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Investigation of essential genes is significant to comprehend the minimal gene sets of cell and discover potential drug targets.
In this study, a novel approach based on multiple homology mapping and machine learning method was introduced to predict
essential genes. We focused on 25 bacteria which have characterized essential genes. The predictions yielded the highest area under
receiver operating characteristic (ROC) curve (AUC) of 0.9716 through tenfold cross-validation test. Proper features were utilized
to construct models to make predictions in distantly related bacteria. The accuracy of predictions was evaluated via the consistency
of predictions and known essential genes of target species. The highest AUC of 0.9552 and average AUC of 0.8314 were achieved
when making predictions across organisms. An independent dataset from Synechococcus elongatus, which was released recently,
was obtained for further assessment of the performance of our model. The AUC score of predictions is 0.7855, which is higher than
other methods. This research presents that features obtained by homology mapping uniquely can achieve quite great or even better
results than those integrated features. Meanwhile, the work indicates that machine learning-based method can assign more efficient

weight coefficients than using empirical formula based on biological knowledge.

1. Introduction

Essential genes are those genes which are indispensable
for the basic activities of organisms under certain growth
conditions [1]. The proteins coded by essential genes are
considered to carry out the fundamental biological functions.
Therefore, these essential genes are regarded as the basis of
life [2]. Knowing more about necessity of genes can help
researchers find out the existence form of microbes [3],
construct the minimal gene subset [4], discover potential
drug targets, and design reasonable and effective drugs to
resist microbial pathogens [5]. In addition, these genes are
more inclined to be related to basic cellular processes such
as duplication and translation, which would lead essential
genes to be more stringent than nonessential genes when
negative (purifying) selection occurs [6, 7]. Because of their
tremendous functions in cells, the research of essential genes
has become hotspot in bioinformatics and genomics. A series

of experimental approaches such as single gene knockouts
[8], conditional knockouts [9], RNA interference [10], and
transposon mutagenesis [11] have been provided to identify
microbic essential genes. While experimental techniques may
be reliable, these methods have significant shortcomings,
such as high cost and long duration.

As an alternative way, computational methods do not
have the above-mentioned drawbacks. Hence, some research-
ers attempt to use computational techniques combining
with biological characteristics to identify essential genes.
To some extent, some of these methods have obtained
satisfactory results. Deng et al. trained classifier on the basis
of several biological features including intrinsic and context-
dependent genomic features. The results of their method
yielded AUC scores between 0.86 and 0.93 through tenfold
cross-validation test in the same organism and 0.69 to 0.89
for cross organism predictions [12]. Song et al. used Z-
curve and some other features which derived from sequences
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combining with their linear method to predict essential
genes. They acquired AUC scores between 0.8042 and 0.9319
in 12 organisms [13]. These biological features often used can
be summarized as three types: intrinsic genomic features like
GC content, derived features from sequence like codon adap-
tion index, experimental data like gene expression profile, as
well as other features like gene ontology and functional gene
network [14-18]. Although these features are associated with
gene essentiality, the majority of them cannot be collected or
available in most of microbes, nor does every feature have
high predictive power in identification of essential genes.
Besides, these features may increase biological redundancy.
Therefore, most of the methods based on various biological
characteristics just could be developed in merely a handful
of species. However, essential genes tend to be conserved
during the long-term evolution [19]; thus sequence alignment
is of great significance for molecular function prediction [20].
Considering these factors, our group previously developed
a universal tool named Geptop (gene essentiality prediction
tool based on orthology and phylogeny) to predict gene
essentiality [21]. This approach uses reciprocal best hit (RBH)
method to obtain the results of homology mapping and
considers the distance of phylogeny as the weight of orthol-
ogy variables. Through a series of tests, Geptop, a method
designed only based on biological knowledge, has obtained
quite better results than those based on integrated features.

