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Abstract

Background—Current epidemiologic studies rely on simple ozone metrics which may not 

appropriately capture population ozone exposure. For understanding health effects of long-term 

ozone exposure in population studies, it is advantageous for exposure estimation to incorporate the 

complex spatiotemporal pattern of ozone concentrations at fine scales.

Objective—To develop a geo-statistical exposure prediction model that predicts fine scale 

spatiotemporal variations of ambient ozone in six United States metropolitan regions.

Methods—We developed a modeling framework that estimates temporal trends from regulatory 

agency and cohort-specific monitoring data from MESA Air measurement campaigns and 

incorporates land use regression with universal kriging using predictor variables from a large 

geographic database. The cohort-specific data were measured at home and community locations. 

The framework was applied in estimating two-week average ozone concentrations from 1999 to 

2013 in models of each of the six MESA Air metropolitan regions.

Results—Ozone models perform well in both spatial and temporal dimensions at the agency 

monitoring sites in terms of prediction accuracy. City-specific leave-one (site)-out cross-validation 
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R2 accounting for temporal and spatial variability ranged from 0.65 to 0.88 in the six regions. For 

predictions at the home sites, the R2 is between 0.60 and 0.91 for cross-validation that left out 10% 

of home sites in turn. The predicted ozone concentrations vary substantially over space and time in 

all the metropolitan regions.

Conclusion—Using the available data, our spatiotemporal models are able to accurately predict 

long-term ozone concentrations at fine spatial scales in multiple regions. The model predictions 

will allow for investigation of the long-term health effects of ambient ozone concentrations in 

future epidemiological studies.
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1. Introduction

Ground-level ozone is the classic indicator for the mixture of photochemical oxidants 

originating from anthropogenic and biogenic precursor emissions (EPA, 2006). Ozone itself 

is a potent oxidizing agent that has clear harmful effects on human health, as has been amply 

demonstrated in human chamber exposure studies (ISA, 2013). Observational associations 

between short-term exposure to ozone and respiratory morbidity and mortality have also 

been documented in the United States and Europe (ISA, 2013; WHO, 2013). Chronic effects 

of ozone exposure on lung function development, asthma incidence and pulmonary 

inflammation have been suggested (ISA, 2013). However, compared to the large body of 

evidence on long-term effects of traffic related pollutants (e.g. nitrogen dioxide and 

particulate matter), relatively little research has examined health effects related to long-term 

ozone exposure. In the United States, national-wide ozone levels have decreased steadily in 

the past decade, although with some heterogeneity between urban and rural areas (EPA, 

2014; Chan et al. 2009; Cooper et al. 2012; Lefohn et al. 2010; Simon et al. 2015).

Attempts to estimate long-term ozone exposure in large populations are scarce and 

challenging, largely because of the complex spatiotemporal pattern of ozone concentrations 

at fine scales. Previous epidemiological studies on long-term ozone exposure generally 

relied on estimates from nearby monitoring sites (Jerrett et al., 2009) or simple spatial 

interpolation techniques such as inverse distance weighting (Bretton et al., 2012; Jerrett et 

al., 2013; Lipsett et al., 2011). More advanced exposure estimation techniques include 

chemical transport modeling (CTM) and land use regression (LUR) modeling: CTM 

approaches with resolution to grids measured in km2s are typically not spatially resolved 

enough to characterize exposures at very local scales (i.e., meters). Recent LUR models have 

utilized a large number of covariates, such as traffic characteristics and land use/land cover, 

to account for spatial distributions of air pollutants (Hoek et al., 2008; Malmqvist et al., 

2014); hese models did not take temporal variations into account which is important for 

ozone, as varying spatiotemporal ozone patterns have been observed in the United States 

(ISA, 2013). Some spatiotemporal ozone modeling efforts were exclusively based on a 

limited amount of routinely collected monitoring data over large regions (Adam-Poupart et 

al., 2014; de Nazelle et al., 2010; Yu et al., 2009). However, routinely collected monitoring 

data from relatively few sites are unable to capture roadside decrements of ozone caused by 
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scavenging by freshly emitted nitric oxide (NO) in urban areas, resulting in overestimation 

of ozone exposure for some segments of the population samples used in epidemiological 

studies.

