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Background. Each year dengue virus (DENV) infects 400 million human but causes symptomatic disease in only a subset of
patients, suggesting that host genetic factors may play a role. HLA molecules that restrict T-cell responses are one of the most poly-
morphic host factors in humans.

Methods. Here we map HLA DRB1–restricted DENV-specific epitopes in individuals previously exposed to DENV, to identify
the breadth and specificity of CD4+ T-cell responses. To investigate whether HLA-specific variations in the magnitude of response
might predict associations between dengue outcomes and HLA-DRB1 alleles, we assembled samples from hospitalized patients with
known severity of disease.

Results. The capsid protein followed by nonstructural protein 3 (NS3), NS2A, and NS5 were the most targeted proteins.
We further noticed a wide variation in magnitude of T-cell responses as a function of the restricting DRB1 allele and found several
HLA alleles that showed trends toward a lower risk of hospitalized disease were associated with a higher magnitude of T-cell responses.

Conclusions. Comprehensive identification of unique CD4+ T-cell epitopes across the 4 DENV serotypes allows the testing of T-cell
responses by use of a simple, approachable technique and points to important implications for vaccine design.
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CD4+ HLA class II–restricted T cells are one of the pillars of
adaptive immunity to microbes. CD4+ T-helper (Th) responses
are key for the induction, maturation, and isotype switching of
antibody responses and regulate the magnitude and quality of
antiviral T-cell responses [1].

Some studies have suggested a potential contribution of
DENV-specific CD4+ T-cell responses to disease pathogenesis,
while other studies have illustrated a potential protective role for
this type of adaptive response [2–4]. DENV-specific CD4+ T
cells were associated with direct effector cytotoxic function
and, thus, have the potential to directly contribute to viral clear-
ance by clearing DENV-infected macrophages that contribute
to disease pathogenesis through the effects of antibody depen-
dent enhancement [5–7].

Despite their importance, CD4+ T cells have received less at-
tention than their CD8+ counterparts [7–9]. Only 40 human

CD4+ epitopes with known restriction are currently available
in the Immune Epitope Database (available at: http://www.
IEDB.org), reflecting an important knowledge gap in several re-
spects. For major histocompatibility complex (MHC) class I–re-
stricted responses, it has recently been shown that different
allelic variants are associated with a differential magnitude of
CD8+ T-cell responses and that HLA alleles known to be asso-
ciated with an increased risk of severe dengue are associated
with weaker CD8+ T-cell responses [8]. It is thus important to
establish whether protection from severe disease is associated
with alleles mediating more or less vigorous CD4+ T-cell re-
sponses [10, 11]. Second, the exact knowledge of which epitopes
are recognized is necessary to clearly discriminate the relative
role of responses directed against serotype-specific or conserved
epitopes. The knowledge of dominant targets of CD4+ T-cell re-
sponses is also an important issue in the context of the develop-
ment of vaccination strategies, since it is likely that optimal
immunity would require induction of CD4+ T-cell responses
against the same antigens recognized as dominant in natural in-
fection. Finally, knowledge of epitopes and associated restricting
elements is key in terms of the manufacturing of tetramer stain-
ing reagents and so-called epitope mega-pools that effectively
and comprehensively enable studying the highly heterogeneous
populations of patients and vaccinees from different ethnic or-
igins and backgrounds [12].
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Here, we have analyzed CD4+ T-cell responses and associated
epitopes restricted by 16 common HLA-DRB1 alleles, revealing
that human CD4+ T-cell responses in natural infection are
largely restricted to cytoplasmic DENV antigens (ie, capsid
[C], nonstructural protein 2A [NS2A], NS3, and NS5). Finally,
the more dominant epitopes derived from all 4 serotypes were
pooled in a single mega-pool that allows responses to be mea-
sured directly ex vivo, which will be of significant utility in mea-
suring CD4+ T-cell responses in natural infection, severe
disease, and vaccination settings.