In this study, we attempted to investigate the optimized
weight and find whether it can further improve the pre-
dictions or not. In recent years, the machine learning-
based methods have shown significant performance in many
prediction researches [22]. Therefore, we put forward a
new approach to identify essential genes based on multiple
homology mapping and machine learning technique. For
a given organism, the greatest weight is the evolutionary
distance between it and its closest related organism in Geptop.
However, in our method, it was measured by the feature with
the best ability to distinguish positive and negative sample
sets.

2. Materials and Methods

2.1. Data Sources. Annotations of essential genes were down-
loaded from the latest version of Database of Essential Genes
(DEG) at http://tubic.tju.edu.cn/deg/. 39 bacterial essential
gene sets are included in DEG database, but not all of them
are reliable because of the limitations of wet-lab technologies.
Additionally, an organism may have different batches of data
accompanying with different accuracy, and some genomes
contain many conditional essential genes which are specific in
these organisms. Therefore, we excluded those inappropriate
datasets and finally chose 25 essential gene sets as positive
datasets. Meanwhile, we downloaded another annotation
data of Escherichia coli K12 (E. coli) from Profiling of E.
coli Chromosome (PEC) [23] for extra study. Those genes,
which cannot be found in essential gene sets, are regarded
as nonessential genes and are used to construct negative
datasets for each organism. Therefore, each gene of the target
species was assigned a Boolean value to label the essentiality
(essential: +1; nonessential: —1). The complete protein coding
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sequences with fasta format of 25 organisms were obtained
from NCBI Genomes. We listed all species used in this work
in Table 1. In order to describe these species conveniently, we
gave an abbreviated name for each of them (Table 1).

2.2. Homology Mapping. Essential genes tend to be more
conserved than nonessential genes in the process of long-
term evolutionary. Hence, they should be kept in most of the
bacteria [24]. This property of essential genes constitutes the
basis of our method. In our work, we used the method of
reciprocal best hit (RBH) to identify orthologs between the
selected organisms through pair-wise comparison. For two
given organisms, one was used as the query species Q and
the other was used as the referential species R. Firstly, we
queried an CDS; (coding DNA sequence) of Q against all
CDS; in R by Blastp program with a default E-value threshold
of 10 and yielded a set of hits {M}. Then, we queried CDS;
with the lowest E-value in {M} against all CDS; in Q by the
same way and yielded a set of hits {N}. A pair of proteins
(CDS;, CDS;) are considered orthologs if we queried CDS;
with the lowest E-value in {N}. Therefore, CDS jis assumed as
orthologous-essential gene if the referential gene is annotated
as essential by experimental methods in species R. And the
value of sample CDS; for feature R is marked as 1 if CDS;
has orthologous-essential gene in species R. Otherwise, it is
marked as 0. Finally, a gene can be represented by a series of
binary values. Specially, for training sets, the feature names
are described by the names of referential species, and binary
vectors are values of these features.

2.3. Method of Geptop. Geptop calculates gene essential-
ity through combining the features which computed by
homology mapping with corresponding evolutionary dis-
tance between query species and its referential species. The
evolutionary distance is calculated by composition vector
(CV) [25]; it is employed as the weight of orthologous-
essential gene. For a given genome, Geptop took multiple
homology mapping to obtain the orthologous-essential genes
of different referential species. Then, it computed the CV
distances between the query genome and the other referential
ones. The gene essentiality of the given organism is calculated
by the following equation:

N 1/N
S,-zl—(ZE,-jxDj) , (j=1,23,...,N),
j=1

where S; represents the essentiality score of ith gene of
query species, E;; represents the essentiality of the optimal
orthologous gene of ith query gene in jth referential species,
D; is the distance between the query species and the jth
referential species, and N is the total number of referential
species. Thus, Geptop method can decide whether a gene is
essential or not according to the essentiality score.

2.4. Method Based on Sequence Feature and
Machine Learning Algorithm

2.4.1. Support Vector Machine. Support vector machine
(SVM) [26], an efficient machine learning method, has been
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TABLE 1: Bacteria used in this work.

