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ABSTRACT

Stable transformation of plants is a powerful tool for hypothesis
testing. A rapid and reliable evaluationmethod of the transgenic
allele for copy number and homozygosity is vital in analysing
these transformations. Here the suitability of Southern blot anal-
ysis, thermal asymmetric interlaced (TAIL-)PCR, quantitative
(q)PCR and digital droplet (dd)PCR to estimate T-DNA copy
number, locus complexity and homozygosity were compared in
transgenic tobacco. Southern blot analysis and ddPCR on three
generations of transgenic offspring with contrasting zygosity and
copy number were entirely consistent, whereas TAIL-PCR
often underestimated copy number. qPCR deviated consider-
ably from the Southern blot results and had lower precision
and higher variability than ddPCR. Comparison of segregation
analyses and ddPCR of T1 progeny from 26 T0 plants showed
that at least 19% of the lines carried multiple T-DNA insertions
per locus, which can lead to unstable transgene expression. Seg-
regation analyses failed to detect these multiple copies, presum-
ably because of their close linkage. This shows the importance of
routine T-DNA copy number estimation. Based on our results,
ddPCR is the most suitable method, because it is as reliable as
Southern blot analysis yet much faster. A protocol for this appli-
cation of ddPCR to large plant genomes is provided.

Key-words: ddPCR; digital droplet PCR; qPCR; segregation
analysis; selectable marker; Southern blot; TAIL-PCR;
transformation.

INTRODUCTION

The use of stable transformation of plants to test a range of
hypotheses has been increasing rapidly and has been sug-
gested a key element in addressing future security of food sup-
ply as well as in adapting to global change (Khush 2005;
Hibberd et al. 2008; Long et al. 2015). In parallel, there is con-
siderable interest in introducing new pathways and modifying
existing pathways in plants to produce new or improved
bioproducts (Clemente & Cahoon 2009; Rogers & Oldroyd
2014). Rapid and reliable evaluation of transgenic allele(s)
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for copy number and homozygosity is a vital step in utilizing
these transformation events, so that homozygous lines with stable
transgene expression are obtained for accurate testing.Knowledge
of the transgenic locus structure and zygosity status is particularly
important in plants, including all crops, which have a life cycle of
months and sometimes years. Here, decreasing the number of
generations between the initial transformation and identification
of homozygous lines with stable expression has greatest value.

Southern blot analysis (Southern, 1975), quantitative poly-
merase chain reaction (qPCR; Higuchi et al. 1992), thermal
asymmetric interlaced-PCR (TAIL-PCR; Liu et al. 1995) and
most recently digital droplet PCR (ddPCR; Hindson et al.
2011) have all been used to provide information about the inte-
gration status of a transgenic allele(s) in genomes (Tingay et al.
1997; Fu et al. 1999; Campbell et al. 2000; Ingham et al. 2001;
German et al. 2003; Pillai et al. 2008; Mieog et al. 2013; Yi
et al. 2013; Larkan et al. 2016;Wang et al. 2015). However, these
methods use contrasting principles for characterization of a
transgenic allele and differ vastly in precision, reproducibility
and potential to scale up. Southern blot analysis has been
regarded as the most unambiguous method for molecular
characterization of transgenic alleles for both estimation of
copy number and loci complexity in transgenic plants. The dis-
advantage is that the process is more labour intensive, and less
well suited for automation, relative to PCR-based platforms.
Here the precision and speed of different PCR methods are
compared to Southern blot analysis.

Typically, a large number of independent transformations
are generated to compensate for insertions in undesirable
genomic loci; for example insertion into a native open reading
frame, or in a region not conducive to stable expression levels.
The resulting collection of primary transformants can then be
screened to prioritize lead events that possess targeted trans-
gene expression levels, coupled with simple integration and
low copy transgenic allele(s). Importantly, an ideal genotyping
platform should possess the ability to facilitate identification of
homozygous lineages in early generations of selection.

In Southern blot analysis (Southern, 1975) genomic DNA
is digested, separated on a gel, blotted onto a membrane
and then detected with a radioactive, fluorescent or chemi-
luminescent labelled probe sequence to visualize the trans-
genic allele(s) complexity of integration. The intensity of
thors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
bution License, which permits use, distribution and reproduction in any