The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) was designed to 

examine the effects of long-term air pollution exposure on cardiovascular health (Kaufman 

et al., 2012). Air pollution data including ozone were collected through an intensive 

measurement campaign in six metropolitan regions (Baltimore, Maryland; Chicago, Illinois; 

Los Angeles, California; New York, New York; St. Paul, Minnesota; Winston-Salem, North 

Carolina) in order to better represent spatial and temporal patterns of the air pollutants 

(Cohen et al., 2009). This paper describes the development and the performance of 

spatiotemporal models of long-term ozone concentrations in these six metropolitan regions.

2. Materials and Methods

Separate models were developed for each of the six MESA metropolitan regions because of 

the diversity of study areas and differences in available GIS predictor variables, although an 

identical procedure for estimating model parameters was employed for all regions. Briefly, 

the spatiotemporal model, which we describe in more detail below, decomposes space-time 

ozone concentrations into spatially varying long-term averages, spatially-varying seasonal 

and long-term trends, and spatially-correlated but temporally-independent residuals, and 

accommodates data from a complex and irregular monitoring design. Ozone predictions 

were made at the residential addresses of MESA Air study participants for use in future 

epidemiological analyses.

2.1 Monitoring data

Spatiotemporal models developed for ozone were based upon continuous long-term 

measurements from the Air Quality System (AQS) of the U.S. Environmental Protection 

Agency (EPA) (EPA, 2013) and the spatially dense supplementary data specific to the 

MESA Air study (Cohen et al., 2009; Zhang et al., 2014). Given the large regional scale of 

spatial variation in ozone concentrations and the typical seasonal monitoring schedules for 

AQS sites, we chose AQS monitoring sites within a wide buffer (75-200km) surrounding 

each metropolitan center (see Figure A.1 in Appendix A). In Los Angeles and New York, 

measurements were conducted in Los Angeles County and New York City, as well as in 

nearby Riverside County, CA and Rockland County, NY, as dictated by the locations of 

MESA Air participants. Therefore, two 75km buffers were generated in each of these two 

study regions. In Chicago, the modeling region was restricted to locations west of 87.5°W 

longitude due to incomplete covariate data. In Winston-Salem and St. Paul, buffers were 

expanded to 200 km in order to include AQS monitor sites with complete data throughout 

the whole period.

Hourly ozone AQS data were obtained from 1999 to 2013 to provide information on long-

term temporal trends. Data were aggregated into daily means and then at a two-week time 

scale (centered on Wednesday) in order to mitigate the influence of daily meteorology, 

reduce temporal autocorrelation, and importantly to match the MESA Air sampling design. 

In most of the regions, ozone data were collected in warm seasons between April and 
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September, but at least one AQS station operated continuously during the entire study period 

(for Winston-Salem and St. Paul starting from 2005). In Los Angeles, ozone data were 

continuously recorded throughout the entire study period at all monitoring sites. AQS 

stations that contained data for less than two years were excluded in order to get reliable 

estimate of main time trends by the spatiotemporal model. In total, 14-48 AQS stations were 

included for modeling, depending on the metropolitan region (Table 1).

The core ozone measurements in MESA Air were conducted between 2005 and 2009 using 

Ogawa samplers. For all the measurements, only 3 out of the 1433 samples were below the 

limit of detection (LOD) and were replaced with the value LOD/2. More details of the 

MESA Air monitoring campaign, including data collection and site selection procedures, 

have been described previously (Cohen et al., 2009). Briefly, 60 to 117 sites were located at 

the participants' addresses (home sites) in each study region. At each home monitoring site, 

1 to 3 two-week measurements in different seasons were made, with sites selected to 

represent various exposure settings (e.g., street, urban and regional background). In 2009, a 

supplementary measurement campaign was implemented in which simultaneous 

(“snapshot”) measurements were made at home addresses in three of the MESA Air regions 

(Chicago, Winston-Salem and St. Paul) (Zhang et al., 2014). In addition, 2 to 7 fixed sites 

were operated continuously for one year, with one of the fixed sites collocated with an AQS 

station in each region (Table 1).