Species Abbreviation Number of essential genes Number of total genes
Acinetobacter ADP1 ACA 499 3307
Bacillus subtilis 168 BAS 271 4175
Bacteroides thetaiotaomicron VPI 5482 BAT 325 4778
Burkholderia thailandensis E264 BUT 406 5632
Caulobacter crescentus NA1000 CAC 480 3885
Campylobacter jejuni NCTC 11168 ATCC 700819 CAJ 222 1572
Escherichia coli K-12 MG1655 ESC 296 4140
Escherichia coli K-12 in PEC database ESC_PEC 287 4146
Francisella novicida U112 FRN 390 1719
Mycobacterium tuberculosis H37Rv MYT 611 3906
Mycoplasma genitalium G37 MYG 378 475
Mycoplasma pulmonis UAB CTIP MYP 310 782
Porphyromonas gingivalis ATCC 33277 POG 463 2089
Pseudomonas aeruginosa UCBPP PAl4 PSA 335 5892
Salmonella enterica serovar Typhimurium 14028S SA14028S 105 5315
Salmonella enterica serovar Typhimurium LT2 SAL 230 4451
Salmonella enterica serovar Typhimurium SL1344 SAS 353 4446
Salmonella enterica serovar Typhi Ty2 SAT 358 4352
Shewanella oneidensis MR 1 SHO 402 4065
Sphingomonas wittichii RW1 SPW 535 4850
Staphylococcus aureus N315 STN3I5 302 2582
Staphylococcus aureus NCTC 8325 STNCTC 346 2767
Streptococcus pneumonia TIGR4 STT 111 2105
Streptococcus pneumonia R6 STR 127 1814
Streptococcus sanguinis SK36 STS 218 2270
Vibrio cholerae O1 biovar El Tor N16961 VIC 591 3503

The number of essential genes and total genes are counted after filtering unmatched data.

widely used in classification and pattern recognition. It
adopts the principle of structural risk minimization and
belongs to supervised learning method. SVM maps features
into a high-dimensional feature space by kernel function.
In the high-dimensional space, the samples with different

2.4.2. Feature Selection. In order to measure the contribution
of each feature in a test process, we utilized F-score algorithm
[28] to estimate the importance of them. F-score is a simple
and quite effective arithmetic to discriminate two sets of real
data. The larger the score is, the more significant contribution

attributions can be separated easily. In the present work, we  the feature makes. For training vectors x;(k = 1,2,..., p) the
adopted LibSVM [27] to perform SVM algorithm with RBF  F-score is defined as followings:
kernel function. It gave evaluation index for each feature that
differed from the weight given by Geptop method.
(59 -%) + (50 -%)
F@= n (@) _ =) (O = (@)
(1/(n, - 1)) 342, (xk,i X ) +(1/(n_-1)) T, (xk,i X )

where n, and n_ are the number of positive and negative
samples, respectively; %, X, ", and X; are the mean of
the ith feature of the total, positive and negative samples,

respectively; x,(:i) is the ith feature of the kth positive sample;

x,(:i) is the ith feature of the kth negative sample.

2.4.3. Classifier Design and Performance Evaluation. For a
species under test, the homology mapping was implemented
between the query species and other 24 organisms, and
then 24 features were obtained to train the classifier. We
used the classic machine learning method SVM to train the
model and predict essential genes. Gaussian kernel function
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FIGURE 1: Comparison of the number of conserved genes and essential genes between two organisms. (a) We compared the difference between
SAS and ESC, two relatively closely related organisms. They shared 3204 orthologous genes and 244 common essential genes. The broken circle
represents 353 SAS essential genes, and the dash dotted line circle represents 296 ESC essential genes. For ESC, there are 310 orthologous-
essential genes in SAS. (b) We compared the difference between BAT and ESC, two relatively distantly related organisms. They shared 1457
orthologous genes and 123 common essential genes. The broken circle represents 325 BAT essential genes, and the dash dotted line circle
represents 296 ESC essential genes. For ESC, there are 198 orthologous-essential genes in BAT. Obviously, the closer species may have more
orthologous sequence and more common essential genes with the target species than the distant one.

