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The nonstructural protein NS1 is well established as a virulence factor of influenza A virus counteracting induction of the antivi-
ral type I interferon system. Recent studies now show that viral structural proteins, their derivatives, and even the genome itself
also contribute to keeping the host defense under control. Here, we summarize the current knowledge on these NS1-indepen-
dent interferon escape strategies.

Influenza A virus (FLUAV; family Orthomyxoviridae) is a truly
global threat. From the virus reservoirs in aquatic birds, new

strains are constantly spilling over into poultry, swine, and humans,
causing regular epidemics and pandemics, with serious illness and
substantial economic losses (1). FLUAV particles have a lipid enve-
lope with the transmembrane proteins hemagglutinin (HA), neur-
aminidase (NA), and M2 inserted. The inner leaflet of the lipid bilayer
is covered by the M1 protein that connects to the genome-containing
ribonucleoproteins (RNPs) inside. The FLUAV genome is divided
into 8 segments of negative-strand RNA. In the RNPs, each RNA
segment is packaged along its length by viral nucleoprotein (NP),
while the partially complementary 5= and 3= RNA ends are held to-
gether by the viral-RNA-dependent RNA polymerase (RdRP, con-
sisting of subunits PB1, PB2, and PA) (2). The structural proteins HA,
NA, M1, M2, NP, PB1, PB2, and PA (and the nuclear export protein
[NEP]) drive the basic viral replication cycle. In infected cells, addi-
tional nonstructural proteins are produced to support viral propaga-
tion. Of these, the nonstructural protein NS1 (of which low levels are
also present in virions [3]) is a well-known antagonist of the antiviral
type I interferon (IFN-�/�) system (4, 5). However, it is becoming
increasingly clear that escaping innate immunity is a task that requires
more than one factor. Here, we summarize the current knowledge of
the function of structural virus components in counteracting the IFN
system.

INNATE IMMUNITY AT A GLANCE

Antiviral responses are stimulated by conserved molecular features of
pathogens. Specific pathogen recognition receptors (PRRs) of the
host recognize so-called pathogen-associated molecular patterns
(PAMPs) as nonself. Typical viral PAMPs are conserved nucleic acid
structures, most prominently double-stranded RNA (dsRNA) (6).
PRR-triggered signaling eventually results in the synthesis of IFN-
�/�, cytokines which establish an antiviral state in the cell by docking
onto their cognate receptor (IFNAR) and upregulating IFN-stimu-
lated genes (ISGs) via the so-called JAK/STAT pathway (Fig. 1). Many
products of ISGs are able to either inhibit specific stages of infection
or generally hamper viral propagation by destroying viral RNA,
blocking translation, or inducing cell death (7).

INFLUENZA A VIRUS AND RIG-I

The dominant PRR recognizing FLUAV infection is cytoplasmic
retinoic acid-inducible gene I (RIG-I) (8). RIG-I possesses two
N-terminal caspase recruitment domains (CARDs), a central

RNA helicase domain of the DExD/H box type, and a C-terminal
domain (CTD) that is important for RNA ligand binding (9).
RIG-I responds strongly to 5=-end-triphosphorylated dsRNA
structures (5=-ppp-dsRNA), like the “panhandle,” which can be
formed by complementary sequences of the 5= and 3= termini of
the FLUAV genome (10–12). The binding of RIG-I to the FLUAV
panhandle occurs immediately after the RNPs enter the host cell
and can impose a direct antiviral effect via the disassembling of the
RdRP complex (13). Also, for other viral systems, it was shown
that the binding of RIG-I to regulatory RNA structures can restrict
viral functions and result in such a signaling-independent inhibi-
tory activity (14, 15). RIG-I activators of FLUAV besides the pan-
handle structure are erroneous RNA replication products (16)
and U/A-rich sequences in the 3= untranslated region (UTR) of
the genome segments (17). In all cases, upon detection of the RNA
ligand, RIG-I exposes the CARDs and interacts with the mito-
chondrial antiviral signaling (MAVS) adapter molecule to assem-
ble a signaling platform that activates IFN regulatory factor 3
(IRF-3) and other transcription factors of the IFN system (6, 9).
Thus, the binding of FLUAV PAMPs by RIG-I results in antiviral
signaling and the expression of IFNs and ISGs. Moreover, RIG-I
can slow down viral propagation in a direct manner.