http://creativecommons.org/licenses/by/4.0/


Estimating T-DNA copy number in transgenic plants 909
the hybridization signal in reconstruction lanes, whereby
known quantities of the target sequences are spiked into
native DNA, is correlative with zygosity at each allele
(Dai et al. 2001). In qPCR (Higuchi et al. 1992), template
concentration is estimated based on the fluorescence trace
from a dye or probe in the sample which is directly propor-
tional to the template amplification. Copy number, as well
as zygosity, of the transgenic allele(s) can be derived from
qPCR analysis, but logarithmic PCR template quantifica-
tion may limit ability to identify small copy number differ-
ences (Bubner & Baldwin 2004). Additionally, direct
coupling between the PCR amplification and quantification
makes qPCR very sensitive to PCR efficiency (Bustin et al.
2009). TAIL-PCR (Liu et al. 1995) has also been used to
establish the number of insertions in transgenic events by
means of amplifying the flanking sequence of the transgenic
allele(s), which can be exploited to map the allele if a
genome sequence is available (e.g. Hanhineva &
Kärenlampi 2007). Recently, a ddPCR method has been
developed (Hindson et al. 2011) which can also be used to
detect absolute DNA copy concentration at high accuracy.
The detection principle is based on a fluorescent dye or
probe, similar to qPCR. However in ddPCR, the PCR reac-
tion is rendered digital by randomization of the sample
DNA over a set of subsamples, in which the DNA dilution
is chosen to obtain both positive and negative subsamples
for template presence. A Poisson probability distribution
can then be used to derive the template concentration
(Hindson et al. 2011). Decoupling of amplification and quan-
tification should make ddPCR results relatively insensitive to
PCR efficiency and the linearity of the quantification scale
should allow detection of small copy differences (Hindson
et al. 2013, Bharuthram et al. 2014). While segregation analysis
of transgene presence in subsequent generations can provide
information about the mode of inheritance, and a means to
identify homozygous lines for down-stream phenotyping,
this approach requires several generations of inbred
plants to be analysed and associated costs for time, space
and labour can be substantial. Additionally, although
Agrobacterium tumefaciens-mediated transformation typi-
cally results in a lower T-DNA copy number than direct
DNA transfer methods such as electroporation or particle
bombardment, multiple T-DNAs integrated at the same
locus can still be found (Jorgensen et al. 1987; Kohli
et al. 1999; Gelvin 2003). Such multiple inserts at a single
locus would not be detected by segregation analysis. Multiple
T-DNA copies can increase the likelihood of silencing effects,
in particular when tandem T-DNA insertions are arranged in
inverted repeats (Jorgensen et al. 1987; Stam et al. 1997). This
makes detecting thesemultiple inserts of particular importance
in selecting for stable expression.
The aim of this study was to assess both the importance of

estimating copy number and to assess which method is most
suited to estimating copy numbers and establishing homozy-
gosity in transgenic plants. T-DNA copy number in the
same transgenic plants was evaluated with Southern blot,
qPCR, TAIL-PCR and ddPCR analyses. Subsequently we
assessed reproducibility of parallel qPCR and ddPCR
© 2015 The Authors. Plant, Cell & Environment published by John Wiley &
analyses, using both methods with 12 different primer com-
binations on the same DNA sample. After comparing data
output, duration of protocol, reproducibility and precision,
the ddPCR method appeared most suitable to routinely
assess T-DNA copy numbers and homozygosity. An example
protocol optimized for use in higher plants with large
genomes is provided in the Supporting Information.
MATERIAL AND METHODS

Plant material and transformation

Nicotiana tabacum cv. ‘Petite Havana’ was transformed using
the Agrobacterium-mediated leaf disc protocol according to
Clemente (2006), a protocol based on the seminal communica-
tion by Horsch et al. (1985), using two different plasmids. The
first plasmid (PsbS) contained the coding sequence of the pho-
tosystem II subunit S gene from Nicotiana benthamiana
(NbPsbS). Overexpression of PsbS results in a proportional in-
crease in non-photochemical quenching (NPQ) of chlorophyll
fluorescence in transformed plants (Li et al. 2002). Therefore
chlorophyll fluorescence analysis could be used to identify
transformed individuals in segregation analysis. The second
plasmid (VPZ) contained coding sequences of three genes
fromArabidopsis thaliana: violaxanthin de-epoxidase (AtVDE),
AtPsbS and zeaxanthin epoxidase (AtZEP). T-DNA maps are
provided in Supporting Information (Fig. S1A–B). The presence
of three genes in transformants with construct 2 allowed us to
verify reproducibility of the qPCR and ddPCR method with
multiple primer sets to derive the copy number of the transgenic
cassette. Additionally, both constructs contained the bar gene
encoding resistance for bialaphos (Thompson et al. 1987). Multi-
ple confirmed independent T0 transformants were generated for
each construct (11 and 15 for PsbS and VPZ, respectively).
DNA extraction for PCR methods

Young leaf tissue was collected from greenhouse-grown plants
to determine T-DNA insert copy number, snap frozen in liquid
nitrogen and stored in �20 °C. DNA was extracted by the
CTAB method modified from Kabelka et al. (2002).
Southern blot

Southern hybridization was carried out on a subset of eight
plants derived from one VPZ transformation event (VPZ-23)
representing T0, T1 and T2 generations. These were used to
compare Southern blot analysis with the three PCR based
methods. Genomic DNA was extracted using a modified ver-
sion of the protocol by Dellaporta et al. (1983). Fifteen micro-
grams of genomic DNA was digested overnight with BamHI
(R3136, New England Biolabs, Ipswich, MA, USA) and
separated on a 0.8% agarose gel at 25Vovernight and alkali
blotted onto a Zeta-probe GT genomic tested blotting
membrane according to the manufacturer’s specifications
(BioRad, Hercules, CA, USA). Probe DNA was obtained
by double digestion of the VPZ plasmid using XhoI
(R0146, New England Biolabs, Ipswich, MA, USA) and
Sons Ltd., 39, 908–917
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XbaI (R0145, New England Biolabs, Ipswich, MA, USA),
yielding a 594 bp fragment, which was radiolabelled with
α-32P-labelled dCTP by means of the Prime-It II random
primer labeling kit according to the manufacturer’s protocol
(Stratagene, La Jolla, CA, USA). Pre-hybridization and
hybridization were carried out at 65 °C in the presence of
high salt buffer following the manufacturer specifications.
Membranes were analysed by autoradiography (X-Omat
AR5 film, Eastman Kodak, Rochester, NY, USA).
Thermal asymmetric interlaced PCR (TAIL-PCR)

