levison, 1998). There is
a growing body of evidence for the promotion of neuronal survival by
cytokine-activated astrocytes, potentially through secretion of various
neurotrophic growth factors in the vicinity of neurons including nerve
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Fig. 3. Simplified schematic of the effects of cytokine-activated astrocytes on re/myelination. Astrocytes can be influenced by various cytokines to change their reactivity status to one that
falls within the continuum of phenotypes, namely more activated or reactive; both of which will secrete factors that can modulate myelination in a positive or negative way. Astrocytes
with more severe reactivity present increased GFAP expression, proliferation rate, and cellular hypertrophy with a more stellate morphology. The milder “activated” astrocytes can secrete
arange of factors including; neurotrophic factors, growth factors, and cytokines that will stimulate re/myelination by promoting neuronal survival, neurite outgrowth, neurogenesis, and/
or oligodendrocyte precursor cell (OPC) survival, proliferation, and/or maturation. Conversely astrocytes that tend to have a more severe “reactive” phenotype, possibly induced by pro-
inflammatory cytokines/CNS tissue damage, may secrete cytokines and chemokines that lead to myelin and oligodendrocyte damage in vitro, suppress remyelination, delay disease
recovery in experimental autoimmune encephalomyelitis (EAE), and suppress myelination in myelinating embryonic rat mixed spinal cord cultures. However, these reactive scar
forming astrocytes can also protect CNS tissue by preventing immune cells from invading and exerting a pro-inflammatory response and have been shown to even ameliorate EAE.
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growth factor (NGF), brain-derived neurotrophic factor (BDNF), activity
dependent neurotrophic factor (ADNF), hepatocyte growth factor
(HGF), leukaemia inhibitory factor (LIF), fibroblast growth factor-2
(FGF-2) and CNTF (Schwartz and Nishiyama, 1994; Rudge et al., 1995;
Uchida et al.,, 1998; Dreyfus et al., 1999; Messersmith et al., 2000;
Albrecht et al., 2002; Fig. 3). Moreover, cultured spinal cord astrocytes,
treated with CNTF, support the survival of a significantly greater num-
ber of ventral spinal motor neurons and promote neurite outgrowth
better than unstimulated astrocytes (Albrecht et al., 2002). Other re-
searchers have shown that cytokine-activated astrocytes can promote
neurogenesis, possibly by stimulating the differentiation of neural
stem cells (NSCs) residing in the subventricular zone and the dentate
gyrus in adult animals (Liberto et al., 2004). Because these multipotent
NSCs can migrate beyond their sites of origin and can later differentiate
into oligodendrocytes, neurons and microglia, they have the potential to
enhance recovery from CNS injury and disease.

Importantly, activated astrocytes have also shown positive effects on
myelination. Our own investigations have shown that CNTF activated
astrocytes can promote the percentage of myelinated fibres in CNS rat
cultures (Nash et al., 2011b). Further evidence of this has been shown
in mice infected with the A-59 strain of the mouse hepatitis virus
(MHV-A59), an animal model for MS (Jordan et al., 1989, Messersmith
etal., 2000). These animals have been shown to secrete increased levels
of CNTF during the remyelination phase and CNTF mRNA is induced in
the remyelinating regions in cells exhibiting astrocytic features
(Albrecht et al., 2003). It is suggested that the increase in IL-1(3 levels
at early stages of CNS pathology stimulates the induction of CNTF
mRNA and protein in astrocytes (Stockli et al., 1991; Guthrie et al,,
1997; Dallner et al., 2002; Liberto et al., 2004), a phenomenon which ap-
pears to be important for remyelination (Herx et al., 2000). This could
be due to FGF-2 signalling as CNTF treatment elevates astrocytic levels
of Fgf-2 mRNA significantly, whereas, IL-1 3 shows no effect (Albrecht
et al,, 2003). Since FGF-2 can enhance OPC proliferation (Albrecht
et al., 2003), it may produce more OPCs for subsequent myelination
(Redwine et al., 1997; Messersmith et al., 2000). Moreover, if the
gp130 receptor, the ubiquitous signal transducer for CNTF and all IL-6
family members, is genetically removed from astrocytes, astrocyte sur-
vival was poor, there was a reduction in the development of astrogliosis,
and larger areas of demyelination formed with a greater pro-
inflammatory T cell response (Haroon et al., 2011).