2.2 Geographic covariates

More than 220 geographic covariates were used for model development. Variables covered a 

wide diversity of geographic features, such as traffic (e.g., distance to near major road and, 

within buffers, lengths of roads and truck routes, and counts of intersections), industrial and 

port emissions, population density, land use (e.g., commercial space), and land cover (e.g., 

green space). Moreover, we incorporated an annual average of specific emission sources for 

NOx, SO2, CO, PM2.5 and PM10 from the U.S. EPA Emission Inventory Group and a long-

term average of primary mobile source emissions estimated by the California Line-source 

(CALINE) dispersion model, as these are potentially related to ozone formation and 

destruction (Eckhoff and Braverman, 1995). Details of the geographic variables are 

described in Table A.1, Appendix A.

Geographic covariates with minimal variation or potentially highly influential values were 

excluded from the modeling process (Keller et al. 2015). Specifically, variables were 

removed if: (a) more than 80% of the monitoring sites had the same value, (b) more than 2% 

of the observations were more than five times the standard deviations away from the mean, 

(c) the standard deviation of the distribution of values at participant residences was more 

than five times the standard deviation of the distribution of values at monitoring locations, or 

(d) the maximum value was 10% among all monitoring sites (for land-use variables only). 

Variable screening procedures were implemented separately for each region.

2.3 Spatiotemporal Model Development

A hierarchical spatiotemporal model was developed to fully accommodate the unique 

features of our data, which contained a small number of sites providing information on 
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temporal variation and a larger number of sites with short-term measurements providing 

broader spatial coverage. Technical details of implementation, including the model 

structures and principles (Lindström et al., 2012; Sampson et al., 2011; Szpiro et al., 2010), 

and a recent application of the model for NO2, NOx, PM2.5 and an indicator of black carbon 

(light absorption coefficient)., have been published (Keller et al. 2015). The model 

comprises a spatio-temporal trend model and spatio-temporal residuals, which can be 

written as:

(1)

where C(s,t) denotes the two-week average concentration of ozone at location s and time t. 

The μ(s, t) represents the spatiotemporal mean surface, and ν(s, t) is the spatiotemporal 

residual variation. The μ(s, t) can be further decomposed into:

(2)

where β0(s) denotes the long-term mean at location s and βi(s) are spatially-varying 

coefficients for smooth time trends fi(t).

In general, we calculated the time trends fi(t) from AQS and MESA Air fixed sites, which 

account for the temporal structure across an entire study region. We obtained the coefficients 

β0(s) and βi(s) according to the linear relationship between each time trend and the 

observations at each AQS/MESA Air fixed sites. We modelled the spatially varying 

coefficients based on GIS covariates via Partial Least Squares (PLS) and incorporated a 

large number of spatially dense monitoring data from MESA Air to allow specific trend and 

concentration level at the locations of interest.

We applied an iterative EM (Expectation-Maximization) procedure to fill in missing values 

in the time series and derived the trends from singular value decomposition (SVD) of the 

space-time data matrix (Fuentes et al. 2007; Sampson et al. 2011). An appropriate number of 

time trends m was determined by cross validation of low-rank SVD approximations of the 

space-time data matrix (SVDsmoothCV package) and the overall model performance. The 

long-term average β0(s) and time trend coefficients βi(s) are modeled as spatial random 

fields with a LUR mean in a universal kriging framework, distributed as:

(3)

where Xi(s) are a group of reduced-dimension components (scores) from combinations of 

geographic covariates computed by PLS (Keller et al. 2015). Rather than use variable 

selection methods for geographic covariates, we reduced the dimensionality of the covariates 

using PLS. Similar to principal components analysis (PCA), PLS computes linear 
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combinations, called scores, of the columns of a data matrix. Unlike PCA, the PLS 

procedure constructs scores that maximize the covariance between the scores and an 

outcome rather than the variance between the scores. The PLS scores were developed 

separately for the long-term average and time trend coefficients. The numbers of PLS scores 

were determined by cross-validation using the pls function (in the plsr package in R). αi are 

vectors of estimated regression coefficients. The covariance structure for βi, denoted by Σi, is 

either an independence model with variance τi or a spatial smoothing model with an 

exponential covariance function parameterized by range ϕi, partial sill σi, and nugget τi 

(Cressie, 1993).