DNA for thermal asymmetric interlaced (TAIL-) PCR was
extracted as described above. TAIL-PCR conditions were the
same as described in Liu et al. (1995), except that primary
and secondary reaction volumes were 25μL instead of 20μL
and tertiary reaction volumes 50μL instead of 100μL. Addi-
tionally, in all three reactions the Phusion high fidelity PCR
master-mix with high fidelity buffer (M0531S, New England
Biolabs, Ipswich,MA,USA)was used togetherwith appropriate
primer set with 2μMof arbitrary degenerate primer (AD1,AD2
or AD3) and 200nmole of T-DNA specific primer (TR1, TR2
or TR3; for primer sequences see Table S1). The amplicons
of all three reactions were separated on 1% agarose gels
(General purpose agarose GP2, BE-A125, MidSci, Valley
Park, MO, USA) with Tris-Borate-EDTA buffer and visualized
with ethidium bromide.
Quantitative PCR (qPCR)

DNA obtained as described above was digested overnight
with HindIII (R3104, New England Biolabs, Ipswich, MA,
USA), followed by purification with cleaning and concentrat-
ing columns (D4014, Zymo Research, Irvine, CA, USA).
Reactions were prepared using 9μL of digested genomic
DNA (20–25ngμL�1), 200 nmole of forward and reverse
primersets AtPsbS_3, AtPsbS_4, AtVDE_1, AtVDE_4,
AtZEP_1 or AtZEP_4 for T-DNA amplicons and NtActin_1
and NtTubulin_1 for reference genes (for primer sequences, see
Supporting Information Table S1) and 10μL of SsoAdvanced
Universal SYBER Green Supermix (172-5270; BioRad,
Hercules, CA, USA). The reaction efficiency for each primer
set was estimated on a series of DNA dilutions. All reactions
were run on CFX connect Real-Time PCR Detection System
(1855201, BioRad, Singapore) using the following program:
3min 95 °C, 40 times (10 s 95 °C; 30 s 60 °C), followed by melting
curve generated from 65 °C to 90 °C. Four technical replicates
were used for both T-DNA and the reference sequence. Raw
data was processed using BioRad CFX Manager 3.1 and
T-DNA copy number estimates made using the ΔΔCt method
(Livak & Schmittgen, 2001) and corresponding standard errors
were computed as described in Hoebeeck et al. (2007).
Digital droplet PCR (ddPCR)

Digested DNAwas obtained as described for qPCR, excepting
that in addition toHindIII. SacI (R3156, NewEnglandBiolabs,
© 2015 The Authors. Plant,
Ipswich, MA, USA) was also used for the digestion of DNA
derived from PsbS transformants. The full step-by-step protocol
for ddPCR is described in the Supporting Information
(Appendix 1). Briefly, the ddPCR reactionswere prepared using
11.5μLofdigested genomicDNA(20–25ngμL�1), 100–150nmole
of forward and reverse primers (for primer sequences, see
Supporting Information Table S1), 12.5μL of a commercial
reaction mix including an intercalating fluorescent dye,
polymerase, Mg2+ and dNTPs (2x QX200 ddPCR EvaGreen
Supermix, 186-4034, BioRad, Hercules, CA, USA) and MilliQ
autoclaved water (dMQ H2O) to a total reaction volume of
25μL. Droplets were generated using droplet generator
cartridges, gaskets and cartridge holder (186-4007 and DG8,
186-3051, Bio-Rad, Hercules, CA,USA) in a droplet generator
(QX200, 186-4002, Bio-Rad, Hercules, CA, USA). According
to the manufacturer’s instructions, 20μL of ddPCR reaction
mix and 70μL of droplet generation oil (EvaGreen 186-4005,
Bio-Rad, Hercules, CA, USA) were loaded into cartridges.
The resulting 40μL sample of generated droplets was
dispensed to one well of a 96-well PCR semi-skirted plate
(951020362, Eppendorf, Enfield, CT, USA) and sealed with
foil (Pierceable foil heat seal, 181-4040 and Px1 PCR plate
sealer, 181-4000, Bio-Rad, Hercules, CA, USA ). The droplet
mix was cycled through a PCR program using a deep-well
thermal cycler (C1000 Touch, 185-1196, Bio-Rad, Hercules,
CA, USA), followed immediately by analysis in a droplet
reader (QX200, 186-4003, Bio-Rad, Hercules, CA, USA).

Fluorescence reads per individual droplet from each well
were analysed with the manufacturer-provided software
(Quanta Soft version 1.7, 1864011, Bio-Rad, Hercules, CA,
USA). The droplet population in each well was divided into
template negative or positive. The distribution of positive
and negative droplets is a function of the starting PCR
template concentration according to the Poisson probability
distribution, which allows the absolute concentration of
PCR-template to be derived from the number of negative
droplets according to Eqn 1:

PCR Concentration� template ¼ �ln Nneg=N
� �

V
(1)

where Nneg is the number of negative droplets; N is the total
number of droplets and V is volume of a single droplet which
is equal to 0.85 nL. For the calculation of copy number the ratio
between the concentration of the T-DNA and a reference
sequence of known copy number was used. Two primer sets
were used to amplify reference sequences in either α-tubulin
(two copies) or actin (four copies). Primer sequences were
designed to amplify regions in contig c61851 and c50972,
respectively from N. tabacum (Methylation Filtered Genome
TGI: v.1 Contigs; accessed August 4, 2014). The performance
of each primer set was empirically verified prior to use.
T-DNA copy number and corresponding standard errors were
calculated based on the ratio of T-DNA versus reference
sequence according to Hedges et al. (1999). Two technical
replicates were used for both T-DNA and reference gene
ddPCR reactions. In all comparative analyses, the same primers
were used for qPCR and ddPCR.
Cell & Environment published by John Wiley & Sons Ltd., 39, 908–917
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Segregation analysis according to glufosinate
ammonium resistance