Therefore, CNTF seems to be an important cytokine involved in as-
trocyte reactivity and myelination. Interestingly, IL-13 can also stimu-
late the astrocytic production of another IL-6 family cytokine, LIF,
(Aloisi et al., 1994), which has been shown to promote survival and dif-
ferentiation of oligodendrocytes (Khan and De Vellis, 1994; Mayer et al.,
1994; Bugga et al., 1998). LIF also decreases disease severity when exog-
enously administered in both chronic and relapsing-remitting EAE mice
(Aloisi et al., 1994; Butzkueven et al., 2002; Ishibashi et al., 2006). Posi-
tive effects of LIF on the survival and maturation of oligodendrocytes
also provides evidence for the positive roles of LIF on myelination
(Khan and De Vellis, 1994; Mayer et al., 1994; Bugga et al., 1998). How-
ever, other pro-inflammatory cytokines such as tumour necrosis factor-
alpha (TNF-a) and interferon-gamma (IFN-vy) have also been shown to
potentiate reactive astrogliosis (Yong et al., 1991 John et al., 2003) as
discussed below.

2.3. Astrocyte reactivity (severe astrogliosis): an inhibitory phenotype?

In contrast to their positive effects on myelination, astrocytes can
also have a more detrimental effect on CNS repair via the secretion of
chemokines/cytokines when in a more severe, reactive state (Fig. 3).
One such cytokine is TNF-a, which has been shown to induce myelin
and oligodendrocyte damage in vitro (Selmaj and Raine, 1988). TNF-«
mRNA expression in MS plaques positively correlates with the extent
of demyelination and has been shown to be present in microglia/macro-
phages and to a smaller percentage of astrocytes (Bitsch et al., 2000). On

the other hand, studies have shown TNF-ot expression is mainly associ-
ated with GFAP positive fibrous astrocytes in chronic active MS lesions
at the lesion edge (Hofman et al., 1989) as well as foamy macrophages
and endothelial cells (Selmaj et al,, 1991). However, the fact that astro-
cytes appear as the major or minor TNF-« expressing cell types in MS
lesions might be because astrocytes internalize the protein in a
receptor-mediated manner (Aranguez et al., 1995; Kuhlmann et al.,
2006) rather than producing it themselves as suggested by Hofman
et al. (1989) and Bitsch et al. (2000). Moreover, it is possible that astro-
cytes require a longer period of time to become reactive upon injury and
only produce TNF-« first at the lesion edge of acute MS plaques and
later both at the lesion edge and in the lesion centre of chronic active
plaques (Selmaj et al., 1991). In situ hybridisation for TNF-o mRNA has
been detected in GFAP-positive astrocytes in mice suffering from pneu-
mococcal meningitis (Izadpanah et al., 2014) which also suggests that
astrocytes can indeed produce TNF-c in CNS pathologies.

Since TNF-« effects the maturation of oligodendrocytes (Cammer
and Zhang, 1999), remyelination failure in the CNS lesions could be be-
cause TNF-a prevents the in situ differentiation of oligodendrocytes. In-
terestingly, direct cell contact between pre-oligodendrocytes (preOLs)
and astrocytes has been shown to be a prerequisite for TNF to induce ap-
optosis in preOLs of rodent mixed glial cultures (Kim et al., 2011). Nev-
ertheless, it is possible that TNF-a increases production of PDGF in
demyelinated spinal cord lesions of MHV-A59-injected mice (Redwine
and Armstrong, 1998; Frost et al., 2003) as suggested by the increase
of PDGF-P transcription and PDGF-a3 protein levels in embryonic
human astrocytes upon TNF-a treatment (Silberstein et al., 1996).
Therefore, astrocytes might have a positive role on remyelination both
by producing TNF-a and by secreting PDGF upon stimulation with
TNF-ow. PDGF could in turn support the survival and enhance the prolif-
eration of OPCs in demyelinating lesions (Woodruff et al., 2004; Vana
et al,, 2007). Consequently, it is yet difficult to conclude whether reac-
tive astrocytes associated with increased TNF-a levels in CNS lesions
are predominantly stimulatory or inhibitory to remyelination.

