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Abstract

Background and Purpose—Severe acute mucositis commonly results from head and neck 

(chemo)radiotherapy. A predictive model of mucositis could guide clinical decision-making and 

inform treatment planning. We aimed to generate such a model using spatial dose metrics and 

machine learning.

Material and Methods—Predictive models of severe acute mucositis were generated using 

radiotherapy dose (dose-volume and spatial dose metrics) and clinical data. Penalised logistic 

regression, support vector classification and random forest classification (RFC) models were 

generated and compared. Internal validation was performed (with 100-iteration cross-validation), 

using multiple metrics, including area under the receiver operating characteristic curve (AUC) and 

calibration slope, to assess performance. Associations between covariates and severe mucositis 

were explored using the models.

Results—The dose-volume-based models (standard) performed equally to those incorporating 

spatial information. Discrimination was similar between models, but the RFCstandard had the best 

calibration. The mean AUC and calibration slope for this model were 0.71 (s.d.=0.09) and 3.9 

(s.d.=2.2), respectively. The volumes of oral cavity receiving intermediate and high doses were 

associated with severe mucositis.

Conclusions—The RFCstandard model performance is modest-to-good, but should be improved, 

and requires external validation. Reducing the volumes of oral cavity receiving intermediate and 

high doses may reduce mucositis incidence.
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Introduction

Mucositis is a common acute toxicity of head and neck radiotherapy (RT), which may result 

in pain, dysphagia [1], weight loss and aspiration, and reduced quality of life [2]. Mucositis 

may lead to missed treatment fractions [3], potentially compromising locoregional control 

[4], and is frequently dose-limiting in dose-escalation and accelerated fractionation regimens 

designed to improve tumour control [5]. Moreover, advances in our understanding of the 

mechanisms of “late” radiation effects have implicated severe acute reactions in the 

development of these toxicities [6,7].

There has been a large effort to develop and validate accurate multifactorial normal tissue 

complication probability (NTCP) models (e.g. [8]) for clinical decision-support [9], 

treatment modality selection [10] and treatment plan optimisation [11]. However, the 

prediction of the severity of acute mucositis for individual patients is highly challenging and 

there are currently no NTCP models that can confidently guide clinical decision-making. 

Dose objectives, such as those proposed by the Radiation Therapy Oncology Group (RTOG) 

clinical trials, specify varying limits for the mean dose delivered to the oral cavity in the 

range of 30 – 50 Gy (RTOG 0912, RTOG 0920, RTOG 1216).

It has been hypothesised that one of the major contributing factors to the suboptimal 

performance of many NTCP models is an oversimplified description of the dose distribution 

[12] using dose-volume histograms (DVH). Two assumptions are implicit in this technique. 

Firstly, each voxel in the organ contributes equally to a toxicity outcome. Secondly, the 

spatial distribution of that dose has no bearing on toxicity. Our group has previously shown 

that the spatial distribution of the dose has an impact on toxicity prediction for both rectal 

toxicity [13] and xerostomia [14]. We, therefore, considered that the spatial distribution of 

the dose might also play an important role in mucositis. The buccal mucosa is keratinised, 

whereas other regions of the oral mucosa, such as parts of the soft palate and ventral tongue, 

are not [15], and hence might be expected to be associated with higher mucositis scores [16].

The two distinct aims of this study were to (i) generate, and validate models for the 

prediction of the severity of acute oral mucositis for individual patients to guide clinical 

decision-making; and (ii) use those models to establish RT dose-response associations for 

severe mucositis that could inform optimal dose-sparing of the oral mucosa in head and neck 

RT treatment planning protocols.

Materials and Methods

Patient data

Data from 351 head and neck RT patients, enrolled in six different clinical trials [17–19] 

(with institutional review board approval and signed patient consent; details of the trials in 
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appendix 1), were available. This builds on a previous study, by our group, based on data 

from four phase II clinical trials [20] by incorporating more data from two phase III trials, in 

addition to methodological developments. The patients included in the study encompass a 

range of head and neck primary disease sites and RT delivery techniques and fractionation 

schedules, thus ensuring a large variation in the dose distributions across the cohort. Only 

patients for whom DICOM RT data were available (351 patients) were included.

Toxicity was consistently scored for all studies using the clinician-observed oral mucositis 

score from the Common Terminology Criteria for Adverse Events (CTCAE) versions 2 

(mucositis due to radiation score) [21] or 3 (mucositis/stomatitis (clinical exam) score) [22] 

instruments, which are near equivalent. Toxicities were recorded prospectively prior to the 

start of RT, weekly during RT, weekly from 1 - 4 weeks post-RT and at 8 weeks post-RT. No 

formal quality assurance of these scores (e.g. intra- and/or inter-observer variability) was 

undertaken, but all data were generated by experienced head and neck cancer specialists 

working according to standard trial protocols and trained in the use of the scoring systems. 