T1 progeny of 11 PsbS lines and 15 VPZ lines were used in
segregation studies of resistance to glufosinate ammonium.
Seeds collected from T0 plants were germinated in round
20-cm-diameter pots (ITML Inc, Brantford, ON, Canada)
containing a peat-, bark- and perlite-based growing medium
(Metro-Mix 900, Sun Gro Horticulture, Agawam, MA, USA).
Five days after germination, 24 randomly chosen seedlings of
each line were transferred to twelve 4 cm×3 cm×5.7 cm cells
of planting trays (715364C, T.O. Plastics, MN, USA) placed
on flats (710251C, T.O. Plastics,MN,USA) filledwith a growing
medium with a reduced perlite content (Metro-Mix 510, Sun
Gro Horticulture, Agawam, MA, USA). Seedlings were grown
in a controlled environment walk-in growing chamber with 12h
day (23°C)/12h night (18°C) cycle under 150μmolquantam-2 s-1.
Ten days after transplanting, seedlings were sprayed with 1.5gL-1

glufosinate ammonium solution [0.8% (v/v) Ignite herbicide,
cas77182-82-7, Bayer CropScience, Research Triangle Park,
NC, USA]. Presence of necrotic and chlorotic leaf tissue was
assessed 10days after exposure and used to score plants as either
susceptible or resistant. Additionally, 72 plants of each of five T1

lines were grown in the field, and mature leaves of each plant
were painted with the same solution and then assessed for
damage 10days later. In both cases, the observed susceptible
plant counts were compared against the expected counts based
on 1:3 segregation using a Chi2 test (α=0.1).
Segregation analysis using NPQ level in
PsbS-transformed plants

The abundance of PsbS protein is tightly linked to the maxi-
mum level of rapidly reversible NPQ of Photosystem II
(NPQ; Li et al. 2002). This property allows use of NPQ level
as an independent marker for progeny segregation. Ten-day-
old seedlings of T1 progeny of 11 PsbS lines were germinated
and grown, as described in the preceding section, and used in
modulated chlorophyll fluorescence imaging to determine
NPQ (CF Imager, Technologica, Colchester, UK). Seedlings
were dark adapted for 20min and then the dark-adapted
maximal fluorescence (Fm) was imaged with a 800ms
saturating flash (6000 μmol quantam-2 s-1) from blue LEDs
(λmax=470nm). Immediately following thedark-adapted reading,
blue LEDs were powered to provide 1000μmol quantam-2 s-1

on the seedlings. After 10min a second saturating flash was
applied to determine the maximum fluorescence under illumi-
nated conditions (Fm′). Average NPQ per seedling was then
calculated from these measurements according to Eqn 2,
assuming the Stern–Volmer quenching model (Maxwell and
Johnson 2000):

NPQ ¼ Fm=Fm’ �1: (2)

To separate transgenic T1 progeny into those carrying the
PsbS construct or segregated back to wild-type (WT), themean
and standard deviation of WT seedling NPQ values were used
to identify a threshold level of NPQ, above which seedlings
were classified as transgenic (α ≤ 0.05). The resulting transgenic
© 2015 The Authors. Plant, Cell & Environment published by John Wiley &
andWTcounts for each T1 progeny were subsequently used to
estimate the number of independently inherited loci, by com-
paring against the expected counts based on 1:3 segregation
using a Chi2 test (α=0.1).
RESULTS

Comparison between southern blot analysis,
TAIL-PCR, qPCR and ddPCR

Southern blot analysis on selected VPZ-23 plants showed two
bands of approximately 5.0 and 6.2 kb in the VPZ-23 T0 plant
(lane 1), suggesting two T-DNA copies present in the primary
transformant (Fig. 1a; Table 1). Self-pollination resulted in T1

progeny with zero (T1.4), two T-DNA copies (T1.3 and T1.8)
or four copies (T1.5 and T1.6). TAIL-PCR was performed on
the same plants using AD1, AD2 and AD3 primers with
increasing degeneracy (64-, 128- and 256-fold, respectively)
(Table 1, Fig. 1b and Fig. S2). Results with AD1 showed only
one unique band for plants T0, T1.3, T1.5, T1.6 and T2.3, whereas
the second band expected based on Southern blot results was
missing and DNA from plants T1.8 and T2.2 failed to generate
any unique band. Increasing the degeneracy of the primer to
256-fold resulted in one unique band for plants T1.8 and T2.2,
and two unique bands for plants T0, T1.3, T1.5, T1.6 and T2.3.
The corresponding T-DNA copy number from qPCR showed
no copies in WTand T1.4, and clear differences between plants
T0, T1.3 and T1.8 (2.17–2.37), and plants T1.5, T1.6, T2.2 and T2.3

(4.4–5.37) (Table 1). However, in general the T-DNA copy
numbers were higher than Southern blot estimates by 0.17 to
1.37, with standard errors ranging from 0.06 (T0) to 0.62 (plant
T1.8). Finally, T-DNA copy number estimates from ddPCR
were very closely approximated to the corresponding Southern
blot results with 1.83–1.90 for plants with two copies and
3.74–4.24 for plants with four copies. In contrast to qPCR
results, no systematic over-estimation was present in the
ddPCR results relative to the Southern blot analysis. Standard
errors were generally lower for ddPCR than qPCR, ranging
between 0.04 (plants T1.5 and T1.8) to 0.28 (plant T1.6) even
though only two technical replicates were used compared to
four for qPCR, thus more strongly reflecting the likelihood of
two copies per locus as visualized by the Southern hybridization
(Fig. 1; Table 1).
Reproducibility of ddPCR and qPCR estimates