IFN-vy, another cytokine found in MS plaques, has been reported to
not only activate astrocytes, but is also expressed by reactive astrocytes
and by immune cells that astrocytes have stimulated (Pulver et al.,
1987; Traugott and Lebon, 1988; Miljkovic et al., 2007; Hashioka et al.,
2009; Ionescu et al,, 2011). Similar to TNF-«, [FN-y has been shown to
suppress remyelination and to delay disease recovery in transgenic
EAE mice, where IFN-y expression by astrocytes was stimulated tempo-
rally in the recovery stage (Lin et al., 2006). Astrocyte-directed expres-
sion of IFN-y in transgenic mice has also resulted in regional
hypomyelination and selective disruption of brain histogenesis, which
led to ataxia and shorter life span (LaFerla et al., 2000). Furthermore,
knocking down IFN-y receptor expression in astrocytes three days be-
fore immunization suppressed EAE and demyelination by inhibiting in-
flammatory cell infiltration (Ding et al., 2015). These animals presented
lower mean clinical scores even when the receptor silencing was initiat-
ed after disease onset or at disease peak (Ding et al., 2015). Despite the
abovementioned evidence suggesting inhibitory roles for reactive astro-
cytes on myelination, Hindinger et al. (2012) have proposed that [FN-y
signalling in astrocytes is indispensable for the alleviation of EAE since
levels of demyelination and axonal loss are increased during acute
EAE in mice with an astrocytic expression of a dominant negative allele
for IFN-y receptor. Nevertheless, their approach blocked IFN-vy signal-
ling in astrocytes without decreasing the expression of IFN-vy receptor,
which would lower the levels of IFN-y available for immunoregulatory
cells; whereas, Ding et al. (2015) have knocked down the expression
of the receptor itself. Therefore, blocking or lowering IFN-vy signalling
in astrocytes with a carefully planned strategy might provide new
disease-modifying treatments that will limit demyelination.

Reactive astrocytes also secrete C-X-C motif chemokine 10 (CXCL10,
Ransohoff et al., 1993), particularly around active MS lesions (Omari
et al., 2005; Carter et al., 2007). Cxcl10 mRNA expression increases sig-
nificantly during peak disease and decreases during the recovery phases
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in animal models of MS (Godiska et al., 1995; Glabinski et al., 1997; Fife
et al.,, 2001). A direct effect of CXCL10 on the inhibition of myelination
was shown in dissociated rat spinal cord cells plated on astrocytes treat-
ed with CXCL10 and its neutralizing antibody. In these experiments
CXCL10 identified by microarray analysis, was upregulated in an astro-
cyte phenotype that was inhibitory to CNS myelination in vitro. Specifi-
cally, CXCL10 appeared to inhibit oligodendrocyte process extension
(Nash et al., 2011b). Consequently, cytokines stand out as an important
family of molecules to activate astrocytes and to initiate different forms
of astrocyte reactivity that could be either beneficial or inhibitory for the
CNS milieu in terms of re/myelination.

It should be noted that the secretion of such pro-inflammatory cyto-
kines that can contribute to the lack of remyelination within MS plaques
is not restricted to reactive astrocytes since other glial and inflammatory
cell types will also secrete them. Moreover, the up regulation of such cy-
tokines by reactive astrocytes can also be protective for CNS injury. For
example, the astrocytic scar can restrict leukocyte migration from with-
in areas of damaged tissue into the otherwise healthy non damaged CNS
tissue in close proximity to the scar protecting it from immune mediat-
ed damage (Faulkner et al., 2004; Okada et al., 2006; Herrmann et al.,
2008; Voskuhl et al., 2009).

3. Astrocytes provide energy and cholesterol

A vital supportive role played by astrocytes following injury is the
provision of an energy source, which is important if axons are to be my-
elinated. This energy is metabolized from glucose which enters the
brain via the endothelial cells lining the blood brain barrier (BBB),
which are in close contact with astrocytes. Unlike endothelial cells,
astrocytes biochemically transform glucose into glycogen, the principal
source of stored energy in all cell types (Pellegri et al., 1996;
Pfeiffer-Guglielmi et al., 2003). In addition, it has been suggested that
astrocytes under low glucose concentrations can degrade stored glyco-
gen into lactate which in turn increases extracellular lactate levels to
provide energy for nearby axons when deprivation occurs after injury
(Tekkok et al., 2005). The lactate derived from astroglial glycogen via
glycolysis is transferred directly to the axon at the node of Ranvier
(Hirrlinger and Nave, 2014). The importance of lactate during demye-
lination is only just emerging. Whether astrocytes maintain the energy
levels of only axons as previously thought, or if this extends to oligoden-
drocytes as well, is an interesting concept. Oligodendrocytes are known
to consume lactate at higher levels than other CNS cells, therefore mak-
ing them an important user of any lactate production. Furthermore, pro-
motion of myelination via oligodendrocytes has been shown when
endogenous lactate is applied (Rinholm and Bergersen, 2012) therefore
at least some astrocytic lactate production may be targeted to
myelinating oligodendrocytes (Sanchez-Abarca et al., 2001; Rinholm
et al., 2011). However, energy regulation in the CNS is more complex
as recent evidence has shown that oligodendrocytes in turn can transfer
glycolysis products such as lactate to axons via monocarboxylic acid
transporters (MCT1, MCT2), which reside in internodal myelin and the
axonal compartment (Fiinfschilling et al., 2012).

