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Demonstration of a day-night rhythm in human
skeletal muscle oxidative capacity
Dirk van Moorsel 1,2,8, Jan Hansen 1,8, Bas Havekes 1,2, Frank A.J.L. Scheer 3,4, Johanna A. Jörgensen 1,
Joris Hoeks 1, Vera B. Schrauwen-Hinderling 1,5, Helene Duez 6, Philippe Lefebvre 6, Nicolaas C. Schaper 2,7,
Matthijs K.C. Hesselink 1, Bart Staels 6, Patrick Schrauwen 1,*
ABSTRACT

Objective: A disturbed day-night rhythm is associated with metabolic perturbations that can lead to obesity and type 2 diabetes mellitus (T2DM).
In skeletal muscle, a reduced oxidative capacity is also associated with the development of T2DM. However, whether oxidative capacity in skeletal
muscle displays a day-night rhythm in humans has so far not been investigated.
Methods: Lean, healthy subjects were enrolled in a standardized living protocol with regular meals, physical activity and sleep to reflect our
everyday lifestyle. Mitochondrial oxidative capacity was examined in skeletal muscle biopsies taken at five time points within a 24-hour period.
Results: Core-body temperature was lower during the early night, confirming a normal day-night rhythm. Skeletal muscle oxidative capacity
demonstrated a robust day-night rhythm, with a significant time effect in ADP-stimulated respiration (state 3 MO, state 3 MOG and state 3 MOGS,
p < 0.05). Respiration was lowest at 1 PM and highest at 11 PM (state 3 MOGS: 80.6 � 4.0 vs. 95.8 � 4.7 pmol/mg/s). Interestingly, the
fluctuation in mitochondrial function was also observed in whole-body energy expenditure, with peak energy expenditure at 11 PM and lowest
energy expenditure at 4 AM (p< 0.001). In addition, we demonstrate rhythmicity in mRNA expression of molecular clock genes in human skeletal
muscle.
Conclusions: Our results suggest that the biological clock drives robust rhythms in human skeletal muscle oxidative metabolism. It is tempting
to speculate that disruption of these rhythms contribute to the deterioration of metabolic health associated with circadian misalignment.

� 2016 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Many metabolic processes are synchronized to day-night cycles by the
circadian clock, thereby anticipating changes in metabolic activity
associated with feeding or fasting and physical activity or rest [1]. In
our modern “24/7” society, however, many individuals do not adhere
to the lifestyle imposed upon us by nature. In this respect, epidemi-
ological studies have shown that circadian misalignment e
desynchronization between the intrinsic circadian and behavioral cy-
cles, as is typical in shift-work e is associated with obesity, insulin
resistance and type 2 diabetes mellitus (T2DM) [2e5]. Moreover,
intervention studies have shown that challenging behavior by
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controlled circadian misalignment results in metabolic aberrations like
decreased glucose tolerance and insulin sensitivity [6e8].
Circadian rhythms are governed by a central circadian clock, which is
situated in the suprachiasmatic nucleus of the hypothalamus and is
sensitive to light as the most important time cue (Zeitgeber) [9].
Interestingly, peripheral tissues have their own clocks. These periph-
eral clocks are synchronized by the central clock, but they can also be
influenced by behavior, such as feeding or exercise [10,11]. The pe-
ripheral clock consists of transcriptional-translational feedback loops.
The positive loop consists of the heterodimer of the CLOCK (circadian
locomotor output cycles kaput) and BMAL1 (brain and muscle ARNT-
like 1) proteins. The negative feedback loop is mediated via
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heterodimers of the proteins PER (Period) and CRY (Cryptochrome),
which repress CLOCK/BMAL1-controlled gene expression [9,12].
Interestingly, in mouse and cell models, several components of the
molecular clock have been causally linked to mitochondrial meta-
bolism [13], mitochondrial integrity and density [14], mitochondrial
dynamics [15] and metabolic flexibility [16]. So far however, it is un-
known whether mitochondrial metabolism also displays a day-night
rhythm in human skeletal muscle. Such data would be relevant, since
reduced skeletal muscle oxidative capacity is associated with T2DM
[17,18]. It is tempting to speculate that disturbances in the day-night
rhythm may affect muscle mitochondrial metabolism and thereby
deteriorate metabolic health.
Here, we investigated whether skeletal muscle mitochondrial function
displays day-night rhythmicity by taking multiple muscle biopsies from
healthy, lean volunteers within a 24 h period, under tightly controlled
experimental conditions. We used a research setting that reflects real
life conditions, with regular meals, physical activity and a regular
sleep/wake cycle. For this reason we use the term “day-night
rhythm” instead of “circadian rhythm” [19]. We here show that gene
expression in muscle displays rhythmicity, which is specifically evident
for the core components of the molecular clock. Furthermore, we are
the first to show the presence of a day-night rhythm in human skeletal
muscle oxidative capacity.