The zero-mean spatiotemporal residual term ν(s, t) has a spatial correlation structure and is 

assumed independent at each time point. It includes a random effect for each time point to 

model short-term variations that affect an entire region, such as large-scale meteorological 

events.

The best models were selected based on CV R2 to determine the number of time trends fi(t) 
and the PLS scores Xi(s). Rather than the overall CV for the model performances as will be 

mentioned later, these particular CVs used the R package's built-in functionalities to select 

appropriate number of components for model development. Once the PLS scores Xi(s) and 

time trends fi(t) were computed, the regression and covariance parameters were estimated 

via maximum likelihood, using the SpatioTemporal package (Lindström et al., 2012) in R 

2.15.1 (R Core Team).

2.4 Model validation

We used k-fold cross validation (CV) to evaluate model performance. Monitoring sites were 

repeatedly separated into training and test data set. We re-estimated the regression and 

covariance parameter (maintaining the time trends and PLS scores) based on the training 

data set to predict ozone concentrations in the test data set. For each assessment of the model 

performance, we computed two measures of CV performance: 1) the traditional regression-

based R2 (CVREG) which is derived from correlations between observed values and CV 

predictions, and 2) the mean square error (MSE)-based R2 (CVMSE), taking into account 

absolute values in terms of mean squared prediction error rather than merely correlation. 

This is defined as:

(4)

where MSE can be written as:

(5)
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The more commonly estimated CVREG R2 is higher than the CVMSE R2, but it does not 

measure accuracy of fit with respect to the reference line (the 1:1 diagonal), which is 

reflected by the CVMSE R2. Due to the different features of the monitor types, we evaluated 

the AQS (together with fixed) sites and the home sites separately. For AQS and fixed sites, 

we used leave-one (site)-out CV (LOOCV) due to the relatively small number of sites per 

metropolitan region. For the CVREG and CVMSE R2, we computed the across-sites median 

R2 between predictions and observations at two-week time points throughout the entire 

study period to evaluate the performance in representing temporal variability and the across-

years median R2 between annual averaged predictions and observations for the AQS and 

fixed sites to represent the performance of the model in representing spatial variability. For 

the data at the home sites, which were intended to reflect spatial contrasts of ozone at the 

places of most interest, we used ten-fold CV by successively leaving out one-tenth of the 

home-site data for validation. Since the home site data are temporally sparse but spatially 

rich, Lindström et al. (2014) proposed a temporally-adjusted adaptation of CVMSE R2, 

which we call spatial CVMSE R2, that calculated the variance from the average values at 

AQS and fixed sites as reference instead of the variance from the home sites observations in 

(4) in order to focus on spatial prediction accuracy. Since most of the AQS data were 

collected in warm seasons rather than in cold seasons, we also separately examined the 

prediction ability of the models (using the main models rather than developing seasonal 

models separately) in the separate seasons at the home and AQS/fixed sites.

Once the best models were successfully developed, we applied them to predict the ozone 

concentrations at cohort participant residences on a two-week scale from 1999 to 2013. 

Finally, we computed the correlations between the annual averaged ozone estimates and 

previously published NO2, NOx, PM2.5 and black carbon estimates at the same locations 

(Keller et al. 2015).

3. Results

3.1 Ozone Concentrations

Substantial variability of two-week average ozone concentrations measured at the AQS and 

participant home sites was observed in all six MESA regions (Figure 1). Observations at the 

AQS monitors, which captured regional spatial and long-term temporal characteristics of 

ozone, showed larger variability and higher median concentrations compared with project-

specific measurements from home and fixed sites that were made locally within each city. 