MATERIALS AND METHODS

Human Blood Samples
A total of 150 peripheral blood samples were obtained from
healthy adult blood donors from the National Blood Center,
Ministry of Health, Colombo, Sri Lanka, in an anonymous fash-
ion as previously described [8]. To compare HLA frequencies
between the general population and hospitalized patients, we
have collected 440 samples from patients with an initial diagno-
sis of clinically suspected dengue fever (DF). Diagnosis was later
confirmed by detection of virus (by polymerase chain reaction
[PCR]) and/or DENV-specific immunoglobulin M (IgM) and
immunoglobulin G (IgG) in serum, as listed in Supplementary
Table 1. Classification in Sri Lanka follows the 2011 World
Health Organization guidelines for DF, dengue hemorrhagic
fever (DHF), or dengue shock syndrome (DSS). The hospital
cohort described in this study comprised 335 patients classified
as having DF and 105 patients classified as having DHF. Pres-
ence of pleural effusion on chest radiographs and ultrasonogra-
phy for the evidence of fluid in the abdominal cavity was used to
determine evidence of plasma leakage. None of the patients
showed signs indicating DSS or died. The institutional review
boards of both La Jolla Institute for Allergy and Immunology
and the Medical Faculty, University of Colombo (which served
as a National Institutes of Health–approved institutional review
board for Genetech), approved all protocols described in this
study.

HLA Typing
Donors were HLA typed by an American Society for Histocom-
patibility and Immunogenetics-accredited laboratory at Murdoch
University (Western Australia), using locus-specific PCR ampli-
fication on genomic DNA as previously described [13].

Serology
DENV seropositivity was determined by DENV-specific IgG
enzyme-linked immunosorbent assay and flow cytometry–
based neutralization assays as previously described [14, 15].

MHC Class II Binding Predictions and Peptide Selection
HLA-DRB1 binding predictions were performed using the con-
sensus prediction method publicly available through the IEDB
Analysis Resource (available at: http://www.iedb.org) [16, 17].
For each allele, predicted peptides present in >30% of the

isolates were selected within the 2% consensus threshold,
roughly corresponding to the top 10% of 15-mers overlapping
by 10 residues. This resulted in the synthesis of 2046 peptides
(Mimotopes, Victoria, Australia). Peptides were combined
into pools of 20 individual peptides according to their HLA pre-
diction and tested in 8–12 HLA-matched donors, with the ex-
ception of the relatively rare DRB1*0901 allele. This allele has
been tested in the only 2 donors expressing this allele in our
donor cohort but was included in this study because of its re-
ported association with protection from severe disease [11].

In Vitro Expansion of DENV-Specific T Cells and Interferon γ (IFN-γ)
Enzyme-Linked Immunospot Assay
CD4+ T cells were isolated by magnetic bead negative selection
and cocultured with autologous antigen-presenting cells at a 2:1
ratio in Roswell Park Memorial Institute 1640 medium (Omega
Scientific) supplemented with 5% human serum (Cellgro) at a
density of 2 × 106 cells/mL in 24-well plates (BD Biosciences).
Cells were stimulated with DENV-specific pools, and additional
interleukin 2 (10 U/mL; eBioscience) was added every 4 days as
previously described. After 14 days of in vitro expansion,
5 × 104 peripheral blood mononuclear cells (PBMCs) were in-
cubated in triplicate and tested for IFNγ response against indi-
vidual peptides (2 μg/mL) as previously described [7, 8].

Flow Cytometry
Detailed information of all monoclonal antibodies used in
this study is listed in Supplementary Table 2. For intracellular
cytokine staining, PBMCs were cultured in the presence of
HLA-matched peptide pools (1 μg/mL) for 6 hours as previously
described [7, 8].

RESULTS

Selection of a Set of HLA-DRB1 Alleles Affording High Coverage of the
Sri Lanka Population
Consistent with previous reports, HLA typing in our cohort
confirmed that the 7 allelic variants DRB1*0701, 1501, 1502,
1301, 1001, 0403, and 1404 were most common and encoun-
tered with phenotypic frequencies of ≥10% (Figure 1A) [10].
An additional 7 alleles (DRB1*0101, 0301, 0401, 0803, 1101,
1202, and 1302) were found with frequencies between 4% and
10%. DRB1*1302 was excluded because of the lack of a reliable
predictive algorithm at the point of study initiation. In addition,
DRB1*0802 and DRB1*0901 were included in light of reported
association with differential clinical outcomes [10, 11]. These 15
DRB1 alleles allowed for coverage of at least one of the DRB1
genes expressed in 95% of individual cases and both DRB1
genes in 60% of the cases (Figure 1B).