2. MATERIAL AND METHODS

2.1. Participants
Twelve young lean male Caucasian individuals (age � SD: 22.2 � 2.3
years, BMI � SD: 22.4 � 2.0 kg/m2) participated in this study. The
participants did not engage in exercise more than 3 h per week, were
non-smokers, had no active diseases and used no medication, verified
by a medical questionnaire. Participants were selected for having a
regular sleep duration (normally 7e9 h/night), not having done shift
work or having traveled across more than one time zone for at least 3
months. A morningness-eveningness questionnaire (MEQ-SA) was
used to exclude extreme morning larks or night owls (MEQ-SA score
mean � SD: 50 � 7). All participants provided written informed
consent. The study was approved by the Ethics Committee of the
Maastricht University Medical Center, monitored by the Clinical Trial
Center Maastricht and conducted in accordance with the principles of
the declaration of Helsinki. All measurements were performed between
November 2014 and July 2015. The study was registered at clin-
icaltrials.gov with identifier NCT02261168.

2.2. Pre-study conditions
One week prior to the study, participants were instructed to maintain a
standardized lifestyle. This lifestyle included (trying to) sleep every
night from 11 PM until 7 AM, eating breakfast, lunch and dinner at
regular times (at 9 AM, 2 PM and 7 PM) with no in-between snacks or
drinks other than water. In this period subjects refrained from alcohol
and caffeine. Participants were instructed not to engage in exercise
three days prior to the study. Two days before the study, we provided
standardized meals (see below) to ensure standardized caloric and
macronutrient intake for all participants. Lifestyle was monitored by
accelerometry (activPAL3 physical activity monitor, PAL Technologies,
Glasgow, UK) together with food- and sleep-diaries, which were
checked at the start of the first study-day.

2.3. Study design
Participants were admitted to the research unit at noon on study day 1
and stayed for 44 h in total, under standardized conditions mimicking a
636 MOLECULAR METABOLISM 5 (2016) 635e645 � 2016 The Author(s). Published by Elsevier GmbH.
real-life situation. The first study-day was mainly used to standardize
and monitor meals, physical activity and bedtime. Meals were provided
at fixed times (9 AM, 2 PM and 7 PM). To prevent a sedentary lifestyle,
participants went for a 15-minute low-intensity walk accompanied by
a researcher, one hour after every meal. Directly hereafter, participants
were instructed to stand for 15 minutes before they were allowed to sit
again. In-between meals, physical activity and tests, the participants
stayed in a respiration chamber; a small room with a bed, toilet, sink,
desk, chair, TV and computer. During the first study-day we performed
no measurements. At 11 PM, the lights of the respiration chamber
were turned off and the participants were instructed to try to sleep.
During this night, sleeping metabolic rate was measured by whole-
room indirect calorimetry (Omnical, Maastricht Instruments, Maas-
tricht, The Netherlands) [20].
The second study-day, participants were awakened at 6:30 AM.
Hereafter, participants swallowed a telemetric pill for measurement
of core-body temperature. Next, an intravenous cannula was placed
in the forearm for subsequent blood-draws. The first blood-draw
was at 8 AM, followed by an indirect calorimetry measurement
using a ventilated hood while awake and at rest in supine posture to
calculate resting energy expenditure and substrate oxidation.
Directly hereafter, the first skeletal muscle biopsy was taken
(described below). These measurements (blood draw, ventilated
hood measurement and skeletal muscle biopsy) were repeated five
times within 24 h: at 8 AM, 1 PM, 6 PM, 11 PM and 4 AM the next
day. Additional blood samples were taken 2-hourly (10 AM, 12 PM,
2 PM, 4 PM, 8 PM, 10 PM, 0 AM, 2 AM, 6 AM and 8 AM). The timing
of meals and physical activity was similar to study-day 1 and sub-
jects stayed within the respiration chamber in-between measure-
ments. After the 11 PM biopsy, participants went back to the
respiration chamber to sleep with lights off. At 4 AM, the participant
was awakened and the last measurements were performed, after
which the subject was allowed to sleep until 7 AM. After the 8 AM
blood draw the study protocol ended.

