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Abstract

Objectives Deep medullary veins support the venous drainage
of the brain and may display abnormalities in the context of
different cerebrovascular diseases. We present and evaluate a
method to automatically detect and quantify deep medullary
veins at 7 T.

Methods Five participants were scanned twice, to assess the
robustness and reproducibility of manual and automated vein
detection. Additionally, the method was evaluated on 24 par-
ticipants to demonstrate its application. Deep medullary veins
were assessed within an automatically created region-of-
interest around the lateral ventricles, defined such that all
veins must intersect it. A combination of vesselness, tubular
tracking, and hysteresis thresholding located individual veins,
which were quantified by counting and computing (3-D) den-
sity maps.

Results Visual assessment was time-consuming (2 h/
scan), with an intra-/inter-observer agreement on
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absolute vein count of ICC=0.76 and 0.60, respectively.

The automated vein detection showed excellent inter-

scan reproducibility before (ICC=0.79) and after

(ICC=0.88) visually censoring false positives. It had a

positive predictive value of 71.6 %.

Conclusion Imaging at 7 T allows visualization and quantifi-

cation of deep medullary veins. The presented method offers

fast and reliable automated assessment of deep medullary

veins.

Key Points

» Deep medullary veins support the venous drainage of the
brain

* Abnormalities of these veins may indicate cerebrovascular
disease and quantification is needed

* Automated methods can achieve this and support human
observers

* The presented method provides robust and reproducible de-
tection of veins

* Intuitive quantification is provided via count and venous
density maps

Keywords Brain - Magnetic resonance imaging - Cerebral
veins - Reproducibility of results - Image interpretation,
computer-assisted

Abbreviations
ICC Intra-class correlation coefficient

ICC,  ICC on the absolute agreement between
measurements

ICCc ICC on the consistency between measurements

ICCA‘C Both ICCA and ICCC

PPV Positive predictive value
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Introduction

Deep medullary veins drain venous blood from the white mat-
ter towards the subependymal veins of the lateral ventricles [ 1,
2]. They are organized in a typical fan-pattern [3], which can
be appreciated in Fig. 1. Abnormalities of the deep medullary
veins may be involved in various forms of cerebral small
vessel disease [4-8].

With advanced imaging sequences and (ultra-)high field
7 T MRI, deep medullary veins can be visualized in vivo with
high spatial resolution [9-11]. This would allow for further
evaluation of the role of these veins and venous changes in
cerebral small vessel disease, and in the context of ageing and
cognitive decline. Since these veins are numerous, computer
assisted detection and quantification may support a robust and
reproducible assessment.

In this work, we propose and evaluate an automated meth-
od for the detection and quantification of deep medullary
veins on 7 T MR images. We devise a region-of-interest
(ROI) that captures the 3-D distribution of the veins.
Individual veins are automatically detected and quantified
based on number and density. Robustness and reproducibility
of visual and automated vein detection are assessed; potential
use-cases are demonstrated with a group of healthy senior
participants.

Materials and methods
Study design

The proposed method was evaluated by assessing the inter-
observer, intra-observer, and inter-scan reproducibility. Visual
assessments of veins were compared with automated assess-
ments, before and after censoring false positive detections.
Two observers were involved and five participants were
scanned twice, to assess inter-scan differences in visual and
automated assessments. Details follow in the next sections.

Participants

A total of 35 participants was included, separated into two
groups: Gyu and G,pp. Written informed consent was given
by all participants and the study was approved by the local
institutional review board and ethical committee.

G, Was used to validate the method and assess its robust-
ness and reproducibility. It included five healthy participants
(2 male; age: 28+4.7 years). These participants underwent
MRI acquisition twice on the same day, with repositioning
in between.

Gapp Was formed by 30 aged individuals (17 male; 70
+3.8 years) included from a previous study [12], to demon-
strate applications of the method. Participants with contrain-
dications for 7 T MRI were excluded. After MRI acquisition,
six participants were excluded because they had ungradable
images owing to motion artefacts, leaving 24 participants.

MRI

MRI acquisition was performed on a 7 T whole-body system
(Philips Healthcare, Cleveland, OH, USA). The protocol in-
cluded a 3-D dual-echo gradient echo sequence (TR/TE1/
TE2: 20/6.9/15.8 ms, acquisition matrix: 400 x 400 x 172, ac-
quired voxelsize: 0.5%0.5x0.7 mm’, reconstructed
voxelsize: 0.39 % 0.39 x 0.35 mm”, flip angle: 12°, bandwidth:
203 Hz/pixel, flow compensated gradients, sensitivity
encoding factor: 2.5 (right-left), scan duration: 9:18) and a
3D T1-weighted sequence (TR/TI/TE: 4.8/1240/2.2 ms, re-
constructed voxelsize: 0.66 x 0.66 x 0.50 mm?) [12].