The correlation coefficient between AQS monitor measurements and MESA Air campaign 

measurements at co-located sites, however, was 0.88, with almost no bias (see Figure A.2 in 

Appendix A). There was also variability in ozone concentrations across the study areas over 

the monitoring periods, with the lowest median values in New York (AQS: 26.2 ppb, fixed: 

17.4 ppb, home: 19.2 ppb) and the highest median values in Winston-Salem (AQS: 32.9 ppb, 

fixed 27.7 ppb, home: 28.9 ppb). Ozone concentrations were consistently high in warm 

seasons (April to September) and low in cold seasons (October to March).
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3.2 Model Structures

Table 1 describes an overview of the ozone model structures in the six MESA regions. 

Models varied across the study regions due to differences in ozone concentration variability, 

geography, meteorology, and local pollution sources/sinks. Most of the models selected two 

time trends, with two exceptions where a single time trend was selected (Chicago and St 

Paul). The first time trend showed clear seasonal variation of O3 over the years. An example 

of the two smoothed trends for the ozone model and the plots of the fitted trends for a 

selected AQS and fixed site in Baltimore are shown in Figure A.3 in Appendix A. Good 

agreement between observations and the smoothed trend was observed, with the first time 

trend explaining most of the temporal variability of ozone. Regarding covariates, models 

typically contained 1 to 3 PLS scores for the long-term mean and the time trends. The GIS 

covariates explained long-term mean variation well in all six regions based on cross 

validation from PLS, but fitted the time trends relatively poorly in two regions: the Winston-

Salem and New York City areas (data not shown). An illustration of the contributions of GIS 

covariates to the PLS scores (loadings) for the long-term mean is displayed in Figure A.4 in 

Appendix A for the six study regions. In general, the loadings of the PLS scores showed 

similar patterns for the geographical categories across the study regions though the 

magnitude varied individually. The long-term mean ozone was positively associated with 

elevation and urban green space (Dev Open, Grass, Shrub), and was negatively associated 

with the features indicating primary emissions (e.g., traffic and anthropogenic). In Los 

Angeles, New York, Baltimore and Winston-Salem, spatial smoothing (via universal kriging) 

was included in the long-term mean. No models included spatial smoothing in the time trend 

coefficients (βi(s)) in any of the study regions.

3.3 Model Performances

Table 2 presents the cross validation results for the ozone models at the home sites and at the 

AQS/fixed monitoring locations, respectively. Overall, the model performed best in 

Baltimore, followed by St Paul, Chicago and the Los Angeles Basin. The home CV R2s, 

which indicate the performance in time and space combined, were moderate to high across 

the study areas (CVMSE R2: 0.60-0.91; CVREG R2: 0.62-0.90). The R2 remained moderate to 

good after time adjustment (spatial CVMSE R2: 0.47-0.88), suggesting good prediction 

ability in terms of spatial accuracy. For the AQS/fixed locations, the model performed better 

in term of precision (CVREG R2) than accuracy (CVMSE R2) in predicting both temporal 

(CVREG R2: 0.88-0.91; CVMSE R2: 0.59-0.88) and spatial patterns (CVREG R2: 0.15-0.82; 

CVMSE R2: 0.01-0.72). The CV R2s suggested moderately good to excellent agreement 

between the model and the AQS/fixed measurements, with one notable exception in 

Winston-Salem (spatial CVMSE R2: 0.01; CVREG R2: 0.15). Models predicted consistently 

better in cold seasons than in warm seasons (see Table A.2 in Appendix A).

3.4 Model Predictions

Figure 2 is a map of predicted long-term mean ozone levels (1999 to 2013) across the 

greater Los Angeles Basin and demonstrates expected patterns: Ozone levels were higher in 

the rural and mountain areas compared with those of the downtown metropolitan areas. 

Concentrations were substantially higher in areas far from highways (Figure 2a), which was 
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a common pattern in all the study regions. Moreover, the ozone concentrations were 

consistently low and had low variability along highways throughout the period, but varied 

greatly in the downtown metropolitan and the rural areas over time (Figure 2b). A cross 

sectional map of ozone levels shows a trend of increasing concentrations from downtown 

Los Angeles to the Riverside County area and a slow increasing trend between 1999 and 

2013 (Figure 2c).