was selected to project the original features into a high-
dimensional space. Gridding search method was adopted to
search the best penalty parameter C and y. Cross-validation
and receiver operating characteristic (ROC) curve is the
usual performance evaluation method for predictions [29].
Therefore, we used the area under ROC curve (AUC) of
tenfold cross-validation to evaluate the performance of our
classifier. For 10-fold cross-validation, the training data were
randomly divided into 10 equal parts. Nine parts were used
to train the classifiers and the remaining part was used
for testing. This process was repeated until each part was
taken as test set. For prediction in cross organisms, we
chose the feature sets of the closest organism or them of
the greatest contributed feature/organism to train the model
and used the same characteristic variables of test organism
to make prediction. The predictions were compared with the
known gene essentialities which have been determined by
experimental method.

3. Results

3.1. Evolutionary Distance and Orthology in Cross Species. If
two organisms have closer evolutionary distance, they may
share more orthologous genes or more common essential
genes, relatively. We used an online web server CVTree [30]
to establish phylogenetic tree for the selected 25 species.
The phylum each organism belongs to and the distance
relationships among them were illustrated in Supplementary
Data Figure 1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2016/7639397. We discovered that
only one organism belongs to Actinobacteria, other 24 organ-
isms are from 4 different phyla, and each phylum has more
than one organism.

Essential genes are always inclined to be conserved
because of their important functions, while conserved genes
across species are not necessarily essential. We compared

the number of conserved genes and essential genes between
two organisms to illustrate the orthologous relationships
across species (Figurel). We analyzed these relationships
in two groups. One pair contains relatively closely related
organisms: ESC and SAS (Figure 1(a)), and the other pair
contains relatively distantly related organisms: ESC and BAT
(Figure 1(b)). The evolutionary distances of SAS-ESC and
BAT-ESC are 0.3273 and 0.4976, respectively. There are 3204
orthologous genes between ESC and SAS, in which there are
244 common essential genes, accounting for around 77.39%
and 5.89% in the total number of ESC genes, respectively.
In the other group, 1457 genes are orthologous between ESC
and BAT, in which there are 123 common essential genes,
accounting for only 35.19% and 2.97% in the total number
of ESC genes, respectively. These two results exemplified that
the closer the evolutionary distance between species is, the
more orthologous genes or common essential genes they
would share. Meanwhile, an organism may share different
essential genes with different organisms. Hence, we need
to use multiple genomes to implement homology mapping,
which we called multiple homology mapping.

3.2. Classifier Training towards 25 Genomes and 10-Fold
Cross-Validations of the Classifier. We gave the flowchart to
display how this work was implemented in Figure 2. In this
study, features we used were derived from protein sequences
via homology mapping, which are easier to be acquired
compared with other various biological features. Totally, 24
features were used as input variables for SVM classifier. The
input data contained 24 features and the class labels for the
species under test. Each genome was taken as the test species,
and each of their AUC score of 10-fold cross-validations was
acquired. All of their results of prediction yielded AUC scores
between 0.5700 and 0.9716 (Figure 3) and accuracy scores
between 0.7980 and 0.9805 (Supplementary Data Table 1). In
addition, the AUC score of ESC_PEC (E. coli) whose data were
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FIGURE 2: The flowchart for obtaining training sets by multiple homology mapping and training the model to predict essential genes. For a
species under test, it was used for sequence alignment towards other 24 species, respectively, and each result was used as a training feature.
The training sets obtained from multiple sequence alignment were used to train and test the prediction model by SVM. Meanwhile, we used
the F-score to evaluate the discriminative capability of each feature. The optimal feature subsets were selected to train and test the model.
Tenfold cross-validation was utilized to assess the performance of the classifier. For predicting essential genes in cross organisms, the feature
sets of the closest organism or those of the organism/feature which has the biggest F-score for the target species were selected as the training
sets to train model, and then this model was used to predict essential genes in target species.
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FIGURE 3: 26 AUC scores of 10-fold cross-validation within 25
bacteria as well as ESC_PEC, respectively. The last AUC score
belongs to ESC whose data are obtained from PEC database. More
than 70% of the results exceed the AUC score of 0.80, and 9
organisms’ results of prediction yielded AUC scores more than 0.90.