2.4. Study meals
Two days before the study and during the study participants were
provided with standardized meals, according to Dutch and US dietary
guidelines. Caloric intake for consumption at home was calculated by
multiplying the estimated resting metabolic rate, obtained with the
Harris-Benedict formula [21] with an activity factor of 1.5. Participants
were provided with optional extra snacks to eat with their meals if they
were still hungry, up to an activity factor of 1.7. For the first study-day
in the laboratory, energy requirement was calculated by multiplying the
estimated resting metabolic rate with an activity factor of 1.35,
because of limited physical activity in the research facility. For the
second study-day, energy requirement was calculated by multiplying
the sleeping metabolic rate of the first study night (measured by
whole-room indirect-calorimetry) by 1.5.
During the study days, participants received 3 meals daily. Breakfast
accounted for w21 energy%, lunch for w30 energy% and dinner for
w49 energy%. Daily macronutrient composition was w52 energy%
as carbohydrates, w31 energy% as fat (w9% saturated) and w14
energy% as protein. No snacks or drinks other than water were pro-
vided in-between meals.

2.5. Skeletal muscle biopsies and respirometry
Five skeletal muscle biopsies were obtained from the m. vastus lat-
eralis according to the Bergström method [22] under local anesthesia
(1% lidocaine, without epinephrine). Each biopsy was taken from a
separate incision at least 2 cm from the previous incision, moving from
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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distal to proximal. The first biopsy was randomly taken from the left or
right leg, and each subsequent biopsy was taken from the other leg.
Part of the biopsy was immediately placed in ice-cold preservation
medium (BIOPS, OROBOROS Instruments, Innsbruck, Austria) and used
for measurement of mitochondrial oxidative capacity. For this analysis,
intact muscle fibers were permeabilized and measured for oxygen
consumption upon several substrates using an Oxygraph (OROBOROS
Instruments). During the assay, muscle fibers were supplemented with
malate, octanoylcarnitine, ADP, glutamate, succinate and carbon-
ylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) as described
previously [23]. The remaining part of the muscle biopsy was imme-
diately frozen in melting isopentane and stored in �80 �C until further
analysis.

2.6. Indirect calorimetry
To calculate whole-body energy expenditure, respiratory exchange
ratio (RER), glucose- and fat-oxidation, oxygen consumption and car-
bon dioxide production were measured with an automated respiratory
gas analyzer using a ventilated hood system (Omnical; IDEE, Maas-
tricht, the Netherlands). Calculations of energy expenditure and sub-
strate oxidation were made with the assumption of a negligible protein
oxidation [24,25].

2.7. Measurement of core-body temperature
Core-body temperature was measured by a swallowed telemetric pill
(CorTemp HT150002; HQ Inc., Palmetto, FL, USA). The telemetric pill
measured the core-body temperature every 10 s and sent the infor-
mation wirelessly to a portable receiver worn outside the body on the
stomach. For further analysis, we used temperature averages of every
10 min, after excluding false measurements.

2.8. Gene transcript quantification
RNA was isolated from 50 mg of muscle material by TRIzol lysis
(Qiagen, Hilden, Germany). RNA was further purified by the RNeasy kit
from Qiagen (Hilden, Germany).
Microarray analysis: RNA integrity was assessed using a Bioanalyzer
2100 (Agilent) and RIN were above 9.0. RNAs were then processed to
generate labeled ssDNA using the Whole Transcript cDNA synthesis
and amplification and the Terminal Labeling kit as suggested by the
manufacturer (Affymetrix). Samples were hybridized to HuGene 2.0
arrays and native CEL files imported into GeneSpring (v13.1.1, Agilent)
after quality controls using the Affymetrix Expression Console. The
RMA16 algorithm was used for summarization and data was
normalized to the median of all samples. Normalized intensity values
were used to generate a self-organized map (distance metric:
Euclidean; number of iterations: 500). Protein-encoding genes from
specific clusters were searched against the GO Biological Process,
KEGG and Reactome databases using the Metascape tool [26].
Microarray data have been deposited in NCBIs Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible
through GEO accession number GSE79934.
RT-QPCR: RNA integrity was assessed using a Bioanalyzer (Agilent
Technologies, Santa Clara, USA) and yield was measured using a
NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham,
USA). The high-capacity RNA-to-cDNA kit from Applied Biosystems
(Foster City, USA) was used for transcribing 0.5 mg RNA to cDNA.
Transcript abundance was determined using a 7900HT Fast Real-Time
PCR System (Applied Biosystems, Waltham, USA). To minimize the
variability in reference gene normalization, the geometric mean of
three reference genes (RPL26, GUSB and CYPB), which were individ-
ually stably expressed in time, was used. This geometric mean was
MOLECULAR METABOLISM 5 (2016) 635e645 � 2016 The Author(s). Published by Elsevier GmbH. This is an op
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used as the internal reference for comparative gene expression
analysis in the remainder of the study [27].