Figure 3 shows boxplots of long-term predictions of ozone concentrations at all the MESA 

participant residences. There is a clear difference in ozone levels between seasons. The mean 

concentrations tended to be higher in Winston-Salem and Baltimore and lower in New York. 

The correlations of ozone estimates with our NO2, NOx, PM2.5 and black carbon estimates 

were generally high in New York and Baltimore, but lower in the other study regions (see 

Table A. 3 in Appendix A). The correlation of ozone was generally highest with black 

carbon and lowest with PM2.5.

4. Discussion

We developed spatiotemporal models for ozone within a novel geo-statistical framework 

following a uniform set of procedures in six metropolitan regions. These models 

incorporated rich monitoring data, geographic information, and were capable of predicting 

spatial distributions of ozone over a long time period (1999-2013).

4.1 Model Structure

Although a uniform approach was used for modeling, we allowed flexible structures to best 

fit the final models. The ozone models included a second time trend in the Los Angeles (Los 

Angeles and Riverside), Baltimore, Winston-Salem and New York (New York and 

Rockland) regions. Despite a small contribution to ozone, the second time trend may reflect 

additional temporal variability due to different geographical features (e.g. downtown vs 

suburban, urban vs rural, elevation), emission sources (combustions and biogenic 

emissions), meteorological conditions (e.g. temperature and wind field) and long range 

transport of ozone in each of these regions. One challenge we encountered when developing 

the region-specific models for Winston-Salem and New York was the relatively low CV R2 

in PLS (data not shown) when GIS covariates were used to fit the coefficient (βi) of the first 

time trend (main trend) at the monitoring locations. Because of the strong seasonality, the 

temporal variation patterns of ozone were largely the same across monitoring locations (i.e. 

small spatial contrast of βi) in these two metropolitan regions, rendering this difficult to 

explain by GIS covariates. This suggests that changes in ozone exposure levels over time in 

these two regions will be less variable across the participant residences. In our study, spatial 

smoothing in the long-term mean was incorporated into the final model in four regions (Los 

Angeles, New York, Winston-Salem and Baltimore) with numerous monitors in larger 

buffers of study areas. This could be explained by large regional patterns of ozone compared 

with traffic-related pollutants. Overall, the spatial smoothing in long-term mean resulted in a 

3-6% increase of CVMSE R2 compared to the R2 of the PLS regression model alone.
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4.2 Predictor Variables

The MESA Air study made a speical effort to collect detailed predictor variables for each 

study region. In our models, loadings of traffic indicators (e.g., road density), emission 

factors and population density were negative while loadings of urban green features and 

elevation were postive. This is consistent with the findings of previous studies on ozone 

modeling (Adam-Poupart et al., 2014; Beelen et al., 2009; Malmqvist et al., 2014) and is 

also in agreement with the known atmospheric processes of ozone formation (EPA, 2006). 

For instance, ozone is usually scavenged by primary NO emissions in locations where 

NOx/VOC ratios are high such as in urban core areas with dense traffic and is produced by 

biogenic VOCs from plants and NOx in rural areas or in locations downwind of major urban 

areas.

Although previous studies found a similar pattern in proximity to roadways, only two studies 

(Malmqvist et al., 2014; Kerckhoffs et al. 2015) selected sites to represent urban 

configurations as was done in the MESA Air measurement campaigns. Most prior studies 

have relied exclusively on the measurements from AQS monitors which were purposefully 

sited away from roads; therefore, the importance of traffic indicators as predictors of fine-

scale variation (i.e., the magnitude of the loadings) may be underestimated in previous 

studies.

Predictor variables such as population density and impervious surface do not merely 

represent pollution from anthropogenic activities such as traffic, wood burning and house 

heating, but also reflect differences in urban-rural concentration distributions. In suburban 

and rural areas, the positive loadings of green space could be explained by both the absence 

of man-made ozone precursor emissions and the increasing biogenic VOCs by plants 

emissions. In Winston-Salem, green space contributed to higher ozone levels than in the 

other regions.