The DRB1 phenotype frequencies found in the Sri Lankan
samples were subsequently compared to corresponding fre-
quencies in the worldwide population. While frequencies for
many of the alleles were similar, DRB1*0803, *1101, and
*1602 were underrepresented in the Sri Lankan cohort, while
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DRB1*0701, *1404, and *1501/02 were overrepresented in
this population in comparison to their frequencies worldwide
(Figure 1A). Overall, these alleles should provide wide coverage
in the general worldwide population.

Identification of a Large Number of Novel DENV Epitopes
Comprehensive analysis all epitope identification studies were
performed in healthy seropositive donors from whom large
blood donations were available. Each peptide was tested in an
average of 9 HLA-matched donors. Of the 2046 peptides that
were predicted to bind the chosen DRB1 alleles, 867 gave a re-
sponse, corresponding to approximately 35% of the peptides
being positive in 1 or more of the donors tested. The immune
epitope algorithms used in this study predict the capacity of a
peptide to bind any given MHC molecule but do not predict
whether the MHC:peptide ligand will be recognized by a T
cell. Thus, this response rate is in line with MHC binding
being necessary but not sufficient for T-cell immunogenicity
[18–20]. For comparison, querying the Immune Epitope Data-
base (available at: http://www.iedb.org) for DENV-derived
human CD4+ epitopes retrieved 91 epitopes, of which only 40
were associated with any reported HLA restriction. Supplemen-
tary Table 4 lists all DENV epitopes previously described in the
Immune Epitope Database. This finding highlights how the pre-
sent study increased the number of DENV-derived human
CD4+ epitopes by approximately 10-fold. A complete listing
of all peptides tested, including response frequency and HLA re-
striction, has been submitted to the Immune Epitope Database
(available at: http://www.iedb.org/submission/1000699).

CD4+ T Cells Dominantly Recognize the C Protein
To ensure we had a broad but still robust representation, we
picked all epitopes represented in ≥15% of all donors tested, re-
sulting in a set of 457 epitopes. Next we eliminated redundan-
cies (eg, variants derived from the same serotype that have been
detected in the same donor), resulting in a set of 363 unique

epitopes. Epitopes were derived from all 10 proteins (C, mem-
brane, and envelope proteins and the 7 NS proteins [NS1,
NS2A, NS2B, NS3, NS4A, NS4B, and NS5]) albeit in very dif-
ferent proportions. The C protein was the most dominantly tar-
geted CD4+ antigen, with nearly twice as many epitopes as any
other antigen (Figure 2A and 2B). The same observation was
made when responses were analyzed according to the infection
history of the donors in whom they were identified. In both pri-
mary and secondary infections, the C protein was the most
dominantly targeted protein, accounting for 40% and 26% of
all epitopes identified in primary and secondary donors, respec-
tively (data not shown). To examine whether larger antigen size
might influence dominance by providing more immunogenic
peptides, we calculated the percentage of all possible peptides
derived from each protein, considering all of the possible 15-
mers overlapping by 14 amino acids of DENV-1–4 consensus
sequences. The average percentage for each protein is represent-
ed in Figure 2B, as is the number of peptides predicted to bind
the various DR molecules.

We next introduced a correction for protein size by dividing
the percentage of positive peptides by the number of all possible
peptides (Table 1). For any given protein, a value of >1 indicates
that more epitopes are derived from that protein than expected
on the basis of its size. This analysis indicated that C and NS2A
are intrinsically more immunogenic than expected on the basis
of their size. Conversely, the large size of NS3 and NS5 explains
the relative large number of epitopes contained within them.