Cholesterol is essential to every cell in the body as it is an important
component of cellular membranes. In the CNS it is vital for normal brain
development, is a precursor to many signalling molecules such as ste-
roid hormones, and importantly, is a major structural component of my-
elin sheaths (Siegel et al., 1999). The BBB prevents the transport of
either hepatic or dietary cholesterol, meaning that cholesterol must be
derived by de novo synthesis within the CNS (Orth and Bellosta,
2012). Astrocytes are proposed to be one of the primary cellular
sources of cholesterol (Pfrieger and Ungerer, 2011) and mediate its
secretion by their expression of several apolipoproteins, molecules
that bind cholesterol (Boyles et al., 1985; Lin et al., 1986; Xu et al.,
2006; Kurumada et al., 2007). There is sufficient evidence to suggest
that there is horizontal transfer of cholesterol (Boyles et al., 1985; Lin
et al., 1986; Xu et al,, 2006; Kurumada et al., 2007) with both astrocytes

and oligodendrocytes producing cholesterol to maintain myelin sheath
formation and neurons. This transfer between cells is critically relevant
to neurodegenerative diseases, since the availability of cholesterol is
thought to be an essential rate limiting factor to myelin production
(May et al., 2004; Liu et al., 2010). Therefore, in addition to their roles
in providing energy to neurons, astrocytes also emerge as important
cholesterol-suppliers in the CNS, which is vital for myelination.

4. Astrocytes play a role in synaptic signal transmission and can
modulate synapses

A further function of astrocytes is the removal of excitotoxic mole-
cules from the extracellular space, thus supporting neuronal survival.
They can actively remove excitotoxic glutamate and convert it to gluta-
mine by increasing their levels of glutamate transporters and glutamine
synthetase (Faden etal.,, 1989; Eng et al., 1997; Krum et al., 2002), there-
by preventing neuronal cell death during brain pathology. Astrocytes
can also release gliotransmitters such as glutamate, purine, GABA and
D-serine into the synaptic cleft upon excitation by changes in neuronal
synaptic activity and can thereby regulate neuronal excitability
(Parpura et al., 1994; Bezzi et al,, 1998; Mothet et al., 2000; Coco et al,,
2003; Halassa et al., 2007). Neurotransmitter released from the neuro-
nal synapse can reach adjacent astrocytes, stimulating increases in in-
tracellular Ca®™ concentrations, which then leads to the secretion of
gliotransmitters (Porter and McCarthy, 1997). These regulatory mole-
cules then can feedback to presynaptic nerve terminals to modulate
synaptic neurotransmission (Araque et al., 1998). These observations
have even given rise to the currently accepted ‘tripartite synapse’
hypothesis, where astrocytes form an active, integral regulatory compo-
nent of the synapse (Araque et al., 1999; Halassa et al., 2007). Recently,
electron microscopy has also shown microglia interacting with neuro-
nal synapses (Tremblay et al., 2010) and playing a role in synapse mat-
uration, synaptic remodelling, and synaptic activity (Ji et al., 2013).
Evidence has shown that microglia secrete immune factors that play
an important role in synaptic connections and illustrates the complexity
of cross-talk between neural cells and the immune system. These re-
searchers have suggested a change in name from tripartite synapse to
the quad-partite synapse (Schafer et al., 2013; Wu et al., 2015).

In addition to playing a role in synaptic signal transmission, astro-
cytes can also modulate synapses. It has been demonstrated that astro-
cytes secrete molecules such as thrombospondins that might be
required for the formation, function and pruning of developing synap-
ses (Ullian et al., 2001; Christopherson et al., 2005). Both presynaptic
and postsynaptic activity in purified rat retinal ganglion cultures have
been enhanced in the presence of astrocytes; and immunohistochemis-
try of rat brain cryosections from various developmental stages have
shown that glial generation precedes the appearance of synapses
(Ullian et al.,, 2001). Astrocytes might also be functional in synaptic re-
modelling and pruning in healthy or diseased adult CNS (Barres,
2008). Because synaptic signal transmission can trigger astrocytes to se-
crete the cytokine LIF, which in turn increases the number of myelinated
axons in dorsal root ganglion cultures co-cultured with oligodendro-
cytes (Ishibashi et al., 2006), the support and maintenance of healthy
signal transmission appears important for the regulation of myelination.