Elevation is an important factor in determining ozone concentrations, relating to the 

dispersion and transport of primary pollutants emitted in urban areas and to the 

accompanying production of ozone. In the Los Angeles basin, higher elevation level was one 

of the main predictors of the higher ozone levels in Riverside compared to metropolitan 

downtown Los Angeles. Overall, predictor variables with larger buffers were more important 

contributors to ozone concentrations, reflecting ozone's large regional distribution.

4.3 Model Perfomances

Our ozone models performed slightly worse in terms of the CVMSE R2 than the similar 

models we have reported recently for traffic-related pollutants such as NO2, NOx and black 

carbon, but were more accurate in predicting spatial-only contrasts than the PM2.5 models 

(Keller et al. 2015). This is likely because, compared with traffic-related pollutants, 

characteristics of secondary pollutants such as ozone are less well represented by important 

smaller scale GIS covariates such as road networks and population density. Moreover, the 

temporal and spatial variability of ozone concentration levels were smaller than those of the 

traffic-related pollutants and were larger than those of the PM2.5 concentration levels 

indicative of the potential for ozone quenching by NO. Our models outperformed previously 
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reported ozone LUR models in Quebec, Canada, partially because of better available 

predictor variables and better selection of sites (i.e. our study include large number of home 

sites) to represent spatial variability. In that study, Adam-poupart et al. (2014) estimated 

daily ozone concentrations using Bayesian Maximum Entropy (BME), incorporating ozone 

AQS data or AQS data together with LUR model outputs. The reported CVREG R2 ranged 

from 0.47 to 0.65. The CVREG R2 that represents the spatial correlation between annual 

average ozone predictions and observations at the AQS and the fixed locations in our study 

suggested good perfomances as the spatial models published by Beelen et al. (2009) (0.38 to 

0.54, West Europe), Malmqvist et al. (2014) (0.40 to 0.67, Swiden cities) and Kerckhoffs et 

al. (0.71, the Netherlands).

We found much lower spatial CVMSE R2 (accuracy) than CVREG R2 (precision) at the AQS 

and fixed locations in the metropolitan regions with large buffer sizes (Los Angeles, New 

York, Winston-Salem and St Paul), even though the spatial CVMSE R2 was consistently high 

at the home locations. This could be attributed to the different geographical features of the 

AQS and home sites. In our study, the AQS sites were spread over a wide range of urban and 

rural areas while MESA Air monitoring sites that accounted for spatial variations, especially 

home sites, were mostly concentrated in urban areas. Hence model predictions may be more 

accurate in urban areas with intensive home monitoring sites but exhibit higher discrepancies 

(i.e., bias) when extrapolated to larger areas with sparse monitoring data.

Our models showed consistently higher predictive accuracy in cold seasons than in warm 

seasons. This is expected since the processes producing ozone are more active in warm 

seasons (EPA, 2006) producing more complex regional spatiotemporal distributions than in 

winter. Inclusion of a chemical transport model within the geospatial framework may help 

improve model performances by capturing more of this complexity than was possible with 

GIS covariates alone (Akita et al., 2014).

4.4 Model Predictions

A map of mean ozone levels in the Los Angeles basin (Figure 2a) demonstrates lower 

concentrations of ozone in the Los Angeles metropolitan region than in the neighboring 

more rural regions and in downwind cities such as Riverside. This same urban-rural gradient 

was apparent in all of the MESA Air study regions. Even though traffic emissions scavenge 

ozone by NO, other factors such as human behaviors (represented by population density and 

emission factors), land use (e.g., natural and urban green) and local meteorological 

environment (e.g. impervious cover as a surrogate for the urban heat island effects) also play 

important roles in ozone formation and destruction (EPA, 2006; ISA, 2013), leading to the 

substantial variability in ozone concentrations over time across space (Figure 2b).