2.9. Protein analysis
Western blot analyses were performed in RIPA-lysates of human
muscle tissue. Protein concentration was determined using the Bio-
Rad RC/DC kit (Bio-Rad Laboratories, Veenendaal, The Netherlands).
Equal amounts of protein were loaded on 12% TGX gels (Bio-Rad
Laboratories) or 4e12% Bolt gradient gels (Novex, Thermo Fisher
Scientific, Bleiswijk, The Netherlands). Proteins were transferred to
nitrocellulose with the Trans-Blot Turbo transfer system (Bio-Rad
Laboratories). Primary antibodies: a cocktail of mouse monoclonal
antibodies directed against human OXPHOS (dilution 1:10,000;
ab110411, Abcam, Cambridge, UK), two mitochondrial markers
directed against TOMM20 (dilution 1:10,000; ab186734; Abcam),
porin/VDAC (dilution 1:10,000; sc-8828, Santa Cruz Biotechnology,
Dallas, Texas), SR-actin (dilution 1:5,000; A-2172; Sigma Aldrich,
Zwijndrecht, The Netherlands), PGC-1 (dilution 1:10,000, 516,557,
Calbiochem), FIS-1 (dilution 1:1000, sc-98900, Santa Cruz Biotech-
nology, Dallas, Texas), PINK-1 (dilution 1:2000, sc-33796, Santa Cruz
Biotechnology, Dallas, Texas) and OPA-1 (dilution 1:2500, 612,606,
Becton Dickinson). The specific proteins were detected using sec-
ondary antibodies conjugated with IRDye680 or IRDye800, and were
quantified with the CLx Odyssey Near Infrared Imager (Li-COR,
Westburg, Leusden, The Netherlands).

2.10. Statistics
Data are presented as mean � SEM (standard error of the mean)
unless indicated otherwise. Statistical analyses were performed with
the use of IBM Statistical Package for Social Sciences for MAC, version
23 (SPSS, Inc.). The effect of time on outcome variables was analyzed
by repeated measures ANOVA. If the assumption of sphericity was
violated (Mauchly’s test), we applied Greenhouse-Geisser’s correc-
tion. In case repeated measures ANOVA revealed significant effects for
the oxidative capacity and indirect calorimetry analyses, Bonferroni
adjusted post-hoc analyses were applied to look at significant dif-
ferences between specific time-points. Statistical significance was
defined as a p-value< 0.05. In addition, if repeated measures ANOVA
resulted in a significant effect of time for targets of mRNA and protein
expression and oxidative capacity states, we tested for rhythmicity
using the JTK_CYCLE package in R 3.2.1 with Windows 8 [28]. For
this analysis, values were normalized to subject mean prior to
analysis.

3. RESULTS AND DISCUSSION

3.1. Participants adhered to a controlled normal lifestyle and
displayed a normal day-night rhythm in core-body temperature
To investigate whether mitochondrial oxidative capacity displays a day-
night rhythm, we performed an observational study in which twelve
young lean male volunteers were admitted to our metabolic research
unit for two days under controlled conditions, mimicking our normal
daily life. The study protocol is graphically depicted in Figure 1. Prior to
the study days, subjects were instructed to adhere to a standardized
lifestyle, including fixed sleeping times, which was monitored by
accelerometry. During the second study-day we recorded core-body
temperature to examine the presence of a normal day-night rhythm
(Supplemental Fig. 1). Indeed, all subjects showed a characteristic
dayenight pattern in core-body temperature with highest temperature
at the end of the day and a decrease in temperature after midnight
[29], indicating that chronotypes were similar across participants.
en access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 637
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Figure 1: Study design. Participants stayed in the research facility for 44 h starting at noon on day 1. During the second study-day we performed all measurements. B, breakfast;
L, lunch; D, dinner; M, measurement (indirect calorimetry and muscle biopsy).