Because qPCR and ddPCR appeared to have greater accuracy
than TAIL-PCR, an additional side-by-side comparison of
these two methods was performed to evaluate reproducibility.
Using DNA from a plant transformed with the VPZ construct,
two different primer sets targeted to contrasting regions per
gene (AtVDE, AtPsbS and AtZEP) were used, together with
primers targeting regions in two different reference sequences
(α-tubulin and actin). These reference sequences have different
copy numbers in the tobacco genome, two versus four, respec-
tively. The qPCR efficiency for these eight primer sets ranged
from 97 to 102%. The resulting 12 combinations of transgene
and reference primer sets and the corresponding estimated
Sons Ltd., 39, 908–917



Figure 1. (a) Southern blot (b) TAIL-PCR analyses for T0 plant VPZ-23, five segregating T1 plants, two homozygous T2 plants and wild type control
(WT). The final three lanes show 25 and 50 pg digested VPZ plasmid DNAwith 10μg of digested WT DNA and 50 pg of VPZ plasmid without WT
DNA. Arrows in panel b indicate the bands that were absent in WT and show a size shift between reaction 2 and 3 in the TAIL-PCR and scored in
Table 1. TAIL-PCR was performed with AD3 and T-DNA specific primers RB3.
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copy number using qPCR and ddPCR are shown in Table 2.
T-DNA copy number estimates varied between 1.49 and
5.38 for qPCR but only 1.82 and 2.26 for ddPCR. Estimates
using α-tubulin as a reference sequence appeared consis-
tently higher when determined by qPCR, whereas no obvi-
ous bias could be detected for either actin or α-tubulin in
Table 1. Comparison of the T-DNA copy numbers estimated by Southern b
generation (T0, T1 and T2) and corresponding control wild type (WT) ofN. tab
use of three different reaction sets with primers differing in degeneration: AD
For qPCR and ddPCR the T-DNA copy number was derived from the estim
qPCR; n= 2 for ddPCR).

T

Southern blot qPCR
Plant ID

VPZ-23 T0 2 2.37 ± 0.06
VPZ-23 T1.3 2 2.17 ± 0.18
VPZ-23 T1.4 0 0 ± 0.00
VPZ-23 T1.5 4 4.83 ± 0.19
VPZ-23 T1.6 4 5.37 ± 0.15
VPZ-23 T1.8 2 2.29 ± 0.62
VPZ-23 T2.2 4 4.40 ± 0.12
VPZ-23 T2.3 4 4.72 ± 0.16
WT 0 0 ± 0.00

© 2015 The Authors. Plant,
ddPCR. As in the previous comparison, standard errors
for the estimated T-DNA copy numbers were generally
higher for qPCR (0.05–0.49) compared to ddPCR (0.02–
0.12), even though fewer technical replicates were used for
ddPCR; two versus four. Because all analyses should arrive
at the same answer, we computed the variance across the 12
lot, qPCR, TAIL-PCR and ddPCR for eight plants representing three
accum. For TAIL-PCR the T-DNA copy number was assessed with the
1, AD2 and AD3, with 64-, 128- and 256-fold degeneracy, respectively.
ated sample concentration of T-DNA relative to actin (± se; n= 4 for

-DNA copy number

TAIL-PCR
ddPCR

AD1 AD2 AD3

1 1 2 1.83 ± 0.11
1 1 2 1.90 ± 0.20
0 0 0 0 ± 0.00
1 1 2 3.74 ± 0.04
1 1 2 4.21 ± 0.28
0 1 1 1.87 ± 0.04
0 0 1 4.24 ± 0.11
1 1 2 4.18 ± 0.16
0 0 0 0 ± 0.00

Cell & Environment published by John Wiley & Sons Ltd., 39, 908–917



Table 2. Comparison of T-DNA copy number estimated using ddPCR or qPCR estimations of PCR template concentration of six different
primersets targeting T-DNA regions and either actin or α-tubulin as a reference gene. Analysis was performed on digestedDNA of VPZ-46 T1.5 plant
carrying a T-DNAwith three genes (AtVDE, AtPsbs and AtZEP). (± se; n= 4 for qPCR; n= 2 for ddPCR).

qPCR ddPCR

T-DNA copy number T-DNA copy number

Primer set name actin α-tubulin actin α-tubulin

AtPsbS_3 1.49 ± 0.11 2.85 ± 0.25 2.01 ± 0.05 1.82 ± 0.03
AtPsbS_4 1.86 ± 0.49 2.29 ± 0.06 2.19 ± 0.06 1.98 ± 0.03
AtVDE_1 2.08 ± 0.26 3.19 ± 0.13 2.26 ± 0.12 2.05 ± 0.06
AtVDE_4 3.51 ± 0.20 5.38 ± 0.10 2.06 ± 0.05 1.87 ± 0.02
AtZEP_1 2.01 ± 0.18 3.08 ± 0.09 2.16 ± 0.08 1.96 ± 0.04
AtZEP_4 1.92 ± 0.09 2.94 ± 0.05 2.16 ± 0.11 1.96 ± 0.06
Variance per method 1.10 0.02
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combinations per method in order to evaluate reproduci-
bility. The variance across the qPCR determinations was
substantially higher than across the ddPCR estimates, 1.10
versus 0.02.
What is the most suitable method to assess T-DNA
copy number and homozygosity?