We observed large between- and within-region contrasts of ozone predictions at the 

participant residences, which is important when considering these model predictions for use 

in epidemiological studies. It is also important to consider the added value of ozone models 

for application in epidemiologic studies beyond existing models for predicting 

concentrations of traffic related pollutants. The negative correlations between ozone and the 

other pollutants (NOx, PM2.5 and black carbon) were attributed to the fact that NOx (in 

particular NO) and potentially other primary emissions titrate ozone directly and the 
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predictions for PM2.5 and black carbon variables are correlated to NOx. The variability in 

the correlations (very high in some communities and lower in others) suggests that health 

effects associated with ozone can be disentangled from those of other pollutants in cities 

such as Winston-Salem and St Paul where traffic and combustion sources were less 

dominant than in metropolitan cities such as New York and Baltimore with intensive 

anthropogenic emissions.

4.5 Limitations

A major limitation to our modeling efforts is the missing data in the cold seasons at several 

AQS sites, particularly in Winston-Salem and St Paul, which may constrain the power of the 

model to accurately predict ozone concentrations in that season. Nevertheless, our model 

still predicted ozone concentrations relatively well in cold seasons, possibly because of less 

secondary ozone formation in cold seasons. In addition, the two-week time frame of our 

sampling data limited the ability of our ozone model to predict 8-hour maximum values that 

are regulated by the U.S. EPA. However, correlations between daily average and daily 8-

hour maximum ozone observations were generally high across the AQS sites (r=0.93 on 

average) (ISA, 2013), so this may not be a serious limitation.

5. Conclusion

Using rich temporal data from AQS montoring sites and a dedicated, study-specific spatial 

monitoring campaign, we were able to develop spatiotemporal models for ozone that 

perform well in terms of both prediction accuracy and precision in the six metropolitan 

regions of the MESA study in the United States. Most prior modeling of ozone 

concentrations has been based on chemical transport modeling, which incorporates 

meteorology and emissions information but typically is unable to provide the fine scale 

predictions of our approach (50 meters). The performance of the models described here 

suggests that approaches based on land-use regression and universal kriging are also useful 

in understanding spatial variation in ozone concentrations and thereby also improving 

exposure predictions. Since both spatiotemporal regression and chemical transport modeling 

approaches provide valuable information, the development of hybrid approaches may most 

accurately predict fine scale gradients in ozone concentrations.
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CV cross-validation

EM Expectation-Maximization

LOD limit of detection

LUR land use regression

MESA Air Multi-Ethnic Study of Atherosclerosis and Air Pollution

MSE mean square error

NO nitric oxide

NO2 nitrogen dioxide

NOx oxides of nitrogen

PLS partial least squares

PM particulate matter

SO2 sulfur dioxide

SVD singular value decomposition

VOCs volatile organic compounds
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Highlights

• Few studies estimate long-term ozone exposure in large populations at 

fine scales

• Geo-statistical exposure models are developed for ozone in six US 

metropolitan regions

• The modeling framework incorporates land use regression with 

universal kriging

• The models accurately predict ozone concentrations in both spatial and 

temporal dimension

• Model predictions will be used for investigating long-term health 

effects.
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Figure 1. 
Boxplot of two-week average of ozone concentrations at AQS, Fixed and Home locations 

across the entire period in the six MESA regions. LA+RS: Los Angeles and Riverside in 

California. W-S: Winston-Salem in North Carolina. The upper, middle and lower lines in the 

box show the 75%, 50%(median) and 25% of the observations. The outliers are calculated as 

the observations higher or lower than 1.5 × IQR + median.
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Figure 2. 
(a) Map of predicted long-term average and (b) map of standard deviation of ozone in Los 

Angeles and Riverside from 1999 to 2013. (c) Annual average predicted concentrations 

across the transect shown in Figure 2a (black line, NW to SE), though the counties of Los 

Angeles and Riverside from 1999 to 2013.
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Figure 3. 
Boxplots of warm and cold season ozone predictions as long-term averages at all the 

participant addresses in the six MESA metropolitan regions. LA+RS: Los Angeles and 

Riverside in California. W-S: Winston-Salem in North Carolina. The upper, middle and 

lower lines in the box show the 75%, 50%(median) and 25% of the observations. The 

outliers are calculated as the observations higher or lower than 1.5 × IQR + median.
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