obtained from PEC database is 0.9864 by this classifier. Previ-
ously, Deng et al. [12] got AUC score of 0.93 by 10-fold cross-
validation for the same dataset through combining 4 machine
learning methods and 13 features including codon bias index,
Aromaticity, and Paralogy. Absolutely, our method achieved
better performance than theirs. In addition, more than 70%
of the bacteria exceed AUC score of 0.80, and merely 12%
of all are less than 0.70. These results demonstrate that our
classifiers have quite great performance.

3.3. Predictions after Feature Selection. In the above work,
all features obtained by homology mapping were utilized to
train the classifiers, but not every feature has high predictive
power for identification of essential genes. Therefore, ranking
the features in order and filtering out the useless features
played an important role in prediction [29]. We used the

method of feature selection to choose appropriate feature
subsets to reappraise the performance of classifiers. Based
on F-score algorithm [28], we got a vector composed of 24
feature scores in descending order for an organism under test.
Another feature selection method named DX score [31] was
also applied to measure feature score, and the same order of
features were acquired. It indicated that the features’ order
we obtained was reliable. Feature subsets were constructed
through appending a feature one by one in accordance with
the descending order, and each feature subset was utilized to
train and test the model. Finally, the optimal feature subset
and its predictions would be chosen on the basis of AUC
score. After selecting optimal feature subsets, most of predic-
tions have corresponding improvement. The AUC scores of 8
species were improved by more than 1%, and the average AUC
score was improved around 1% among 25 species comparison
with the results of using all features. In addition, contribution
score of each feature was obtained by F-score. For each
organism under test, we analyzed the correlation between
feature scores and evolutionary distances through Pearson
correlation analysis (Table 2). We discovered that 22 species
among all presented negative correlations, in which 15 results
presented significant negative correlations. That is to say
the importance of features evaluated by machine learning
method is consistent with the evolutionary distance between
them in general.

3.4. Predicting Essential Genes across Organisms. It is nec-
essary to use the suitable model to predict essential genes
across distantly related bacteria. The relatively closely related
organisms may have similar patterns in developing model
for predicting gene essentiality when using orthologs to
some extent. For a species with unknown gene essentiality,



TABLE 2: Correlations between evolutionary distances and feature
scores for each target organism.

Organisms Correlations P value
ACA” —0.45204 0.0266
BAS*™ —-0.37043 0.0075
BAT" —-0.50001 0.0128
BUT* —0.41124 0.0459
CAC* —0.41482 0.0439
CAJ —-0.23786 0.2631
ESC* -0.50218 0.0120
ESC_PEC** -0.52353 0.0087
FRN —-0.39292 0.0575
MYT —0.35883 0.0851
MYG” —-0.49728 0.0134
MYP*™* —-0.54766 0.0056
POG” —-0.46123 0.0233
PSA™ -0.60836 0.0016
SA14028S™* -0.60533 0.0017
SAL —-0.28669 0.1744
SAS —-0.24910 0.2405
SAT —-0.31248 0.1371
SHO* -0.50456 0.0119
SPw** —-0.65577 0.0005
STN315 -0.11162 0.6036
STNCTC 0.03883 0.8570
STR 0.11619 0.5887
STS 0.24868 0.2413
STT 0.19591 0.3589
vic* -0.50718 0.0114

* represents that the correlation is significant at the 0.05 level; # * represents
that the correlation is significant at the 0.01 level.