Figure 2: Time-dependent expression of transcripts in human skeletal muscle. (A) Time-dependent gene expression was assessed by microarray analysis of RNA extracted
from a single donor (N ¼ 1). Protein-encoding transcript expression patterns were visualized as a self-organizing map (Euclidean distance metrics). The color scale indicates
upregulated genes (red) and downregulated genes (green) relative to the global median signal of each array. The arrow indicates clusters of genes showing the most prominent
peak of expression at the indicated time point (4 AM, cluster 1 and 11 PM, cluster 2). (B and C) Gene annotation enrichment analysis. The genes extracted from cluster 1 and 2
were searched using multiple databases (GeneOntology Biological Processes, KEGG pathways and Reactome) and statistically enriched terms were determined using the
Metascape tool. The most significantly enriched terms are indicated for cluster 1 (GO biological processes, panel B, peak expression 4 AM) and cluster 2 (Reactome, panel C, peak
expression 11 PM). Statistically significant terms were hierarchically clustered and converted into a network. Each term is represented by a circle node, of which the size is
proportional to the number of genes in the term. The color of the node indicates the statistical significance of the term belonging to the cluster (see color scale). The most
significant term characterizing each cluster is indicated. Similarities between terms are indicated by connecting lines.
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Figure 3: Rhythmicity of core molecular clock genes in human skeletal muscle. Diurnal mRNA expression of the arrhythmic muscle filament gene TTN (A), the core clock
genes CLOCK and BMAL1 (B), PER2 and CRY1 (C), measured by RT-QPCR. Data are normalized to the geometric mean of 3 housekeeping genes and presented as mean � SEM.
*p < 0.05 for the effect of time in all depicted genes.
3.2. Human skeletal muscle displays oscillations in RNA of
metabolic and core molecular clock genes
During the second study day, we performed five consecutive skeletal
muscle biopsies. To prevent meal interference, the biopsies were
taken immediately before the three meals (8 AM, 1 PM, 6 PM), before
bedtime (11 PM) and one time during the night (4 AM) after waking up
the participant.
To examine if skeletal muscle displays rhythmicity in gene expression,
we analyzed RNA using DNA microarrays in subsequent biopsies from
a single donor with a representative rhythm in mitochondrial oxidative
capacity. This analysis revealed that 14.5% of transcripts (4094 out of
28,168) displayed a cyclic expression peaking at different times, 75%
of them corresponding to protein-encoding transcripts (Figure 2A).
Term enrichment against Gene Ontology, KEGG and Reactome data-
bases indicated that gene clusters displaying a maximal expression in
the late evening or during the night (11 PM, 4 AM) are notably related
to the core clock machinery (4 AM, Figure 2B) including REV-ERB-a,
REV-ERB-b, PER3 and DBP and to the tricarboxylic acid (TCA) cycle/
respiratory electron transport chain (11 PM, Figure 2C) such as
components of NADH dehydrogenase complexes (NDUFA4, NDUFA8)
and of ATP synthase (ATP5F1, ATP5G3, APTP5A1, ATP5L). Collectively,
these analyses suggested the existence of a functional core clock
machinery and oscillations in mitochondrial metabolism in human
skeletal muscle.
Figure 4: Mitochondrial oxidative capacity in human skeletal muscle displays a da
lipid substrate (state 3 MO); fueled by complex I-linked substrates (state 3 MOG) and upo
respiration upon FCCP (State U). M, malate; O, octanoylcarnitine; G, glutamate; S, succinate
mean � SEM. *p < 0.05 for the effect of time in all states. #p < 0.05 vs 1 PM for Bon
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Expression of core clock genes was validated in all participants by RT-
QPCR assays. TTN mRNA expression, measured as an arrhythmic
muscle filament gene, did not vary throughout the 24-hour period
(p¼ 0.331, Figure 3A). CLOCKmRNA showed significant variation over
time (ANOVA p < 0.001), but rhythmicity was of rather low amplitude
(JTK_CYCLE p < 0.001; Figure 3B), consistent with previous obser-
vations in several mouse tissues [30]. BMAL1 mRNA exhibited a robust
sinusoidal rhythm, with highest expression around midnight, and
lowest expression in the morning and early afternoon (ANOVA
p < 0.001, JTK_CYCLE p < 0.001; Figure 3B). Of the negative
feedback loop, PER2 was most abundantly expressed in the early
morning (p ¼ 0.019, Figure 3C). CRY1 was most highly expressed in
the night, however the amplitude was rather low (p ¼ 0.006,
Figure 3C). Both were confirmed to be rhythmic by JTK_CYCLE
(p < 0.001).
Together, our data show robust rhythmicity of the molecular clock in
human skeletal muscle, which is consistent with the demonstration of
an oscillating molecular clock in other human cells and tissues like
leukocytes [31], follicle cells [32] and adipose tissue [33] and in pri-
mary cultures of human muscle [34]. In addition, micro-array analysis
in sequential biopsies obtained from a single donor revealed cyclic
expression of several clusters of genes, including genes involved in
important mitochondrial pathways. A previous study investigating the
molecular clock in human adipose tissue biopsies demonstrated peak-
y-night rhythm. (A) ADP-stimulated respiration of permeabilized muscle fibers upon a
n parallel electron input into complex I and II (state 3 MOGS). (B) Maximally uncoupled
. Data represents oxygen consumption per mg wet weight per second and is depicted as
ferroni-adjusted post-hoc analysis.
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Figure 5: Mitochondrial content and mitochondrial marker proteins do not show rhythmicity. (A) Measurement of mitochondrial DNA copy number (DNA copy numbers of
the mitochondrial-encoded gene ND1 divided over the nuclear encoded gene LPL). (B) Representative western blot depicting the oxidative phosphorylation complexes of all time-
points (CeG) Protein levels of specific subunits of complex IeV of the mitochondrial electron transport chain, measured by western blotting. (HeJ) Protein levels of other
mitochondrial (VDAC, TOMM-20) and non-mitochondrial (SR-Actin) proteins measured by western blotting. Representative western blot images are displayed below their respective
graphs. Data expressed as mean � SEM. p > 0.05 for the effect of time in all panels.
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expression of BMAL1 at the very end of the light-phase, similar to our
current results in human skeletal muscle [33]. Interestingly, that study
examined adipose tissue gene expression under a standardized
circadian rhythm protocol with subjects in the resting condition and
with hourly nutritional drinks, thereby limiting the influence of behavior
on the core molecular clock expression. The similarity in results
suggests that the molecular clock patterns we observe in skeletal
muscle may indeed be dominated by circadian rhythmicity. This is
further underscored by findings in animals, as in mouse skeletal
muscle [35] and mouse liver [13,15], BMAL1 mRNA is highest at the
end of the dark-phase and beginning of the light phase. Since mice are
nocturnal animals, this corresponds with a highest BMAL1 expression
at the end of the active phase and beginning of the rest phase, similar
to our findings in human skeletal muscle.