Interestingly, DRB1-predicted binders were enriched in C
and NS2A, thus providing a potential basis for their relative
immunodominance (Table 1). However, peptides derived
from the C protein, even after correcting for size and motif den-
sity, were still most immunogenic, as shown when we generated
an immunogenicity ratio by dividing the percentage of epitope
values by the percentage motif values (Table 1). In conclusion,
the C antigen is dominant not only because it contains more

Figure 1. Phenotypic frequency of HLA-DRB1 allelic variants in Sri Lanka. The HLA phenotype of 307 donors from the general population of Sri Lanka was determined.
A, Phenotypic frequencies for all HLA-DRB1 alleles detected are shown (white bars). Gray arrows indicated alleles present in >5% of the population or alleles for which previous
disease associations have been reported in the literature. Worldwide phenotypic frequencies for all HLA-DRB1 alleles are shown in black bars. B, HLA allele coverage in the Sri
Lankan cohort is shown. Bars represent the relative number of donors in whom the donor-specific HLA alleles have been exactly matched with the 15 alleles selected for our study.
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HLA-binding peptides (as judged by the number of predicted
binders relative to other regions of the DENV polyprotein),
but also because these peptides are more frequently recognized
than those derived by other antigens, as judged by calculating
the fraction of positive peptides per tested peptides derived
from the C antigen, as compared to the other antigens. When
the magnitude of response is considered (defined as the average
sum of spot-forming cells [SFC] per donor associated with each
antigen), a similar pattern is observed, as shown in Figure 2C. In
total, 55% of the response was associated with NS proteins,
while 45% of the response was associated with structural
proteins.

Development and Validation of a CD4+ Epitope Mega-pool
We have previously shown that a DENV specific CD8+ T-cell
mega-pool can be used to detect CD8+ T-cell responses in a
variety of different areas of endemicity [9]. Accordingly, we
designed a CD4+ T-cell mega-pool containing 363 epitopes
restricted by all 15 DRB1 alleles (Figure 3A) and covering
serotype-specific epitopes derived from all 4 serotypes, as well
as a large fraction of epitopes conserved between serotypes (Fig-
ure 3B). The CD4+ T-cell mega-pool was able to elicit ex vivo
responses in 11 of 16 randomly selected donors with secondary
DENV infection who had not been involved in the epitope
identification studies (Figure 3C). Sequences of the 363 peptides

Figure 2. Protein location of epitopes identified. A total of 363 unique epitopes represented in ≥15% of HLA-matched donors were identified. A, The fraction of unique
epitopes is plotted as a function of the protein they are derived from (capsid protein [C], yellow; membrane protein [M], orange; envelope protein [E], red; nonstructural protein 1
[NS1], green; NS2A, turquoise; NS2B, blue; NS3, dark blue; NS4A, purple; NS4B, pink; and NS5, black). Numbers represent the actual number of epitopes identified. B, Relative
distribution of epitopes derived from any of the 3 structural proteins (C, M, and E) or 7 NS proteins (NS1–5) is shown (black bars). The white bars show the percentage of all
possible peptides (percentage of the total polyprotein) accounted for by each antigen. Gray bars reflect relative numbers of peptides for each protein predicted to bind the
various DR molecules. C, The magnitude of response defined as the average sum total of spot-forming cells (SFCs)/donor associated with each protein is shown. Boxes
represent structural proteins (C, M, and E) and NS proteins. Percentages in the upper right corner reflect the relative response directed at either structural protein or NS protein
responses.

Table 1. Predicted and Immunogenic Peptides per Protein

Variable

Peptides, %, by Protein

C M E NS1 NS2A NS2B NS3 NS4A NS4B NS5

All possible peptides 3.4 4.9 14.6 10.3 6.4 3.8 18.2 3.7 8.0 26.6

Predicted peptides 15.6 7.1 8.8 3.5 19.3 4.2 12.0 4.0 9.0 16.5

Positive peptides 29 3 8 3 14 4 21 2 4 13

Corrected for size 8.5 0.6 0.5 0.3 2.2 1.0 1.2 0.5 0.5 0.5

Corrected for predicted peptides 4.6 1.4 0.6 0.3 3.0 1.1 0.7 1.1 1.1 0.6

Corrected for immunogenicity 1.9 0.4 0.9 0.9 0.7 1.0 1.7 0.5 0.4 0.8

Abbreviations: C, capsid protein; E, envelope protein; M, membrane protein; NS, nonstructural protein.
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and the corresponding DRB1 restrictions are provided in Sup-
plementary Table 5.