using the features of closest organism as training set to
train model is available. However, the closest species may
not be the most important contributor in machine learning
methods. Besides, if the data quality of this species is poor,
it could cause bad effects for the classifier and the classifier
could not give the best predictions. Therefore, we chose the
characteristic set of closest species and the characteristic set
of the greatest contributor to train the model, respectively.
The better outputs of these diverse training set were chosen
as the results of prediction. For example, Salmonella enter-
ica serovar Typhimurium LT2 (SAL) is the closest related
bacterium for ESC, but the classifier built by its features
made a low AUC score of 0.7894. This may be related to
the low data quality of SAL itself (Supplementary Data Table
2). Nevertheless, we chose the features of Salmonella enterica
serovar Typhi SL1344 (SAS) as training set to train model
for predicting essential genes of ESC, because feature SAS
has maximum F-score among all features of ESC. AUC
score of 0.9552 and precision (or PPV) of 0.7330 were
acquired, and the classifier identified 258 true essential genes
from its 352 positive outputs. These two values are greater
than the AUC score of 0.9470 and precision (or PPV) of
0.6574 through Geptop method, which identified 236 true
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FIGURE 4: Comparison AUC scores of interspecies prediction for 25
bacteria between SVM and Geptop. The last AUC score belongs to
ESC whose data are obtained from PEC database. The vertical axis,
in the range from 0.5 to 1, represents AUC scores. More than 65%
of the results exceed the AUC score of 0.80, and 8 organisms’ results
of prediction yielded AUC scores more than 0.90. For 26 genomes
including ESC_PEC, 18 of all are better than Geptop.

essential genes from its 359 positive outputs. We applied this
method to implement interspecies prediction among other 24
organisms. As a result, AUC scores between 0.5957 and 0.9552
were obtained for 25 bacteria except ESC_PEC (Figure 4,
Supplementary Data Table 3). For 26 genomes including
ESC_PEC, 18 results of prediction are better than Geptop.
And the average AUC was improved by 1.14% compared with
Geptop.

A newly determined essential gene set of Synechococcus
elongatus PCC 7942 (SYE) by experimental technology are
acquirable for independent testing [32]. Totally, 674 genes are
annotated as essential in its genome. This bacterium belongs
to Cyanophyta, a quite different phylum compared with the
bacteria already used in this study. We collected this dataset
to further evaluate the performance of our classifier. The
evolutionary distances between SYE and the existing organ-
isms were calculated by composition vector (CV) method.
The nearest species was determined as Caulobacter crescentus
NA1000 (CAC). We chose the features of CAC to train a
classifier and obtained values of the same features of SYE as
test set through homology mapping between it and other 24
species except CAC. Through SVM, we achieved AUC score
of 0.7855 (Figure 5) and precision (or PPV) of 0.8105. In order
to assess performance of machine learning method, Geptop
method was implemented to predict essential genes on SYE,
and then it obtained AUC score of 0.7578 and precision (or
PPV) of 0.8484. Although the precision of Geptop is higher
than that of SVM, SVM method identified 325 true essential
genes from its 401 positive outputs, which are more than 263
true essential genes identified by Geptop.

4. Discussion

We make predictions based on gene essentialities which have
been determined by experimental technology. There is no
doubt that the results of prediction would be influenced
by quality of experimental data. For example, if insertion
was avoided accidentally, transposon mutagenesis technique
would be likely to mislabel short genes [33]. Therefore, the
reason why those three species (CAJ, SAL, and SA14028S)
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FIGURE 5: Comparison the ROC curve of Geptop and SVM for SYE.
The blue curve represents the results obtained through SVM, and the
area under it is 0.7855. The red curve represents the results obtained
through Geptop, and the area under it is 0.7578.

have AUC lower than 0.70 may be that a mass of essential
genes were mislabeled when they were identified by experi-
mental techniques. This has been discussed in Geptop. Addi-
tionally, according to the fact that few contributions SA14028S
provided for almost all organisms and few contributions these
features provided for it, we can further presume that the data
of this species have low quality.