Detection of deep medullary veins

Automated detection of deep medullary veins consists of two
steps: definition of an ROI in which the veins are located and
the detection of individual veins. For the ROI, we have pro-
posed to use an expanded ventricular surface [13], which the
deep medullary veins must intersect to reach the

Fig. 1 Transversal (/eff) and coronal (right) view of the second echo of a
dual-echo gradient echo 7 T MRI sequence. In these minimum intensity
projections of ten slices (resulting slab thickness; left: 3.9 mm, right:
3.5 mm), the deep medullary veins are clearly visible (encircled in one

hemisphere). In the coronal view, the typical fan-pattern can be
appreciated. The veins drain venous blood towards the subependymal
veins, such as the caudate vein of Schlesinger (arrow)
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subependymal veins (see Fig. 2-left). This surface is defined at
5 mm from the ventricles, restricted inferiorly by a plane that
touched the genu and splenium of the corpus callosum and
medially a region of 1.5 cm around the interhemispheric fis-
sure was removed. A combination of the vesselness filter [14,
15], tubular tracking [16], and hysteresis thresholding located
individual veins. Full details are given in the supplementary
materials.

Quantification

Veins were quantified by counting and computing venous
density. Venous density was defined as the count divided by
the area of the expanded ventricular surface.

Venous density maps were computed to intuitively visual-
ize the distribution of veins. To be able to compare density
maps between subjects or groups, all detected veins were
transformed to the MNI152 template [17—19]. For each point
on the expanded ventricular surface in MNI152 template
space, the number of veins within a 15 mm radius was count-
ed. An example result is shown in Fig. 3.

To visualize the vein distribution in the deep white matter, a
3-D venous density map was created. All detected veins were
used as seed points in a tubular tracking algorithm [16] to
track each individual deep medullary vein (see Fig. 4). All
resulting tracked vein points were transformed to the
MNI152 template. For each individual voxel of the MNI152
template, we counted the number of tracked vein points within
a 15 mm radius (see Fig. 5) [20].

Evaluation

Our proposed method was validated against a visual assess-
ment of deep medullary veins. For this, we used the first scans
of the participants in the validation group G,,. Two human
observers performed visual assessments of these scans.
Observer 1 annotated an ROI of 60 slices, to which the

Fig. 2 A minimum intensity
projection slab of 3.5 mm (ten
slices), showing that the deep
medullary veins draining the deep
white matter must intersect with
the expanded ventricular surface
(in red, ventricle segmentation in
green) to reach the subependymal
veins to which they connect.
Right: the veins (white dots) that
are detected at the location where
they intersect with the ROI
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automated detections were compared. The top of this ROI
was set five slices above the roof of the lateral ventricles.
The inter-observer reproducibility was assessed on 30 consec-
utive slices that were rated by both observers. Observers an-
notated veins where they intersected the expanded ventricular
surface. Observer 1 annotated twice, with two weeks in be-
tween the assessments to assess the intra-observer
reproducibility.

Next, observer 1 censored the false positive detections of
the automated vein detection. Censoring of the first scans of
G,.; was done twice, to assess the intra-observer
reproducibility.

By using the second scan of the participants in the valida-
tion group Gy, the inter-scan robustness and reproducibility
of the visual and automated vein detection were determined.
Observer 1 annotated the second scan of the participants in
Gy In addition, the reproducibility of the automated ROI
definition was assessed by comparing each individual step
of the presented method between the repeated scans of Gyg).

Finally, all scans in G,j,,, were censored by observer 1. The
positive predictive value (PPV =true veins / (true veins + cen-
sored false positives)) was computed.

All statistics were computed with SPSS 20 (IBM Corp.)
The intra-class correlation coefficient (ICC) was used as the
measure for reproducibility, assessing both the absolute agree-
ment (ICC,) and consistency (ICCc) between measurements.
ICC ¢ indicates both measurements (ICC4 and ICCq, respec-
tively). A high ICC4 required observers to agree on the exact
vein count. The ICC¢ required observers to agree on the rel-
ative ordering of participants (few/many veins), but not on the
exact vein count.