The toxicity endpoint of interest chosen for analysis was the maximum reported grade and 

was dichotomised into severe (maximum toxicity score of grade 3 or worse) and non-severe 

(maximum toxicity score of less than grade 3) mucositis. Patients with baseline toxicity 

were excluded from the analysis. Patients with missing data and peak grade below 3 were 

excluded from the analysis as these patients may have in fact experienced grade 3 mucositis. 

Following these inclusion criteria 183 patients were available. Maximum toxicity scores of 

grade 1, 2 and 3 were experienced by 8 (4%), 41 (22%) and 134 (73%) patients, 

respectively.

Relevant clinical data were included as covariates in the models where available. These were 

induction chemotherapy (n = 89), concurrent chemotherapy regimen (cisplatin (n = 64), 

carboplatin (n = 10), one cycle of cisplatin then one cycle of carboplatin (n = 6) or none (n = 

103)), definitive (n = 152) versus post-operative RT, primary disease site (nasopharynx (n = 

18), oropharynx (n = 100), hypopharynx/larynx (n = 18), parotid gland (n = 39), unknown 

primary (n = 8)), age (median = 58 years; range = 17 – 88 years) and sex (nmale = 116).

Dosimetric data

The oral mucosa was contoured, by clinical oncologists, using our previously described 

method [23], which represents the mucosa by an approximately spherical volume 

encompassing the oral cavity (including “the surfaces of the inner table of mandible, tongue, 

base of tongue, floor of mouth and palate”; see appendix 2 for example). The physical dose 

distribution was converted to the fractional dose distribution (physical dose delivered in each 

fraction) [24], to account for differences in the fractionation schedules. The relative 

cumulative dose-volume histogram in 20 cGy intervals from 20 to 260 cGy per fraction was 

inserted as covariates in the models. 3D moment invariants [10] were calculated, and used as 

model covariates, to describe the centre of mass, spread and skewness of the dose 

distribution in the three orthogonal directions (left-right, anterior-posterior, superior-inferior) 

within the oral cavity (appendix 3). Differences in treatment technique (unilateral versus 

bilateral and conformal versus intensity-modulated RT (IMRT)) were captured by the dose 

distributions.
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Statistical analysis

The statistical analysis used machine learning methods and followed the principles 

suggested by Kang et al. [25] for model generation and the transparent reporting of a 

multivariable prediction model for individual prognosis or diagnosis (TRIPOD) international 

consensus guidelines for model evaluation [26]. All RT dose and clinical covariates were 

transformed to standardised (Z) scores (mean = 0, standard deviation = 1) to avoid scale-

related feature dominance. Three different types of classification model: penalised logistic 

regression (PLR) [27], support vector classification (SVC) [28] and random forest 

classification (RFC) [29] were developed. Models were generated with (spatial) and without 

(standard) the addition of the spatial dose metrics.

Removing covariates based on univariable or stepwise methods has been extensively shown 

to result in overfitting (resulting in models that are not generalisable) and biased parameter 

estimates (resulting in misleading associations between covariates and outcomes) [30–32]. 

PLR has previously been found to outperform logistic regression with stepwise variable 

selection for NTCP modelling studies [33]. Penalisation was performed using ridge 

regularisation [34] or least absolute shrinkage and selection operator (LASSO) regularisation 

[27]. These techniques reduce the regression coefficients, setting some of them to zero 

(removing that covariate) in the case of LASSO. SVC models attempt to find a hyper-plane 

to separate two outcome classes (in this case severe and non-severe mucositis) and are able 

to solve non-linearly separable problems (by using non-linear kernels, such as a Gaussian 

radial basis function). SVC models with non-linear kernels do not have intuitive metrics to 

describe the strength of associations between covariates and outcome (making them less 

interpretable than PLR). RFC models construct an ensemble of decision trees. They are non-

linear, non-parametric and more robust to correlated covariates than PLR. RFC models 

provide feature importance measures, which offer information on the relative strength of 

association between the model covariates and outcome.

The model hyper-parameters were tuned (appendix 4) and the generalisability of the models 

to predict mucositis severity for individual patients (aim i) was measured through internal 

validation (methods detailed in appendix 4). The TRIPOD guidelines state that randomly 

splitting data into development and validation sets is erroneously believed to be external 

validation, but has been shown to be a “weak and inefficient form of internal validation” 

[26,35,36]. Therefore, all data were used for model generation and internal validation. 