Furthermore, astrocytes may contribute to synaptic transmission by
supporting maintenance of the synaptic interstitial fluid by regulating
ion, pH and transmitter homeostasis. Astrocyte processes contain trans-
porters for potassium uptake and aquaporin 4 water channels (Nielsen
et al.,, 1997; Rash et al., 1998; Amiry-Moghaddam et al., 2003; Solenov
et al,, 2004), which maintain the transmitter homeostasis of the synap-
tic interstitial fluid (Steinhduser et al., 1994; Gundersen et al., 1996;
Mennerick et al., 1996; Bergles and Jahr, 1997; Fujita et al., 1999).
Connexin channels and connexin proteins are important candidates
which play a role in the regulation of neuronal activity and survival.
For example, astroglial connexins decrease neuronal excitability by re-
moving extracellular potassium and glutamate; while also providing
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metabolic supply to neurons (Wallraff et al., 2006; Rouach et al., 2008;
Froger et al. 2010; Pannasch et al., 2011). On the other hand, the eleva-
tion of connexin expression at lesion sites in CNS pathologies might also
be associated with other, possibly protective, roles (Nagy et al., 1996;
Koulakoff et al., 2008; Kuchibhotla et al., 2009; Mei et al., 2010;
Karpuk et al., 2011). Studies using connexin knockout animals allude
to the importance of connexins in promoting communication between
astrocytes and between astrocytes and oligodendrocytes on myelin in-
tegrity. Myelin damage has been observed in Cx47, Cx43/Cx30 and
Cx30/Cx47 single/double knockout mice (Menichella et al., 2003;
Odermatt et al., 2003; Lutz et al,, 2009; Tress et al., 2012). Interestingly,
the level of oligodendrocyte gap junction connexins Cx47 and Cx32
were reduced both within and around lesions during early stages of in-
flammatory demyelination in EAE mice, (Traugott and Lebon, 1988;
Tsukada et al., 1991; Villarroya et al., 1996; Meeuwsen et al., 2003).
These mice also presented decreased expression of Cx43, the major as-
trocytic partner of Cx47, when spinal cord sections were analysed
immunohistochemically (Markoullis et al., 2012). Cx43 expression
was increased at late EAE stages, where remyelination was observed,
leading to the suggestion that astrocytic protein Cx43 might play an im-
portant role in recovery from neuroinflammation (Markoullis et al.,
2012).

5. Astrocytic effects on oligodendrocyte precursor cell (OPC)
survival, proliferation and maturation

In the 1980s advancements were made on the ability to grow puri-
fied cultures of glial cells, with Raff and colleagues in particular develop-
ing techniques to purify OPCs from the optic nerve, a tissue devoid of
neuronal cell bodies (Raff et al., 1983). With the development of these
culture techniques it was shown that astrocytes play important roles
in OPC differentiation (Noble and Murray, 1984; Noble et al., 1988;
Raff et al., 1988; Noble et al.,, 1989) and in the rate of oligodendrocyte
axonal ensheathment (Watkins et al., 2008). Further in vitro studies,
where conditioned medium collected from primary astrocyte mono-
layers was incubated with other neural cells, showed enhanced neuro-
nal survival, proliferation of OPCs, and protection of oligodendrocytes
from stress (Noble and Murray, 1984; Yoshida et al., 1995; Yamamuro
etal., 2003; Zhu et al,, 2006; Arai and Lo, 2010). It is likely that astrocytes
support OPC survival and proliferation by providing soluble factors such
as platelet derived growth factor (PDGF) and FGF-2 (Bogler et al., 1990;
Ferrara et al., 1988; Pringle et al., 1989).