Results

Visually annotating deep medullary veins required, on aver-
age, 2 hours per scan. The intra-observer reproducibility on
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Fig. 3 A 3-D rendering of the venous density map of all 24 participants
in G,p,, combined. This map was generated by transforming all detected
veins from the scans of the participants to the MNI152 template. For each
point on the expanded ventricular surface, all veins within a radius of

vein count was moderate (ICCpc=0.67/0.94). The inter-
observer reproducibility was low to moderate with an
ICCA=0.45 and 0.74 (average: 0.60), but had a very good
consistency with ICC-=0.87 and 0.94 (average: 0.91).
Censoring the false positives after automated vein detection
required £15 minutes per scan. The intra-observer reproduc-
ibility of the censoring is excellent, with an
ICCic=0.98]0.98. All tests and ICC values are summarized
in Table 1.

The inter-scan reproducibility (between both scans of Gy,
assessed by observer 1) was moderate with an
ICC4jc=0.72/0.68. The discrepancies between the repeated
scans of Gy, occurred mostly for smaller veins that consist
heavily of partial volume voxels. The inter-scan reproducibil-
ity of the automated vein count before censoring is good with

SNIpes Ww G| B UIYIIM SUIBA JO Jaquinu abeiany

15 mm are counted. The colours represent a vein count ranging from
low (blue, at least one vein at that location in a participant of Ggp,) to
high (red, on average four veins within a 15 mm radius at that location)

an ICCx¢=0.79|0.76. The inter-scan reproducibility after
censoring was very good with an ICC,c=0.88|0.85. This is
summarized in Table 2.

The reproducibility of the automated ROI definition was
excellent, having an ICC4 >0.98 for all individual steps.
Computations required about 25 minutes per participant,
using one core of a standard workstation.

Quantification

The average deep medullary vein count per participant after
censoring was (mean=sd) 365+ 83 (Gyar: 319£71; Gypp: 384
+81). The PPV of the automated vein detection is on average
71.6 %+10.4 % (Gya: 77.8 %+7.0 % for 5x2 scans; G
69.0 %+10.6 % for 24 scans).

app-

Fig. 4 Deep medullary veins (orange) as tracked by a 3-D tubular
tracking algorithm. The vein-points detected on the expanded
ventricular surface (see Fig. 2) were used as seedpoints, and tracking
was performed into the deep white matter. Left: transversal minimum

intensity projection showing the individual tracked vein points (small
orange dots). Right: 3-D rendering of the deep medullary veins as
orange tubes, the white surface is the expanded ventricular surface
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Fig. 5 Venous density map of all participants in G
reconstructed veins are transformed to the MNI152 template. The
MNI152 template is shown for a number of slices (Z) and the venous
density is overlaid in colour (blue =low density, red = high density). Each

app»

Visual inspection does not reveal large differences in ve-
nous density between the repeated scans of the participants in
Gy 4. An average venous density map of the 24 participants in
Gapp 1s given in Fig. 3. A high venous density is visible around
the frontal horns of the lateral ventricles, where many deep
medullary veins drain to the caudate veins of Schlesinger.
More superiorly, another high venous density can be seen
around the subependymal veins to which the deep medullary
veins drain. At this location, an asymmetry is visible where the
right side of the brain seems to have a higher venous density
(3.9 versus 3.3 in the left hemisphere, but this difference is not
statistically significant).

All reconstructed veins for the participants in G,p,, were
transformed to the MNI152 template and that result can be
seen in Fig. 5. Again, superiorly, a slight asymmetry is visible.
Next to this, many veins are tracked towards the thalamus and
the basal veins.

Discussion

The presented method offers reliable, 3-D assessment of deep
medullary veins on 7 T brain MRI, with an excellent repro-
ducibility and a good PPV. Compared to visual detection, it is
much less laborious and not subject to high intra- and inter-
observer variability. The method offers new MRI measures

Table 1  The intra- and inter-observer reproducibility on vein count as
determined on the first scans of the participants in the validation group
G, The inter-observer reproducibility was assessed twice, comparing
both ratings of observer 1 to the rating of observer 2

Visual assessment ICCxc

Intra-observer 0.6710.94

0.4510.87 and 0.74 | 0.94
(average: 0.60 | 0.91)

0.980.98

Inter-observer

Intra-observer censoring

12

4 X
o ) <
»i‘&
C1%

z =100
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reconstructed vein consists of many individual points (see Fig. 4-left),
approximately one point per venous voxel. The given density denotes
the number of vein points within a 15 mm radius of each MNI152
template voxel

that have potential to study the involvement of deep medullary
veins in various conditions, such as cerebrovascular disease or
dementia.