Discriminative ability was measured using area under the receiver operating characteristic 

curve (AUC). To make individual patient predictions of the probability of an outcome good 

model calibration is important in addition to discrimination [26]. Model calibration was 

assessed, using the slope and intercept of a logistic regression model (without penalisation) 

of the actual toxicity outcomes against the predicted probabilities of severe mucositis 

(perfect calibration would have a slope of 1 and intercept of 0) [37,38]. The Brier score [39] 

was calculated to evaluate the overall model performance (lower values indicate better 

performance) and log loss [40] calculated to assess the model probability estimates (lower 

values indicate better probability estimates). A comprehensive consideration of model 

discrimination and calibration metrics was used to compare models. This is more 

appropriate than formal statistical comparison of AUC, which gives equal importance 
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weighting to sensitivity and specificity, in the context of NTCP modelling. Model 

diagnostics were performed using learning curves [41] (appendix 5).

The decision to remove patients with any missing data and maximum mucositis score less 

than grade 3 may be considered overly conservative. For completeness, the modelling of 

peak mucositis was repeated, but with the inclusion of patients who had non-consecutive 

missing mucositis measurements (increasing statistical power at the expense of increased 

potential bias; appendix 6).

To establish dose-response associations (aim ii), the strength of the associations between the 

covariates and severe mucositis were assessed by bootstrapping (to obtain unbiased 

confidence intervals) the PLR odds ratios and RFC feature importance measures for the 

models with 2000 replicates (model hyper-parameters were retuned within each bootstrap 

replicate). For completeness, the duration of severe mucositis was modelled, using elastic 

net regression and random forest regression and the associations between the model 

covariates and outcome assessed (appendix 7). The “conventional” approach to NTCP 

modelling considering both dosimetric and non-dosimetric covariates is to use univariable 

and multivariable (unpenalised) logistic regression. Therefore, for completeness, this was 

also performed (appendix 8).

Results

The average DVH for each mucositis grade is shown in appendix 9 and demonstrates a clear 

relationship between dose and toxicity. The results of the evaluation of the models, using 

multiple metrics addressing different aspects of predictive performance, (addressing aim i) 

are shown in table 1 (and appendix 6). SVC models do not provide probability estimates and 

so only discrimination could be assessed. Attempts were made to convert the SVC model 

outputs to probability estimates using Platt scaling [42]. However, this led to substantial 

reductions in AUC (related to the algorithm used; data not shown). The PLRstandard, 

SVCstandard and RFCstandard models had approximately equal discriminative abilities. The 

addition of 3D moment invariants, describing the spatial distribution of the dose, did not 

improve the discriminative ability, or other measures of predictive performance, of the 

models. Therefore, the simpler standard models were favoured. The RFCstandard model had 

better calibration, probability estimates and overall performance than the PLRstandard model 

so was favoured over the other models, for prediction of the severity of mucositis for 

individual patients (aim i). The RFCstandard model is provided at https://github.com/

jamiedean/oral-mucositis-model. For completeness, the PLRstandard model (accounting for 

covariate transformations to standardised scores) is given by:

where
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where unknownPrimary and parotid are binary and V180 and V220 are given as 

percentages.

The odds ratios and feature importance measures of the bootstrapped PLR and RFC model 

covariates (addressing aim ii), and confidence intervals (95 percentiles of the bootstrapped 

values; non-normal distributions), are displayed in figures 1 - 4. In the PLR models none of 

the covariates was significantly associated with severe mucositis (95 percentiles of the odds 

ratio not crossing 1). The correlation matrix for the data (appendix 10) indicates the highly 

correlated nature of the dosimetric data. It should be noted that logistic regression assumes 

covariates are independent so the regression coefficients of correlated covariates are unstable 

so we do not recommend using logistic regression to infer dose-response associations 

between correlated dose metrics and toxicity (discussed in appendix 10). RFC models are 

more robust to correlated covariates and, hence, more appropriate for inferring associations 

between the correlated dose metrics and severe mucositis. The covariate with the highest 

RFC feature importance was V220 in both RFC models. There was a general trend of 

increasing feature importance with increasing dose and feature importance was also high for 

RT dose metrics in the range V80 – V220. The high fractional dose-volume parameters, 

V240 and V260, were either 0% or close to 0% for nearly all patients (appendix 9). 

Therefore, they did not correlate well with mucositis severity in our dataset. A similar 

pattern was observed in regression modelling of the duration of severe mucositis (appendix 

7). Age was the clinical covariate with the highest feature importance. However, this may be 

an artefact of the large number of possible values compared with the other clinical covariates 

[43]. Age was not significantly associated with severe mucositis on univariable logistic 

regression (appendix 8).