Table 3 shows that all four methods can generate T-DNA copy
number estimates in T0 transformants, although the precision is
low for qPCR and TAIL-PCR. Additionally, Southern blot
analysis, qPCR and ddPCR were effective in estimating loci
number and identifying homozygous offspring in analysis of
T1 progeny. Southern blots were taken as the benchmark for
precision in determining copy number. Although both qPCR
and ddPCR matched Southern blot determinations, qPCR
gave a greater variance and also tended to over-estimate copy
number. TAIL-PCR clearly under-estimated copy number,
and this was improved little by use of the most degenerate
primer, AD3. The comparison between ddPCR and qPCR
using a set of 12 different combinations of T-DNA and refe-
rence sequence primer sets, showed good reproducibility in
the ddPCR estimates, whereas qPCR results were much more
variable, leading to contrasting results between the different
primer set combinations (Table 2). A key consideration for
Table 3. Comparison of time required, precision, reproducibility and form o
estimation.

Feature Southe

Time requiredb 4–7 da
Precision High
Reproducibility n.e.c

Type of output data T-DNA copy number
T-DNA locus number
Homozygosity of T1 plants �

aIt is possible to make these protocols faster by shortening the pre-digestion t
bEstimate does not include the additional time to generate T1 progeny, which
cNot estimated.

© 2015 The Authors. Plant, Cell & Environment published by John Wiley &
all methods is the time that they require. TAIL-PCR requires
three consecutive PCR programmes, which all have to be
verified using gel electrophoresis, and together add up to
approximately 12h. Both qPCR and ddPCR protocols made
use of pre-digested DNA, which was done overnight; hence,
the total protocol as described here would take up to one day.
The estimate for Southern blot analysis is considerably longer,
accounting for the exposure time of the x-ray film to the
labelled membrane. In addition, all PCRmethods can be easily
automated using 96-well plates or greater, allowing many
samples to be run in this time. The largest Southern blot gel
would typically be 18 sample tracks; this could be multiplied
but automation is considerably more difficult (Table 3).
Screening for homozygous plants in T1 progeny

Because ddPCR results were highly reproducible and consis-
tent with Southern blot analysis, we further evaluated
ddPCR as a means to rapidly identify homozygosity in T1

progeny. Because T0 plants are hemizygous, cross-
comparison between T0 and T1 T-DNA copy numbers allows
easy identification of homozygous plants in T1, from which
the WT segregants had already been eliminated by
glufosinate ammonium treatment. In N. tabacum, which is
tetraploid but a functional diploid, homozygous plants in
f the output data of four different methods used in T-DNA copy

Method

rn blot qPCR TAIL-PCR ddPCR

ys 1.5 daya 2 days 1.5 daya

Low Low High
Low n.e.c High

+ + �/+ +
+ + � +
/+ + � +

ime.
will be very species dependent.

Sons Ltd., 39, 908–917



914 K. Głowacka et al.
the T1 offspring should show a doubling of the T-DNA copy
number relative to the corresponding T0 plant. Using this
Table 4. Results of screening for copy number to identify homozy-
gous plants in T1 segregating progenies with the use of ddPCR. Seed-
lings of T1 lines were sprayed with glufosinate ammonium solution
before single plants were transferred to pots and grown for tissue col-
lection for ddPCR analyses. Bold numbers indicate homozygous plants
identified by a duplication of the copy number in the corresponding T0

plant (± se; n= 2).

Generation

Transformation event

PsbS-43 PsbS-46 VPZ-29 VPZ-34

T0 1.09 ± 0.13 0.98 ± 0.18 0.97 ± 0.09 0.97 ± 0.14
T1 2.10 ± 0.22 2.04 ± 0.16 1.96 ± 0.16 0.94 ± 0.21

2.13 ± 0.20 1.08 ± 0.11 0.93 ± 0.15 1.93 ± 0.06
2.05 ± 0.04 1.01 ± 0.28 0.98 ± 0.16 2.08 ± 0.06
1.12 ± 0.25 2.08 ± 0.10 1.04 ± 0.20 0.98 ± 0.09
2.02 ± 0.16 2.09 ± 0.08 1.03 ± 0.27 1.80 ± 0.21
2.04 ± 0.05 2.04 ± 0.05 0.95 ± 0.08 1.87 ± 0.11
2.26 ± 0.04 2.10 ± 0.08 1.03 ± 0.10 1.80 ± 0.31
2.10 ± 0.28 1.08 ± 0.26 1.02 ± 0.03 2.02 ± 0.20

Table 5. T-DNA copy (± se; n= 2) estimated by digital droplet PCR (ddPCR
(Chi2-test for 1:3 segregation, α = 0.1). Segregation was scored based on eithe
level of non-photochemical quenching (NPQ) in 7-day-old seedlings. NPQ valu

ddPCR
Segregation of resistance to GA leaf paint in T

generation

ID of T0
plant

No. of T-
DNA copy

No. of
susceptible
plants (%)

No. of
resistant
plants (%)