3.3. Human skeletal muscle oxidative capacity displays a day-night
rhythm
To investigate whether the rhythmicity in mitochondrial and molecular
clock genes was also reflected in a day-night rhythm of muscle mito-
chondrial oxidative capacity, we performed high-resolution respirometry
in freshly isolated permeabilized muscle fibers. Skeletal muscle oxida-
tive capacity demonstrated a clear day-night rhythm, with a significant
time effect in ADP-stimulated (state 3) respiration fueled by different
substrates (state 3 MO, state 3 MOG and state 3 MOGS p ¼ 0.042;
0.016; 0.042 respectively, Figure 4A). Mitochondrial state 3 respiration
was lowest at 1 PM, and highest at 11 PM (state 3 MOGS: 80.6� 14.0
vs. 95.8� 16.3 pmol/mg/sec, mean� SD). Differences between these
time-points were statistically significant for state 3 MO (p¼ 0.032) and
state 3 MOG (p ¼ 0.027), although it just did not reach significance for
state 3 MOGS (p ¼ 0.132) after Bonferroni adjustment for multiple
testing. Furthermore, JTK_CYCLE analysis of mitochondrial respiration
confirmed rhythmicity for state 3 MO (p ¼ 0.007), 3 MOG (p ¼ 0.039)
and 3 MOGS (0.041). Maximally uncoupled respiration, reflecting the
maximal capacity of the electron transport system, demonstrated similar
oscillations although the effect of time did not reach significance
(p ¼ 0.121, Figure 4B). It is interesting to note that the difference in
mitochondrial state 3 respiration between 1 PM and 11 PM was on
average 20%, which is in the same range as the difference in mito-
chondrial function between patients with T2DM and BMI-matched
controls [17,36], indicating that the magnitude of the day-night
rhythm in mitochondrial function is of physiological relevance. Previous
studies in animal models of metabolic diseases do show disrupted
circadian rhythmicity in the molecular clock of metabolic tissues and in
plasma metabolites [37,38], and it is therefore tempting to speculate
that day-night rhythmicity in muscle mitochondrial metabolism is altered
in T2DM and pre-diabetic patients. Such disturbances in circadian
rhythmicity of mitochondrial function may contribute to reduced meta-
bolic flexibility that is observed in metabolically compromised individuals
and thereby contribute to the development of metabolic diseases,
consistent with findings that circadian misalignment is associated with
obesity and T2DM [2e4]. If this is indeed the case, restoring circadian
rhythmicity may comprise a potential new basis for lifestyle advice and
provide treatment options for T2DM.
How mitochondrial function can show circadian rhythmicity can not be
completely revealed by the current study in humans. However, to
investigate if the rhythm in mitochondrial respiration is caused by
intrinsic variation in mitochondrial oxidative capacity, rather than by
variation in mitochondrial density, we measured several markers of
mitochondrial content. Mitochondrial-DNA copy number e the ratio
between the DNA copy number of a mitochondrial (ND1) and a nuclear
gene (LPL)e did not reveal a day-night rhythm (p¼ 0.437, Figure 5A).
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Also, western blot analysis of structural subunits of the five mito-
chondrial respiratory chain complexes did not reveal a statistically
significant effect of time (Figure 5BeG). In addition, the mitochondrial
outer membrane proteins VDAC and TOMM-20 did not display day-
night rhythmicity (Figure 5HeI). The non-mitochondrial protein SR-
Actin was also stable throughout the day (Figure 5J). Together,
these results suggest that in skeletal muscle, intrinsic mitochondrial
function (rather than mitochondrial content) displays circadian
rhythmicity.
We next investigated whether mitochondrial dynamics or mitochondrial
biogenesis could play a role in the circadian rhythmicity of intrinsic
mitochondrial function. Mitochondrial fission and fusion occur as a
result of changes in energy demand, influence substrate metabolism
and are controlled by the circadian clock in mouse liver [15,39]. Here,
we quantified proteins involved in mitochondrial biogenesis and
mitochondrial dynamics in skeletal muscle biopsies. PGC-1a, the
master regulator of mitochondrial biogenesis, did not show a signifi-
cant difference over time (p ¼ 0.901, Figure 6A). Interestingly how-
ever, FIS1, a marker of mitochondrial fission, displayed significant
time-differences, with a pattern matching the rhythm in mitochon-
drial oxidative capacity (p ¼ 0.016, Figure 6B), although JTK_CYCLE
analysis did not confirm significant rhythmicity. PINK-1, a marker of
mitophagy, displayed a rhythm opposing FIS-1, although this time-
effect just did not reach statistical significance (p ¼ 0.061,
Figure 6C). Noteworthy, in murine liver FIS-1 and PINK-1 24 h
expression patterns are also opposed [15]. Furthermore, the mito-
chondrial fusion marker OPA-1 showed a significant decrease over
time, across all time points (p ¼ 0.045, Figure 6D, without significant
rhythmicity in JTK_CYCLE analysis). These results suggest that mito-
chondrial dynamics may be involved in governing mitochondrial ca-
pacity around the clock, although mechanistic studies in preclinical
models are needed to further investigate underlying mechanisms.
The physiological relevance of the rhythmicity in oxidative capacity
cannot be deduced from the current study. It is, however, interesting to
note that aerobic performance also peaks later in the day [40,41]. Our
results could therefore form a physiological explanation for these
findings. An earlier study found that chronotype influences the time-
point of peak performance [41]. In our study, we only included par-
ticipants with an average chronotype. Future studies will be needed to
investigate whether early and late chronotypes have a different time-
point of peak mitochondrial function.