Epitopes Are Highly Clustered in Relatively Few Dominant Regions
Mapping the epitopes identified to the exact location in the
dengue polyprotein revealed that certain regions were more
dominant and encompassed highly homologous peptides
from different serotypes and/or largely overlapping peptides
predicted to bind in the context of different alleles. To further
examine positive responses, overlapping peptides were clustered
into antigenic regions spanning 15–25 residues, which each
identifying 92 epitope clusters (Supplementary Table 3). At
least 1 of the top 25 clusters has been identified for the C protein
(A; 8 clusters), membrane protein (B; 1 cluster), envelope pro-
tein (C; 1 cluster), NS2A (D; 5 clusters), NS3 (E; 5 clusters),
NS4B (F; 1 cluster), and NS5 (G; 4 clusters) as shown in Supple-
mentary Figure 1.

Magnitude of Responses Varies as a Function of HLA-DR Alleles
Previous studies had demonstrated that CD8+ T-cell responses
restricted by various HLA alleles vary substantially in magni-
tude and that HLA alleles reported to be associated with disease
resistance are associated with higher magnitudes of response
[8]. Equally striking differences in the dominance of CD4+

T-cell responses (defined as the average reactivity per donor
to all positive peptides predicted to bind a particular allele)
were noted in function of HLA restriction (Figure 4). Certain
HLA alleles, such as DRB1*0401, DRB1*0701, DRB1*0901,
DRB1*1202, DRB1*1301, and DRB1*1501, were associated
with responses of high magnitude (>10 000 SFCs) and relatively
large breadth (>25–50 epitopes; Figure 3A). By contrast,
other alleles, such as DRB1*0301, DRB1*0403, DRBB1*0802,

DRB1*1101, and DRB1*1502, were found to be associated
with responses of lower magnitude (<5000 SFCs).

Of note, large differences in response magnitude were present
in different subtypes of the same DR antigen. For example,
DRB1*0401 was associated with higher numbers of epitopes
and a higher magnitude of responses than the closely related
*0403 allelic variant. Similarly, DRB1*1501 was associated
with a higher number of epitopes and higher magnitude of re-
sponses than the closely related *1502 allelic variant.

Frequency of HLA-DRB1 Alleles in Acute Patients, Compared With the
General Sri Lankan Population
Based on the results above we hypothesized that variations in
T-cell response magnitude might predict associations between
dengue outcomes and HLA-DRB1 alleles. A total of 440 sam-
ples were collected from hospitalized patients with confirmed
severe dengue (105 of whom were associated with DHF). A
total of 308 samples derived from DENV-seropositive healthy
blood donors from the Colombo blood bank were used as con-
trols representing the allele frequency of the general population.
Odds ratios (ORs), which measure the association between a
given HLA and a disease outcome, were calculated for each of
the different DRB1 alleles. In this case, ORs of > 1 indicate that
the given allele is associated with greater risk (susceptibility),
while ORs of < 1 indicates a lower risk (protective effect).

Table 2 shows the results of this analysis and, for each of the
control versus DF/DHF groups, shows the individuals either ex-
pressing or not expressing a given HLA-DRB1 allele, the total
number of donors, and the OR and P values yielded when com-
paring the DF/DHF group to the control group. HLA types pre-
sent in ≥1% of the study populations were included in this
analysis.

Figure 3. Composition and reactivity of a dengue virus (DENV)–specific CD4+ T-cell mega-pool (CD4+-MP). Epitopes included in the mega-pool are shown as a function of
their HLA restriction (A) or as a function of the serotype they are derived from (DENV1–4; B). Epitopes that are shared between at least 2 serotypes (allowing 1–2 amino acid
substitutions) have been considered conserved. C, Percentages of CD4+ T cells that produce interferon γ (IFN-γ) upon stimulation with the CD4+-MP in donors previously exposed
to DENV from Sri Lanka (n = 16). IFN-γ production among CD4+ T cells stimulated with a CD8+ T-cell mega-pool (CD8+-MP) have been used as a control. The dotted line at 0.02%
represents the cutoff for positivity. The average response (+standard error of the mean) for all cohorts is shown. Statistical significance was determined using a 2-tailed Mann–
Whitney test. MHC, major histocompatibility complex.
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Trends toward protective associations could be shown for 1 of
6 alleles associated with responses of >10 000 SFCs/donor,
namely the DRB1*0401 (OR, 0.4; P = .014) and DRB1*1301
(OR, 0.6; P = .026) alleles. DRB1*0901, previously reported as
being protective, was also associated with high responses [11].
No significant association was detected in our cohort, possibly
because this allele is rare in the Sri Lanka population (frequen-
cy, about 1%). No significant protective effect was noted for the
other 3 alleles associated with high CD4+ T-cell responses