Discussion

We met our first aim of generating and validating predictive models of severe acute 

mucositis. The discriminative ability of the RFCstandard model (and the other models) is 

modest to good. The RFCstandard model was better calibrated to the internal validation data 

than the PLRstandard model, as demonstrated by having a calibration slope closer to 1, 

calibration intercept closer to 0 and lower log loss, and better overall performance, as 

indicated by its lower Brier score. We also met our second aim of determining associations 

between RT dose metrics and severe mucositis that could be used to inform improved RT 

planning. Regarding aim ii, we determined that the covariate with the strongest association 

with mucositis outcome (peak grade or duration of grade 3) was the V220. In interpreting 
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the associations, it is important to note that they are data-driven. The fact that, for our 

dataset, the V220 had the strongest association with severe mucositis does not mean that this 

dose level has a greater biological effect than higher dose levels. The variance of the higher 

dose metrics is lower, as the volumes of oral cavity receiving very high doses is close to 0 

for all patients, and so the covariance for these metrics with severe mucositis is lower than 

for V220, which has a higher variance and covariance (appendices 9 and 10). We also found 

associations between other, intermediate and high, dose levels and severe mucositis. This 

indicates that constraining the mean dose delivered to the oral cavity, as required in RTOG 

trials, may not be the optimal treatment planning technique to reduce the incidence of severe 

mucositis. The mean dose gives equal weighting to all dose levels. However, our findings, 

suggest that minimising the volume of the oral cavity receiving intermediate and high doses 

as much as possible would represent a better strategy. We recommend incorporating this 

approach into RT planning, where possible without compromising other aspects of the plan, 

such as PTV coverage.

Despite a large number of NTCP models for other toxicities, such as xerostomia [14,44] and 

dysphagia [45], and the high incidence of severe acute mucositis there is a scarcity of 

models to allow its prediction for individual patients and inform RT planning protocols. This 

study improved upon our previous findings [20] due to far greater variation in the RT dose 

distributions in the patient cohort included (as a result of including patients from the 

PARSPORT and COSTAR trials) and a more rigorous statistical exploration. The wide range 

of dose distributions increases the generalisability of the models and reduces the chance of 

introducing biases, for example, due to the primary tumour location. Only one other model 

of severe acute mucositis resulting from IMRT has been published [46]. This study made a 

similar finding to our dose-response association (aim ii) that the volume of oral mucosa 

(defined as oral cavity, oropharynx and hypopharynx) receiving 10.1 Gy per week (2.0 Gy 

per daily fraction) was most strongly associated with severe mucositis. The authors also 

found a positive correlation between concurrent chemotherapy and severe mucositis, unlike 

our study, which found no significant association. A possible explanation is that, in our 

dataset, concurrent chemotherapy was positively correlated with the dose-volume metrics 

(appendix 10) so the RT dose effects may mask the effects of concurrent chemotherapy. This 

is largely due to the fact that all of the parotid gland tumour patients received unilateral 

irradiation (less dose delivered to the oral cavity) and did not receive concurrent 

chemotherapy (appendix 1). It is also likely that the effect of chemotherapy is insufficiently 

characterised (using binary covariates) in our analysis. The numbers of patients receiving 

carboplatin or one cycle of cisplatin followed by one cycle of carboplatin are likely too small 

to be able to detect any significant associations.

Our study features several limitations. The current delineation technique used to contour the 

oral mucosa does not provide an anatomically accurate representation of the mucosal 

surfaces within the oral cavity, but instead an oral cavity volume. A large amount of this 

volume is the musculature of the tongue and not mucosa. Additionally, the volume does not 

encompass all of the oral mucosal surfaces, such as the buccal mucosa. This may also have 

contributed to the lack of increased predicted performance with the addition of spatial dose 

metrics. The lack of standardised guidelines for accurately delineating the oral mucosa may 

have contributed to the scarcity of oral mucositis NTCP models. We have recently validated 
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a method of automatically contouring the oral mucosal surfaces in a more anatomically 

realistic manner [47,48]. We intend to use this approach in future analyses and determine 

whether characterising the mucosal dose distributions in this manner improves the predictive 

power of our NTCP model. It should be noted that the CTCAE clinical mucositis scoring 

system does not capture the morphological extent of the mucositis. Therefore, the spatial 

metrics have the potential to be sensitive to regional variations in the radiosensitivity of the 

oral mucosa, but not the morphological extent of the mucositis. Additionally, there are 

factors that are likely to contribute to mucositis, but could not be analysed, as insufficient or 

no data were available. Tobacco and alcohol use were not collected in the PARSPORT or 

COSTAR trials, so were not included in the analysis. Genetic predispositions to severe 

(chemo)radiation-induced toxicity are also expected. Finally, our models have not been 

externally validated. We suggest that their discrimination and calibration are evaluated in 

different cohorts of patients to better assess their generalisability.