3.4. Whole-body energy expenditure peaks before midnight
We next examined whether day-night rhythmicity in muscle mito-
chondrial function was also associated with rhythmicity in whole-body
measures of energy metabolism. To this end, we performed indirect
calorimetry analyses to determine resting energy expenditure and
substrate oxidation at the same time points of the muscle biopsies.
Interestingly, similar to mitochondrial respiratory capacity, resting
energy expenditure showed a significant time effect, with highest
energy expenditure at 11 PM (p < 0.001 for the time-effect;
p ¼ 0.005 for Bonferroni adjusted post-hoc analysis 11 PM vs
4 AM; Figure 7A). It is well known that lowest levels of energy
expenditure can be measured when subjects are asleep, denoted as
sleeping metabolic rate. Even though the participants were awakened
before measurements, resting energy expenditure was still lowest at
4 AM. This clearly illustrates day-night rhythmicity in energy expen-
diture, independent of sleep. RER, carbohydrate oxidation and fat
oxidation displayed variation with feeding and fasting periods, with a
significantly lower carbohydrate oxidation and RER, and a higher fat
oxidation in the fasted state (8 AM and 4 AM) and a higher
en access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 641
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Figure 6: Mitochondrial dynamics rather than mitochondrial biogenesis display a significant time-effect. Protein levels of mitochondrial biogenesis regulator PGC-1a (A),
mitochondrial fission protein FIS-1 (B), mitophagy protein PINK-1 (C) and mitochondrial fusion protein OPA-1 (D). Representative western blot images are displayed below their
respective graphs. Data presented as mean � SEM. *p < 0.05 for the effect of time.
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carbohydrate oxidation and RER, and a lower fat oxidation in the fed
state (1 PM, 6 PM and 11 PM) (p < 0.001 for the time-effect in RER
and carbohydrate oxidation and p ¼ 0.007 for the time-effect in fat
oxidation, Figure 7BeD). Bonferroni-adjusted post-hoc analyses
confirmed that RER, carbohydrate- and fat-oxidation were significantly
different at 6 PM and 11 PM, when compared with 8 AM and 4 AM
(p < 0.05; Figure 7AeD).