(DRB1*0701, DRB1*1202, and DRB1*1501) or for any of the
other 9 DRB1 alleles with CD4+ T-cell responses of <10 000
SFCs/donor (Table 2). This corresponds to an overall signifi-
cant, albeit weak, correlation between response magnitude
and protection from severe disease (P = .022, by the Fisher
exact test).

Differential OR Associations in Closely Related DRB1 Subtypes
The OR analysis showed a trend toward protection from severe
disease of DRB1*0401, which generated high-magnitude T-cell
responses (>10 000 SFCs; OR, 0.4; Table 2). No trend was
detected for DRB1*0403, which generated only intermediate
T-cell responses (OR, 1.1,). Interestingly, DRB1*0405, which
is rare in the Sri Lanka cohort and, consequently, was not as-
sessed for T-cell responses, was associated with significantly in-
creased disease susceptibility (OR, infinity; P = .002). Likewise,
the rare DRB1*0404 allele was also trending toward increased
disease susceptibility (OR, 4.96). No trends were detected for
the DRB1*1501 and DRB1*1502 subtypes, while DRB1*1506
was also associated with a trend toward protection from severe
disease (OR, 0.3; Table 2).

DRB1*1506 was not studied initially because its frequency in
the Sri Lankan population was <5%. To test the hypothesis that
strong T-cell responses are associated with protection,
DRB1*1506 peptides have been synthesized and screened for
CD4+ T-cell reactivity in the 8 DRB1*1506 donors available
(Figure 4B). Notably, the DRB1*1506 peptide set elicited
CD4+ T-cell responses of >10 000 SFCs in all 8 donors, with
an average response of >26 000 SFCs. These results confirm
the predictive hypothesis that a protective HLA allele is associ-
ated with a strong CD4+ T-cell response.

DISCUSSION

Herein we present the most comprehensive characterization
of DENV-specific HLA-restricted CD4+ epitopes to date,

Figure 4. HLA-restricted CD4+ T-cell responses. Differential magnitude of HLA-restricted responses in dengue virus–seropositive donors. A, CD4+ T cells are cocultured with
autologous antigen-presenting cells and peptides at a ratio of 2:1. Black bars represent the magnitude of T-cell responses as the total number of spot-forming cells (SFCs) per
106 recovered cells and are sorted according to their restriction element. The dotted line indicates the arbitrary threshold of 10 000 SFCs per 106 peripheral blood mononuclear
cells (PBMCs). B, Dots represent the magnitude response of individual DRB*1506 donors after stimulation with DRB*1506 peptides (n = 8). The box represents the mean of
responses. The dotted line indicates the arbitrary threshold of 10 000 SFCs per 106 PBMCs.

Table 2. Associations Between HLA-DRB1 Alleles and Disease Severity

HLA Allele

Healthy
Population,
No. (%)

Hospitalized
Population,
No. (%)