RIG-I ESCAPE MECHANISMS BY STRUCTURAL COMPONENTS
OF FLUAV

FLUAV exhibits a wide variety of evasion strategies (Fig. 2). First
of all, it is conceivable that replication in the nucleus, which is
quite unusual for an RNA virus, has evolved to minimize exposure
of the 8 genomic RNAs to cytoplasmic RIG-I. The well-known and
major anti-IFN factor not covered here, the nonstructural protein
NS1, targets dsRNA, RIG-I cofactors, antiviral ISGs, and host cell
mRNA synthesis (4, 5). However, structural proteins, like the
components of the RNPs, i.e., NP, PB1, PB2, PA, and even the
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genomic RNA itself, also indirectly or directly contribute to im-
pairing RIG-I-mediated antiviral responses. Access of RIG-I to the
5=-ppp-dsRNA panhandle and the U/A-rich sequences in the 3=
UTR is hindered by different means. NP covers the viral RNA,
thereby preventing the formation of extensive dsRNA structures
(18, 19), and the viral RdRP complex binds the 5= and 3= termini of
the panhandle (2). Thus, encapsidation by NP and RdRP limits
the availability of the viral PAMPs to RIG-I and other PRRs. In line
with this, measures that affect the stability of the viral RdRP have
repercussions on RIG-I activation. A mammal-adapted mutation
(from bird-adapted PB2-627E to PB2-627K) that increases the
binding of PB2 to NP (20) strongly reduces RIG-I activation by
RNPs, whereas artificial RdRP disruption by a PB1-derived inhib-
itor peptide boosts RIG-I activation (13). The viral RNA also con-
tributes to RIG-I escape. First, the 5=-ppp and 3=-OH ends do not
form a perfect dsRNA stretch but rather fold into a hook-like
structure (2), and second, there are nucleotide mismatches that
further reduce dsRNA formation and, hence, RIG-I interaction
(21). Besides its structural role, NP also diminishes PRR activation
by recruiting the cellular RNA helicases UAP56 and URH49, sup-
posedly by unwinding any dsRNA that arises during genome rep-
lication (19). Moreover, two studies found that RNPs can interact
with RIG-I or sequester it to the nucleus (22, 23). PB1, PB2, and
PA also interact with the host cell RNA polymerase II repressor
DR1, which downregulates the expression of FLUAV-relevant
ISGs, like RIG-I, MDA5, MX1, and IFITM (24). DR1 was origi-

nally identified as a positive regulator of FLUAV replication (25),
and it is likely that DR1 recruitment by FLUAV proteins contrib-
utes to suppression of the RIG-I pathway.

Several RNPs or their derivatives also target the RIG-I signaling
MAVS adaptor molecule. The accessory proteins PA-X and
PB1-F2 are frameshift products of the PA and PB1 genes, respec-
tively, that have been linked to innate immune response inhibition
(26–28). PA-X is an endonuclease that cleaves host cell mRNAs
(26). PB1-F2 associates via a C-terminal portion with the MAVS
adaptor, and this interaction can be enhanced by an asparagine-
to-serine exchange at position 66 (N66S) that is present in virulent
strains (27). PB1-F2–MAVS adaptor interaction decreases the mi-
tochondrial membrane potential required for MAVS adaptor-
mediated antiviral signaling and thus robust IFN induction (28).
Also, the full-length RdRP subunits, especially PB2, can target the
MAVS adaptor (29, 30). An amino acid change at amino acid
residue 9 from bird-adapted aspartic acid to mammal-adapted
asparagine (N9D) results in PB2 translocation to mitochondria
and reduced MAVS adaptor-mediated IFN induction by FLUAV
(29). Although the exact mechanism of how PB2-9D affects
MAVS has not been resolved so far, the facts that this key amino
acid is close to the MAVS adaptor interaction domain of PB2 (31),
that the polymorphism is maintained in most of the seasonal
FLUAV strains, and that the polymorphism is associated with in-
creased virulence in mice (29, 32) highlight the importance of this
residue in mammalian-host adaptation. Curiously, a 10-kDa frag-

FIG 1 Innate immunity pathways that are targeted by structural proteins of FLUAV. RNA PAMPs of FLUAV activate RIG-I and MDA5 (and therefore the MAVS
adaptor molecule), whereas membrane fusion activates STING. These PRR signaling pathways converge on the transcription factor IRF-3 for IFN induction.
Secreted IFNs dock onto their receptor, IFNAR, and mediate expression of antiviral ISGs via JAK/STAT signaling. The ISG products Mx and IFN-induced
transmembrane (IFITM) protein are involved in IFN-mediated inhibition of FLUAV.
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ment of PB2 (PB2�) that is produced by defective interfering
FLUAV particles directly interacts with MAVS and activates anti-
viral signaling rather than inhibiting it like the full-length PB2
(33). In addition to full-length PB2-9D, both PB1 and PA contain
the amino acid motif ESIE, which interferes with the recruitment
of RNPs to mitochondria, thus contributing to the impairment of
RIG-I–MAVS adaptor signaling and an increase in virulence (23).