Geptop gave weights for features only based on evolu-
tionary distance, which would ignore the data quality. Our
machine learning method measures the features from an
integrated view. In order to investigate the reason why our
method performs better than Geptop, we ranked the features
based on theirs abilities of differentiate between positive and
negative sample sets, which were measured by F-score in our
method, and we also ranked them based on weights which
were measured by evolutionary distance in Geptop. The rank
changes of features from Geptop to SVM were calculated.
We analyzed the relationships between AUC scores of 10-fold
cross-validation and rank changes using Pearson correlation
method (Table 3). We find that 23 among 25 results present
significant positive correlations. It indicates that rank changes
of features from Geptop to SVM are consistent with AUC
values. Taking ACA as example (Supplementary Data Table
4), the most important feature in Geptop is ranked as 11th
in SVM. Specially, the 6th important feature in Geptop is
ranked as 24th in SVM. In addition, this feature has no
contribution for predicting. In truth, the 24th feature for ACA
in SVM is SAI14028S, which has been discussed that it has
low data quality in the above paragraph. Furthermore, the
important features in Geptop with relatively high AUC like
ESCand SAS have no or few rank changes. In other words, our
method can take the predictive power of every feature into
full account. Simultaneously, as a machine learning method,
SVM has its inherent advantages. For instance, the final

TABLE 3: Correlations between rank changes and AUC scores of 10-
fold cross-validation.

Organisms Correlations P value
ACA™ 0.66774 0.0005
BAS* 0.50475 0.0140
BAT™* 0.61735 0.0017
BUT*" 0.64683 0.0009
CAC™ 0.64730 0.0008
CAJ"" 0.52945 0.0094
ESC™* 0.69090 0.0003
FRN™* 0.70211 0.0002
MYT™™ 0.58115 0.0036
MYG™™ 0.58017 0.0037
MYP*™™* 0.67868 0.0004
POG™" 0.58558 0.0033
PSA™ 0.62930 0.0013
SA14028S 0.36461 0.0872
SAL™ 0.66214 0.0006
SAS™ 0.69220 0.0003
SAT*" 0.70091 0.0002
SHO™ 0.73831 5.77E - 05
SPW™* 0.66206 0.0006
STAN315" 0.50613 0.0137
STANCTC™" 0.54941 0.0066
STR 0.37110 0.0813
STS™ 0.58267 0.0035
STT*" 0.70091 0.0002
vic** 0.65402 0.0007

* represents that the correlation is significant at the 0.05 level; # * represents
that the correlation is significant at the 0.01 level.

decision function is dominantly determined by a few support
vectors, which not only can help us acquire key samples,
but also has good robustness. Thus, our method can achieve
better predictions than Geptop; the latter makes prediction
completely depending on biological knowledge.

5. Conclusion

Our classifier is designed based on RBH method, which can
reflect substantive characteristics of orthologous sequence.
Although the homology mapping method may ignore the
species-specific essential genes, it still can identify reasonable
number of essential genes. Superiority of multiple homology
mapping has been presented in Geptop, which acquired
satisfactory results in predicting essential genes. Besides,
these features could be extracted for almost all sequenced
bacterial genomes. We utilized this method incorporating
with SVM to train classifier and predict essential genes, and
then the classifier achieved better performance than Geptop.
It probably gives the credit to the fact that our method can
measure predictive ability of each feature through machine
learning method, which differs from Geptop that only con-
siders evolutionary distance; thus our method can train the
better model. Geptop has been designed as a web server; our



method also has potential to be developed as a tool to provide
service for users.

In conclusion, through multiple homology mapping and
machine learning method, we provide a significant alter-
native method to predict essential genes. The results of
prediction yield higher AUC scores than those integrated
approaches as well as Geptop method. Simultaneously, this
work reveals that machine learning method may perform
better than the method using empirical formula; the latter was
developed completely based on biological knowledge. With
more reliable and available experimental essential gene sets,
the performance of our method will be improved to an even
better level.
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