Visual assessment proved to be difficult, reflected by its
low to moderate reproducibility. This is likely caused by par-
tial volume effects for small veins, where each observer has a
(different) “intrinsic cut-off” when some hypointense struc-
ture is denoted as a vein or not. Furthermore, these small
partial volume veins cannot be reliably visualized from one
scan to another, leading to the discrepancies between the re-
peated scans of G, . Therefore, it is essential to focus on
prominent deep medullary veins that can be reliably detected.
When comparing scans from participants or groups, a robust
and reproducible detection is important. The automated detec-
tion showed robust and reproducible results, owing to its fixed
and deterministic behaviour.

The scan quality is of high importance for a reliable detec-
tion of deep medullary veins, both visually and automatically.
The scans of the (younger) participants in Gy, were of high
quality, but some of the (senior) participants in G,p,, were
excluded owing to poor scan quality. The senior participants
proved to be less capable to refrain from accidental motion;
which is not a limitation of the presented method per se, but a
more general problem in acquiring high quality images of
elderly participants or patients [21]. Applying the method on
lower field strength (e.g., 1.5 T or 3 T) should be feasible, but
might require adaptations of the parameters and dedicated

Table 2  The inter-scan reproducibility on vein count was assessed by
comparing the results on scan 1 and 2 from the participants in the
validation group Gy,. The visual assessment and censoring was
performed by observer 1

Assessment ICCuc

Visual assessment 0.72]0.68
Method, before censoring 0.7910.76
Method, after censoring 0.8810.85
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acquisition sequences, such as in the work of Ge et al. and Yan
et al. on 3 T images [6, 22].

A limitation of the method is that visual censoring was still
needed to remove false positive detections. For the presented
method to be implemented in a fully automated workflow,
without any human observer interaction, additional image
processing is needed to remove the false positive detections.
However, the uncensored inter-scan reproducibility is suffi-
cient for quantifications that do not require a high PPV. The
PPV is mainly determined by the selected values for some
thresholds in the method (see supplementary materials). The
more faint veins were not detected by this automated method,
because the vesselness response for faint veins does not ex-
ceed the detection threshold. Adapting the thresholds to detect
these faint veins will result in a lower PPV. However, the
visual assessment showed that these veins also cannot be re-
liably visualized on repeated acquisitions of the same partici-
pant. Therefore, the inability to detect such faint veins actually
contributes to the robustness and reproducibility of the detec-
tion and quantification. Another limitation of our method is
that the visibility of veins may depend on the oxygenation of
venous blood, because a higher concentration of deoxygenat-
ed haemoglobin will increase the susceptibility effects of the
blood. This should be considered when comparing number
and density of veins between persons, especially if cerebral
blood flow could be reduced, such as for example in dementia
[23].

The applications of the presented method are diverse. The
potential clinical relevance of deep medullary veins on MRI
was recently pointed out by several studies. A reduced venous
density in the white matter of patients with Cerebral
Autosomal-Dominant Arteriopathy With Subcortical Infarcts
and Leukoencephalopathy (CADASIL) compared with con-
trols was reported by De Guio et al. [4], and increased num-
bers of voxels of deep medullary veins in white matter
hyperintensities by Yan et al. [6]. In patients with acute stroke,
Mucke et al. [24] reported that an asymmetric appearance of
deep medullary veins on MRI predicted stroke severity.
Furthermore, both Ge et al. and Sinnecker et al. reported less
visible deep medullary veins in patients with multiple sclero-
sis (MS) [5, 22]. Compared with these studies, the presented
method offers new quantification measures of deep medullary
veins that can be used in future studies. Precise, 3-D vein
counts and venous density maps can be compared within or
between groups of participants. The tracking of veins back
into the deep white matter allows for a full brain analysis of
spatial differences in deep medullary veins, and the computa-
tion of measures such as length and tortuosity of individual
veins. Comparing the venous density maps in MNI152 tem-
plate space might reveal spatial differences in the distribution
of veins between groups, which cannot be revealed solely by
vein count. Because all veins are in the same MNI152 tem-
plate space, voxel-wise comparisons can be made easily and

tested for statistical significant differences between groups.
Also, the 3-D segmentation offers the possibility to apply
new techniques such as quantitative susceptibility mapping
on veins [25]. Our method offers new possibilities to study
the role of venous changes in brain diseases, for example
cerebrovascular disease or MS, and their spatial relation with
brain lesions.
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