Astrocytes are important providers of secreted growth factors, for
both neuronal and glial proliferation and survival. For example, CNTF,
although shown to be important in the activation of astrocytes, is consti-
tutively expressed by white matter astrocytes, and is a key player in OPC
survival and maturation in vitro and in vivo as discussed earlier (Stockli
etal, 1991; Dallner et al.,, 2002; Stankoff et al., 2002; Cao et al., 2010).
CNTF has also been reported to enhance the migration of subventricular
zone-derived progenitors (Vernerey et al.,, 2013), protect oligodendro-
cytes from apoptosis, and decrease myelin destruction in demyelinating
pathological conditions (Linker et al., 2002). In studies when CNTF was
injected subcutaneously at the remyelination phase of cuprizone-
induced demyelination, an increase was seen in myelin oligodendrocyte
glycoprotein (MOG) expression in the cerebral cortex (Salehi et al.,
2013). Moreover, intraperitoneal injections of CNTF and intravenously
transplanted mesenchymal stem cells that overexpress CNTF resulted
in a reduced loss of neurons and disease severity, and increased neuro-
nal functional recovery in EAE mice (Kuhlmann et al., 2006; Lu et al.,
2009). However, in these experiments it is difficult to see if the effect
is on the activation status of the astrocytes as discussed above, or the
direct effect on the OPC.

Astrocytes have also been shown to exhibit a crucial role in OPC
remyelination via their iron exporter ferroportin (Fpn) in mice,
where focal demyelination was induced by the injection of
lysophosphatidylcholine (LPC) into their spinal cords (Schulz et al.,

2012). In these astrocyte-specific Fpn KO mice, fewer remyelinating
axons and a reduction in OPC proliferation were observed following
LPC-induced demyelination compared to control animals. This could ei-
ther be due to direct effects on OPCs through limited iron supply or in-
direct effects via iron-deficient microglia, which expressed significantly
lower levels of TNF-a and IL-13 when stimulated by LPS compared to
control microglia (Schulz et al., 2012). Because the expression of FGF-
2 and insulin-like growth factor-1 (IGF-1) was significantly upregulated
by IL-1p and TNF-q, respectively, and the expression of transforming
growth factor beta (TGF-3) was stimulated by IL-1 in purified astro-
cyte cultures, it has been suggested that iron-deprivation in the milieu
would lower the expression of [L-13 and TNF-« in microglia and thus
lead to reduced growth factor expression in astrocytes, which would
in turn render OPC proliferation and possibly differentiation (Schulz
et al., 2012).

6. Future directions in astrocyte research

As discussed throughout this review astrocytes can play impor-
tant roles not just in myelination during development, but also in
remyelination in adult tissue after CNS injury. Their reparative
roles might be related to their level of reactivity, so it is important
to identify markers that can define these different astrocyte phenotypes
although at present these are not easy to define. One approach is to use
microarrays. As described, Nash et al. (2011b) identified CXCL10 as in-
hibitory to myelination, but others using a lower-scale cDNA array
that contained probes for cytokines, chemokines, growth factors and
their receptors have identified other pro-inflammatory cytokines in-
cluding TNF-q, IL-1f3, or IFN-y (Meeuwsen et al., 2003). Another large
array was carried out on GFP-astrocytes purified at various time points
after the onset of two models of disease, namely ischemic stroke (mid-
dle cerebral artery occlusion) and neuroinflammation induced by LPS
injection (Zamanian et al,, 2012). The resulting data suggested that as-
trocytes could present different mRNA expression profiles depending
on the insult despite the presence of reactive gliosis in both types of
CNS damage. However, although there was upregulation of a core set
of genes (lipocalin 2 and serpina3n), it was clear that changes in the as-
trocyte after injury are highly heterogeneous, and that changes in astro-
cyte activity may depend on the injury type. Hopefully, more specific
markers of “good” or “bad” astrocytes for CNS repair will be identified
and allow more specific identification of how these astrocytes influence
repair.

7. Summary and conclusions

There is abundant evidence to suggest that astrocytes contribute to
re/myelination mainly by:

1) Providing the right conditions for neurons to myelinate by
i) supplying neurons with energy and cholesterol, ii) removing
excitotoxic molecules from the extracellular environment, and iii) reg-
ulating the fluid, ion, pH, and neuro/gliotransmitter homeostasis.

2) Playing a role in the survival, proliferation, maturation and func-
tion of oligodendrocytes and the migration of OPCs into the lesioned
areas in the CNS.

3) Influencing microglia.

The manner by which astrocytes affect myelination can often be
seen to correlate with its level of reactivity. Astrocyte reactivity can be
induced by the milieu of cytokines present after injury, which can be
beneficial or inhibitory in re/myelination depending on the context
and severity of the injury. Due to the lack of gliosis-specific markers,
there are currently no clear guidelines which allow different astrocytic
reactivity phenotypes to be classified. However, if markers can be iden-
tified that classify the continuum of astrocyte phenotypes, it may aid in
the design of new treatments targeting phenotypes that are more suited
to regeneration and remyelination, and therefore benefit in the treat-
ment of demyelinating diseases.
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