Odds
Ratio

P
Value Pcorrected

a

DRB1*01:01 19 (6.2) 37 (8.4) 1.4 .263 1

DRB1*03:01 26 (8.4) 35 (8.0) 0.9 .892 1

DRB1*04:01 19 (6.2) 11 (2.5) 0.4 .014 .28

DRB1*04:03 30 (9.7) 45 (10.2) 1.1 .902 1

DRB1*04:04 1 (0.3) 7 (1.6) 5.0 .150 1

DRB1*04:05 0 (0.0) 12 (2.7) Infinity .002 .04

DRB1*07:01 114 (37.0) 162 (36.8) 1.0 1.000 1

DRB1*08:02 2 (0.6) 6 (1.4) 2.1 .481 1

DRB1*08:03 14 (4.5) 18 (4.1) 0.9 .855 1

DRB1*09:01 3 (1.0) 4 (0.9) 0.9 1.000 1

DRB1*10:01 34 (11.0) 70 (15.9) 1.5 .007 .14

DRB1*11:01 20 (6.5) 24 (5.5) 0.8 .636 1

DRB1*11:11 7 (2.3) 3 (0.7) 0.3 .100 1

DRB1*12:02 20 (6.5) 41 (9.3) 1.5 .177 1

DRB1*13:01 40 (13.0) 35 (8.0) 0.6 .026 .52

DRB1*14:01 4 (1.3) 5 (1.1) 0.9 1.000 1

DRB1*14:04 57 (18.5) 78 (17.7) 0.9 .847 1

DRB1*15:01 68 (22.1) 93 (21.1) 0.9 .787 1

DRB1*15:02 47 (15.3) 62 (14.1) 0.9 .674 1

DRB1*15:06 9 (2.9) 4 (0.9) 0.3 .047 .94

P values <.05 were considered statistically significant.
a Corrected by the Bonferroni inequality method.
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highlighting the extreme heterogeneity and complexity of
human DENV responses in a population setting. Yet, it is likely
that the present study still underestimates the complexity of
MHC class II responses in 2 important aspects. First, HLA-pre-
dictive algorithms are bound to a certain false-negative rate, and
not all HLA binders will be predicted [17, 21]. Second, the study
has focused on the DRB1 molecules most frequent in the Sri
Lanka population. Several alleles broadly expressed in the
worldwide population, such as DRB1*1602, were underex-
pressed in Sri Lanka and thereby not analyzed in the present
study. Third, other less common DR types, as well as DP and
DQ molecules, will have to be addressed in future studies.
Based on the available knowledge, predictions for the main
DRB1 molecules will cover approximately 50% of the total re-
sponse [22, 23]. We plan to perform additional epitope identi-
fication studies addressing other HLA class II molecules,
continue to update our mega-pool, and provide the epitope se-
quences by submission to the Immune epitope database (avail-
able at: http://www.iedb.org) [24].

The large-scale epitope mapping allowed us to pinpoint im-
munodominant antigens and regions, gaining further insights
in the mechanisms of immunodominance. In agreement with
previous studies, we found that C, together with NS2A, NS3,
and NS5, are immunodominant for CD4+ T-cell responses
[25]. While NS3 and NS5 antigens are dominant for both
CD4+ and CD8+ T-cell responses, C and NS2A are dominant
for CD4+ but not CD8+ T-cell responses [8].The immunodomi-
nance of the capsid is of particular interest in the light of recent
studies showing that a capsid-based vaccine from DENV-2 was
able to induce protective T-cell–mediated immunity in mon-
keys, without the contribution of neutralizing antibodies, and
the fact that the DENV-derived C is not present in a chimeric
dengue vaccine (CYD) [26, 27].

Different HLA class II molecules were associated with re-
sponses of different breadth and magnitude. While several sig-
nificant associations were observed before Bonferroni
correction, only 1 HLA allele remains significantly associated
with protection. A Bonferroni correction is necessary if multiple
comparisons are performed, to make the claim that a particular
association is significant. However, a Bonferroni correction is
not necessary if the P values are used to generate a hypothesis
and test a generic correlation. In our case, we make the obser-
vation that alleles above or below a certain threshold (a P value
of .05, before correction) are associated with responses above or
below a certain magnitude (10 000 SFCs) and also verify this in
a “blind prediction” for the DRB1*1506 allele. The results pre-
sented herein should therefore be interpreted with this caveat in
mind, and confirmation with a larger patient data set will be re-
quired. Despite, these positive correlations, it is apparent that a
weak CD4+ T-cell response does not predict disease susceptibility
and that the converse can also be true, since *1202 is associated
with strong CD4+ T-cell responses and disease susceptibility [10].

It is possible that interactions with CD8+ T cells or antibody re-
sponses might be responsible for this complex pattern. Alterna-
tively, it is possible that, beyond response magnitude, the specific
phenotype of the responding T cells might be a key factor in de-
termining disease. Indeed, our recent studies suggest that both
CD8+ and CD4+ DENV-specific T cells restricted by different
HLA alleles are associated with specific phenotypes [7, 28].
Knowledge of CD4+ T-cell responses and associated epitopes
restricted ex vivo will be of significant utility in measuring
CD4+ T-cell responses in natural infection, severe disease, and
vaccination settings.
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