3.5. Plasma metabolites peak according to meals
To examine the diurnal pattern in circulating substrates, we took 15
blood samples throughout the second study-day to assess glucose,
insulin, free fatty acids and triglycerides (Figure 8AeD). As expected,
plasma glucose and insulin displayed marked peaks after the meals,
with an overall maximum after the dinner, being the most energy-
dense meal. Furthermore, plasma glucose increased slightly during the
late evening and night, possibly reflecting an increase in endogenous
glucose production together with decreased carbohydrate oxidation.
Free fatty acids reflected the fasting-feeding pattern with increased
free fatty acids before the meals and during the night when fat
oxidation is highest and decreased free fatty acids after the meals.
Plasma triglycerides displayed a rise throughout the waking hours with
a peak after dinner, being the meal with the highest energy density.
During the night, plasma triglycerides decreased again.

3.6. Circadian vs day-night rhythmicity
In this study, we aimed to examine changes in skeletal muscle
mitochondrial function and whole-body metabolism throughout 24 h
642 MOLECULAR METABOLISM 5 (2016) 635e645 � 2016 The Author(s). Published by Elsevier GmbH.
with a standardized protocol designed to mimic our daily lifestyle. To
this end, our protocol included a normal sleepewake cycle, normal
meals with a regular calorie distribution and (limited) physical activity.
As a result, our protocol does not allow us to evaluate the influence of
the endogenous circadian clock per se. However, to control the in-
fluence of meals and physical activity, we performed our measure-
ments under controlled conditions with meals and light activity bouts at
least 3e4 h before the measurements. Such a protocol therefore re-
flects day-night, and not circadian rhythmicity, and allows extrapola-
tion of the results to a normal daily lifestyle. The demonstration of a
day-night rhythm in mitochondrial function in lean volunteers allows
future studies to investigate if such rhythmicity is disturbed in volun-
teers with compromised metabolic health, such as T2DM. If rhyth-
micity of mitochondrial metabolism is indeed disturbed in subjects with
compromised metabolic health, this may open therapeutic strategies to
restore circadian rhythmicity, possibly via REV-ERB-a agonists or
nutritional compounds as resveratrol, as they have previously been
proven to be successful in mouse studies [45,46]. Furthermore, it may
open a new field of research directed towards the timing of in-
terventions that boost mitochondrial function, and ultimately these
studies may reveal how circadian disruption can lead to metabolic
disturbances, as has been demonstrated in both human and animal
studies [6,7,42e44].

3.7. Conclusion
In conclusion, we here demonstrate the presence of a profound day-
night rhythm in human skeletal musclemitochondrial oxidative capacity.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 7: Whole-body resting energy expenditure peaks at the same time as skeletal muscle oxidative capacity whereas substrate oxidation exhibits a clear feeding
and fasting pattern. Whole-body resting energy expenditure (A), respiratory exchange ratio (B), carbohydrate oxidation (C) and fat oxidation (D) during the second study-day,
calculated from oxygen consumption and carbon-dioxide production measured by indirect calorimetry. Data presented as mean � SEM. *p < 0.01 for the effect of time.
#p < 0.05 for Bonferroni-adjusted post-hoc analysis.

Figure 8: Plasma metabolites and insulin display marked variations over 24 h, mostly associated with feeding-fasting. Plasma levels of glucose (A), insulin (B), free fatty
acids (C) and triglycerides (D) throughout the second-study day. Data depicted as mean � SEM. *p < 0.001 for the effect of time.
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Peak oxidative capacity and highest resting energy expenditure coincide
at the end of the day, thereby partly matching the time phase of peak
physical performance as described in literature [40,41]. In addition, we
found significant variations over time in proteins involved in mito-
chondrial dynamics, possibly linking the circadian clock with mito-
chondrial metabolism. Future investigations should increase the focus
on the regulatory mechanisms underlying the current observations.
Moreover, it should be examined if disturbances of the rhythm in human
skeletal muscle oxidative capacity play a pivotal role in the development
of the adverse metabolic consequences of circadian misalignment.
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