RIG-I-INDEPENDENT CYTOPLASMIC RESPONSES AND FLUAV
COUNTERMEASURES

Recently, the stimulator of IFN genes (STING) and the RIG-I-like
PRR, melanoma differentiation-associated protein-5 (MDA5),
signaling factors were identified as contributors to the antiviral
response against FLUAV (34–36). STING is known as a down-
stream signaling adapter of the DNA PRR cyclic GMP-AMP syn-
thase (cGAS) (37). Holm et al. reported that a STING-dependent,
but cGAS-independent, pathway is activated upon FLUAV entry
(35). Fusion of the viral envelope with the host endosome mem-
brane can stimulate STING and hence IFN induction; however,
FLUAV counteracts this via the fusion peptide of HA subunit 2
(HA2-FP), which associates with STING and prevents its activa-
tion (35). Interestingly, subunit 1 of HA (HA1) was recently
shown to drive the degradation of the IFN receptor chain IFNAR1,
thereby suppressing IFN-triggered JAK/STAT signaling (38).
Thus, even the viral envelope proteins are involved in innate im-
mune escape.

In mammalian cells, STING interacts with RIG-I and MAVS

and supports early IFN induction (39, 40). Chickens lack the
RIG-I gene ddx58 (41), and IFN induction is mediated by the
related RNA helicase and PRR, MDA5 (36). In contrast to mam-
malian STING, chicken STING forms a complex with MDA5 (and
the MAVS adaptor) to induce IFN at later stages of FLUAV infec-
tion (42). Moreover, chicken MDA5 was recently identified to
sense short dsRNAs, just like mammalian RIG-I (but unlike mam-
malian MDA5) does (43). Thus, chicken MDA5 can at least par-
tially compensate for the lack of RIG-I in these animals, but
FLUAV can counteract this by dsRNA sequestering and the anti-
MAVS activities of NS1 and PB2 (36, 44).

EVASION FROM RESTRICTION BY Mx, THE KEY ISG AGAINST
FLUAV

RIG-I-, MDA5-, and STING-mediated host responses to FLUAV
result in the expression of numerous ISGs, which elicit a broad
variety of antiviral effects (7, 9). Among the ISG products, the Mx
family of large GTPases is key to the antiviral effect of IFN against
FLUAV (45, 46). The human MxA protein interacts with ortho-
myxovirus NP, particularly if it is part of the RNPs (47–51). MxA
acts together with the NP interactors UAP56 and URH49 (see
above) (52) and possibly other IFN-induced cofactors, and it re-
stricts the access of RNPs to the nucleus, thus impairing viral
primary transcription (53). Mx proteins also interfere with viral
genome replication, most likely by the sequestration of NP and
PB2 (51, 54–56).

In line with the documented MxA-RNP interaction, it was

FIG 2 Influenza virus structural proteins and their derivatives restrict innate immune responses. Encapsidation of the viral genome and enhanced RdRP-NP
interaction provided by PB2-627K interfere with RNP recognition by RIG-I. Additionally, NP recruits host cell RNA helicases to avoid dsRNA production, most
likely also impairing RIG-I signaling. Adaptive mutations in influenza virus PB1-F2, PB1, PB2, PA, and NP counteract MAVS adaptor-mediated downstream
signaling or provide MxA escape, as indicated. The fusion peptide of HA2 (HA2-FP) blocks STING activation, and HA1 degrades the IFN receptor subunit
IFNAR1.
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shown that MxA sensitivity is determined by a cluster of surface-
exposed amino acids on the NP of human pandemic FLUAV
strains from 1918 and 2009 (57–59). Interestingly, however, these
MxA escape adaptations impair at the same time the trafficking of
RNPs into the nucleus, resulting in genetic instability and loss of
viral fitness (58, 60). Therefore, when comparable adaptive NP
mutations were introduced into avian H5N1, compensatory mu-
tations appeared that rescued viral fitness (60). However, these
compensatory mutations (with one exception) again increased
MxA sensitivity. Notably, the recently emerged FLUAV strain
H7N9 contains another MxA escape mutation in NP (52N) that
does not hamper viral fitness too much (61). These observations
nicely illustrate the evolutionary trade-off involved in host adap-
tations and indicate that human MxA poses a barrier to avian
FLUAV strains that is difficult but not impossible to overcome by
changes in the structural protein NP.

CONCLUSIONS

As the FLUAV RdRP has a high error rate, it constantly generates
an extensive pool of viral quasispecies (1). Recently, FLUAV was
passaged onto IFN-deficient cells, and the resulting virus mutants
were characterized by deep sequencing and IFN induction assays
(62). Surprisingly, only few amino acid substitutions occurred in
the well-established IFN antagonist NS1. Rather, in the absence of
IFN pressure, mutations arose in all structural proteins except NP.
Thus, although NS1 appears to be the most potent IFN antagonist
of FLUAV (27, 29, 30, 62), more than one factor and strategy are
required to efficiently suppress activation of the powerful IFN
response.

With every newly emerging strain, FLUAV provides further
proof that the barriers that are imposed by the cellular antiviral
defense systems might be more of a challenge for virologists to
understand than for the virus to overcome.
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