No. of T
DNA loci

line

PsbS-23 0.99 ± 0.17 6 (27) 16 (73) 1
PsbS-25 0.98 ± 0.06 8 (33) 16 (67) 1
PsbS-27 0.97 ± 0.04 5 (23) 17 (77) 1
PsbS-28 1.04 ± 0.10 5 (21) 19 (79) 1
PsbS-34 0.87 ± 0.22 4 (17) 20 (83) 1
PsbS-43 1.09 ± 0.13 5 (21) 19 (79) 1
PsbS-47 0.98 ± 0.18 3 (12.5) 21 (87.5) 1
PsbS-49 1.99 ± 0.21 0 (0) 23 (100) >1
PsbS-50 1.97 ± 0.10 3 (12.5) 21 (87.5) 1
PsbS-2 3.94 ± 0.21 0 (0) 24 (100) >1

1 1a 71 (99)a >1a

PsbS-32 3.89 ± 0.05 6 (26) 17 (74) 1
VPZ-14 1.03 ± 0.38 5 (21) 19 (79) 1

19 (26)a 53 (74)a 1a

VPZ-29 0.97 ± 0.09 6 (26) 17 (74) 1
VPZ-31 1.07 ± 0.09 5 (21) 19 (79) 1
VPZ-34 0.97 ± 0.14 8 (33) 16 (67) 1
VPZ-38 1.02 ± 0.05 2 (9) 21 (91) >1
VPZ-54 0.97 ± 0.07 9 (37.5) 15 (62.5) 1
VPZ-13 2.12 ± 0.08 5 (23) 17 (77) 1

20 (28)a 51 (72)a 1a

VPZ-23 1.83 ± 0.11 4 (17) 20 (83) 1
18 (25)a 54 (75)a 1a

VPZ-28 1.91 ± 0.16 2 (8) 22 (92) >1
VPZ-35 2.94 ± 0.13 1 (4) 23 (96) >1
VPZ-50 2.86 ± 0.05 1 (4) 23 (96) >1
VPZ-52 2.88 ± 0.17 2 (8) 22 (92) >1
VPZ-51 4.83 ± 0.14 4 (17) 20 (83) 1
VPZ-33 11.96 ± 0.13 15 (62.5) 9 (37.5) nab

VPZ-36 12.09 ± 0.08 0 (0) 24 (100) >1

aData collected of resistance to leaf-paint of GA solution in 72 field-grown p
bNot estimated because of non-Mendelian segregation. na – not applicable.

© 2015 The Authors. Plant,
criterion, Table 4 shows that ddPCR provides an unambiguous
identification of the homozygotes in the 32 T1 progeny.
Comparison of T-DNA copy numbers and numbers
of T-DNA loci

Assuming Mendelian inheritance, segregation analysis is
another means to obtain homozygous lines; however, if multi-
ple insertions occur at the same locus or are otherwise linked,
this will fail to show true copy number. For 26 independent
transformations, 17 of these showed approximately 1:3 segre-
gation of glufosinate ammonium resistance, indicating a single
T-DNA insertion locus. However, ddPCR showed that five of
these 17 carried more than one T-DNA copy, and in one case
5. This suggests a high frequency of multiple inserts at a single
locus that would not be detected by segregation analysis
(Table 5). Chlorophyll fluorescence imaging of NPQ was
used as an easily screenable phenotype in assessing the PsbS
transformant segregation, of which an example is shown in
Fig. 2a. PsbS transformants were easily distinguishable from
WT based on increased NPQ (Fig. 2b), and segregation
) and estimated number of T-DNA loci based on segregation analyses
r resistance to glufosinate ammonium (GA) in 17-day-old seedlings or
es were induced by 10min exposure to PFD of 1000μmol quantam-2 s-1.

1
Segregation based on NPQ in Fig. 2b

-
in No. of plants with

WT NPQ (%)
No. of plants with NPQ
higher than WT (%)

No. of T-
DNA loci in

line

2 (11) 16 (89) 1
2 (12) 15 (88) 1
7 (41) 10 (59) 1
3 (17) 15 (83) 1
1 (5) 18 (95) >1
4 (22) 14 (78) 1
4 (21) 15 (79) 1
1 (6) 17 (94) >1
4 (22) 14 (78) 1
0 (0) 15 (100) >1

4 (29) 10 (71) 1
na na na

na na na
na na na
na na na
na na na
na na na
na na na

na na na

na na na
na na na
na na na
na na na
na na na
na na na
na na na

lants.
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Figure 2. The segregation of nonphotochemical quenching (NPQ) in 10-day-old seedlings transformed byNbPsbs plants ofN. tabacum. (a) Imaged
NPQ for PsbS-43 T1 (segregating T1 progeny of T0 plant carrying one T-DNA copy) and wild type control (WT); (b) distribution of NPQ in 11 T1

segregating populations and WT. Presented values of NPQ were recorded after 10min of induction at 1000μmol quantam-2 s-1. Bar on panel (a)
represents 2.5 cm.
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analysis gave very similar locus number results compared to
glufosinate ammonium resistance (Table 5).
DISCUSSION