In conclusion, we have (i) generated and validated NTCP models for the prediction of the 

severity of acute mucositis for individual patients with modest to good discrimination and 

(ii) established RT dose-response associations for severe mucositis. We found that a RFC 

model incorporating clinical and DVH data provided equal discriminative ability to, and 

better calibration than, PLR and SVC models and represents a promising foundation for a 

clinical decision-support tool for individual patient management. We demonstrated an 

association between volumes of oral cavity receiving intermediate and high doses and severe 

mucositis and, hence, recommend that these should be minimised where possible in RT 

planning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bootstrapped (2000 replicates) odds ratios for PLRstandard model. Whiskers show 95 

percentiles (non-normal distributions). definitiveRT – definitive radiotherapy (versus post-

operative radiotherapy); indChemo – induction chemotherapy; noConChemo – no 

concurrent chemotherapy; cisCarbo – one cycle of cisplatin followed by one cycle of 

carboplatin; Vx – volume of organ receiving x cGy of radiation per fraction. None of the 

covariates are significantly associated with severe mucositis.
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Figure 2. 
Bootstrapped (2000 replicates) odds ratios for PLRspatial model. Whiskers show 95 

percentiles (non-normal distributions). definitiveRT – definitive radiotherapy (versus post-

operative radiotherapy); indChemo – induction chemotherapy; noConChemo – no 

concurrent chemotherapy; cisCarbo – one cycle of cisplatin followed by one cycle of 

carboplatin; Vx – volume of organ receiving x cGy of radiation per fraction. None of the 

covariates are significantly associated with severe mucositis.
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Figure 3. 
Bootstrapped (2000 replicates) feature importance measures for RFCstandard model. 

Whiskers show 95 percentiles (non-normal distributions). definitiveRT – definitive 

radiotherapy (versus post-operative radiotherapy); indChemo – induction chemotherapy; 

noConChemo – no concurrent chemotherapy; cisCarbo – one cycle of cisplatin followed by 

one cycle of carboplatin; Vx – volume of organ receiving x cGy of radiation per fraction. 

The feature importance of the dose metrics increases with increasing dose up to V220, 

which has the highest feature importance of any covariate.
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Figure 4. 
Bootstrapped (2000 replicates) feature importance measures for RFCspatial model. Whiskers 

show 95 percentiles (non-normal distributions). definitiveRT – definitive radiotherapy 

(versus post-operative radiotherapy); indChemo – induction chemotherapy; noConChemo – 

no concurrent chemotherapy; cisCarbo – one cycle of cisplatin followed by one cycle of 

carboplatin; Vx – volume of organ receiving x cGy of radiation per fraction. The feature 

importance of the dose metrics increases with increasing dose up to V220, which has the 

highest feature importance of any covariate.
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Table 1
Performance of models on internal validation.

Model Hyper-parameters Mean AUC (s.d.) Mean log 
loss (s.d.)

Mean Brier 
score (s.d.)

Mean 
calibration 
slope (s.d.)

Mean 
calibration 
intercept 
(s.d.)

PLRstandard regularisation = LASSO, C = 0.1 0.72 (0.09) 0.66 (0.03) 0.23 (0.02) 12.4 (10.9) -5.0 (5.2)

SVCstandard kernel = radial basis function, C = 
0.1, gamma = 0.01

0.72 (0.09) - - - -

RFCstandard max depth = 5, max features = 
square root

0.71 (0.09) 0.56 (0.08) 0.19 (0.03) 3.9 (2.2) -1.5 (1.4)

PLRspatial regularisation = LASSO, C = 0.1 0.72 (0.09) 0.66 (0.04) 0.23 (0.02) 11.9 (10.9) -4.8 (5.2)

SVCspatial kernel = radial basis function, C = 
1.0, gamma = 0.001

0.71 (0.09) - - - -

RFCspatial max depth = 5, max features = 
square root

0.70 (0.09) 0.56 (0.07) 0.18 (0.03) 4.2 (2.3) -1.9 (1.6)

PLR – penalised logistic regression; SVC - support vector classification; RFC - random forest classification; s.d. – standard deviation; C – inverse 
regularisation strength.

Radiother Oncol. Author manuscript; available in PMC 2016 September 13.


	Abstract
	Introduction
	Materials and Methods
	Patient data
	Dosimetric data
	Statistical analysis

	Results
	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1