Evaluation of different methods to establish T-DNA
copy number

Although Southern blots have historically been used to esti-
mate transgenic allele loci and copy number, the method typi-
cally takes at least a week to generate results, relatively few
samples can be processed in parallel and require specialized
radiation laboratories. The PCR-based methods presented in
the current manuscript took typically less than two days, can
be easily optimized to quantify final copy number in a matter
of hours and can easily be automated. Therefore, PCR-based
methods are attractive because of reduced time to results and
general ease of use. Using Southern blots as a benchmark, we
show that T-DNA loci determination and estimate of copy
numbers predicted with the ddPCR method (Table 1) were
most accurate across a subset of three generations of transgenic
plants, with contrasting zygosity and copy number and gener-
ally showed the lowest variance in estimates. Estimates from
qPCR were more variable, and consistently overestimated
copy numbers relative to the Southern blot estimates, while
© 2015 The Authors. Plant, Cell & Environment published by John Wiley &
TAIL-PCR underestimated copy number (Table 1). Similar
problems have been shown for copy number estimation based
on inverse PCR, which is also based on amplification of
flanking sites (Does et al. 1991). In TAIL-PCR, closely spaced
T-DNA may decrease the statistical probability of a suitable
binding site for the degenerate primer between subsequent
T-DNA insertions. If this was the case, using a higher fold of
degeneracy should improve the number of amplified flanking
sites. In six of the assessed samples, using a more degenerate
primer indeed did improve the number of bands identified
(see AD1 to AD3, Table 1), but in two samples the number
of bands was still lower than expected based on Southern blot
results. Therefore, TAIL-PCR may be used reliably to detect
at least one T-DNA copy, but the frequent underestimation rel-
ative to ddPCR and Southern blot estimates is difficult to trou-
bleshoot when a priori knowledge of the correct copy number
is not already available.

In a separate comparison, ddPCRwas also shown to bemore
reproducible than qPCR in a parallel analysis of 12 different
combinations of target and reference primer sets onDNA from
a single plant (Table 2). Results for ddPCR consistently indi-
cated two T-DNA copies, independent of the primer combina-
tion used. However, qPCR estimates showed a range of
contrasting T-DNA copy numbers, varying between 1.49 and
5.38, such that interpretation of the T-DNA copy number was
Sons Ltd., 39, 908–917
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unreliable and tended to over-estimation. These results can be
explained by a number of advantages favouring ddPCR over
qPCR for the purpose of T-DNA copy number estimation.
Contrary to qPCR, in ddPCR the level of fluorescence is not
directly coupled to the PCR target quantification, allowing
PCR efficiency requirements to be less strict. As a result
ddPCR is more robust against factors interfering with PCR
target amplification and no standard curve is required. The
linearity of the ddPCR technique also allows precise detection
of small fold changes in copy concentration, whereas the
logarithmic detection scale of qPCR limits the capabilities to
accurately detect small differences. A number of medical
studies have recently compared qPCR and ddPCR for absolute
quantification of humanmicroRNAs and copy number variation.
These studies also found ddPCR to have far less variability and
increased accuracy compared to qPCR (Hindson et al. 2013;
Bharuthram et al. 2014).
T-DNA copy number and number of independent
inherited loci

Because T0 plants carrying a single T-DNA locus are most
easily progressed to a fully homozygous generation, in most
cases these primary transformants are preferred for further
study. Table 4 shows that homozygous individuals in four lines
with a single T-DNA can be easily distinguished. The ratio of
homozygous versus hemizygous T1 progeny in Table 4 is
slightly higher than the expected 1:2. Because the T1 offspring
was first treatedwith glufosinate ammonium solution to eliminate
the WT fraction, this offset may be explained by a possible bar
gene dosage effect between the hemizygous and homozygous
lines, possibly favouring the latter to be identified for further
screening.

The consistency of predictions between independent data for
the well-established selectable marker glufosinate ammonium
resistance and NPQ levels in the PsbS transformants (Table 5)
shows that co-transformation of the PsbS gene can be used as
a visual marker, which avoids issues with toxicity and resistance
outcrossing often associated with traditional markers (Miki &
McHugh, 2004). In 5 out of 26 T0 plants, copy numbers assessed
by ddPCRwere higher than the loci number estimated by segre-
gation analyses of glufosinate ammonium resistance and NPQ.
These T0 plants were all estimated to have a single independent
T-DNA locus based on segregation analyses (Table 5), whereas
ddPCR results showed up to five T-DNA copies (VPZ-51) were
integrated. These findings may be explained by the presence of
silent or incomplete T-DNA copies, which would be detected
by ddPCRbut not affect the inheritance pattern of the selectable
marker. Alternatively, these results suggest a relatively high
occurrence of multiple T-DNA copies per locus (at least 19%
in our study), which is consistent with earlier reports (Jorgensen
et al. 1987; Kohli et al. 1999; Gelvin 2003) and shows the impor-
tance of routinely checking the T-DNA copy number, even if
segregation analysis suggests the occurrence of only one
T-DNA containing locus. Because multiple T-DNA copies at
the same locus can increase the occurrence of silencing, these
findings exemplify the importance to allow precise and routine
© 2015 The Authors. Plant,
selection of single copy T0 transformants for further analysis,
which cannot be substituted by segregation analysis. We used
two different constructs, with contrasting T-DNA lengths
(4.5 kb and 10.8kb for PsbS and VPZ, respectively), but the
length of the T-DNA seemed to make little difference in the
occurrence of multiple T-DNA insertions.

The iterative cycle of modification, testing and evaluation
which is essential in genetic engineering approaches relies on
high-throughput generation and verification of transgenic
plants. Our results show ddPCR to be accurate, precise and fast
in determining T-DNA copy numbers for screening the high
numbers of transgenic plants being produced today across a
wide range of research goals. The protocol (Supporting Infor-
mation; Appendix 1) can also easily be modified to allow auto-
mated high-throughput screening of DNA samples. Our study
shows serious limitations in applying qPCR and TAIL-PCR in
estimating copy number. The results also show a high fre-
quency of genetically linked insertions which could not be
detected by segregation analyses, emphasizing the importance
of routinely checking T-DNA copy numbers in generation of
transgenic plants. ddPCR provides a high-throughput means
to achieve this.
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