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Motivation. To assist efforts in determining and exploring the functional properties of proteins, it is desirable to characterize and
predict protein flexibilities. Results. In this study, the conformational entropy is used as an indicator of the protein flexibility. We
first explore whether the conformational change can capture the protein flexibility.The well-defined decoy structures are converted
into one-dimensional series of letters from a structural alphabet. Four different structure alphabets, including the secondary
structure in 3-class and 8-class, the PB structure alphabet (16-letter), and the DW structure alphabet (28-letter), are investigated.
The conformational entropy is then calculated from the structure alphabet letters. Some of the proteins show high correlation
between the conformation entropy and the protein flexibility.We then predict the protein flexibility frombasic amino acid sequence.
The local structures are predicted by the dual-layer model and the conformational entropy of the predicted class distribution is
then calculated. The results show that the conformational entropy is a good indicator of the protein flexibility, but false positives
remain a problem.TheDW structure alphabet performs the best, which means that more subtle local structures can be captured by
large number of structure alphabet letters. Overall this study provides a simple and efficient method for the characterization and
prediction of the protein flexibility.

1. Introduction

Proteins are dynamic molecules that are in constant motion.
Their conformations are depending on environmental factors
like temperature, pH, and interactions [1]. Some regions are
more susceptible to change than others. Such motions play
a critical role in many biological processes, such as protein-
ligand binding [2], virtual screening [3], antigen-antibody
interactions [4], protein-DNA binding [5], structure-based
drug discovery [6], and fold recognition [7, 8].

Many studies try to predict protein flexibilities using
either sequence or structure information of proteins [9]. Son-
avane et al. [10] analyzed the local sequence features and the
distribution of B-factor in different regions of protein three-
dimensional structures. Yuan et al. [11] adopted support vec-
tor regression (SVR) approach with multiple sequence align-
ment as input to predict the B-factor distribution of a protein

from its sequence. Schlessinger and Rost [12] found that
flexible residues differ from regular and rigid residues in local
features such as secondary structure, solvent accessibility, and
amino acid preferences. They combined these local features
and global evolution information for protein flexibility pre-
diction. Several sequence-based B-factor predictionmethods
were compared by Radivojac et al. [13]. Different models
have been proposed to predict B-factor distribution based on
protein atomic coordinates. The normal mode analysis can
identify the most mobile parts of the protein as well as their
directions by focusing on a few C𝛼 atoms that move the most
[14, 15].The translation liberation screwmodel [16] simplified
the protein as a rigid body with movement along translation,
liberation, and screw axes. The Gaussian network model
(GNM) [17] transformed a protein as an elastic network
of C𝛼 atoms that fluctuate around their mean positions.
Recently, Yang et al. [18] predicted the B-factor by combining
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local structure assembly variations with sequence-based and
structure-based profiling.There are alsomany othermethods
for protein flexibility prediction [19–21].

All the above methods use the B- or temperature factors
produced by X-ray crystallography to elucidate flexibilities of
proteins. The B-factor reflects the degree of thermal motion
and static disorder of an atom in a protein crystal structure
[22]. However, there is noise in experimentally determinate
B-factor. Many factors can affect the value of B-factor such
as the overall resolution of the structure, crystal contacts,
and, importantly, the particular refinement procedures [23].
B-values from different structures can therefore not be
reasonably compared [12]. Some researchers considered that
the upper limit of accuracy for the prediction of B-factors is
no more than 80% [11].

Protein structures are not static and rigid. The polypep-
tide backbones and especially the side chains are constantly
moving due to thermal motion and the kinetic energy of the
atoms (Brownian motion) [24]. Recent study [1] used the
continuum prediction of secondary structures to identify the
region undergoing conformational change. Other researchers
have pointed out that continuous secondary structure assign-
ment can capture protein flexibility [25]. Furthermore, the
MolMovDB database [26] consists of structures that are
experimentally determinate to exhibit conformational flexi-
bility enabling a variety of proteinmotions.TheMorph Server
[27] in particular has been used by many scientists to analyze
pairs of conformations and produce realistic animations.

The present work aims to explore whether the predicted
conformations from the protein sequences can characterize
their flexibilities or not. To achieve this goal, a simplified
description of protein structure has to be provided first. The
protein secondary structure offers only a summary of general
backbone conformation and of local interactions through
hydrogen bonding. The DSSP program [28] provides 8-class
secondary structures. However, most secondary structures
prediction methods only predict 3-class states with nearly
80% accuracy [29, 30]. The secondary structures are very
crude description of protein backbone structures. Recently,
many studies try to describe protein structures in a more
refined manner. Toward this goal, many fragment libraries
or structure alphabets (SA) have been presented either in
Cartesian coordinates space or in torsion angles space [31–
33]. Camproux et al. first derived a 12-letter alphabet of frag-
ments by Hidden Markov Model [34] and then extended to
27 letters by Bayesian information criterion [35]. De Brevern
et al. [36] proposed a 16-letter alphabet generated by a self-
organizingmap based on a dihedral angle similaritymeasure.
The prediction accuracy of local three-dimensional structure
has been steadily increased by taking sequence information
and secondary structure information into consideration [37].
A comprehensive evaluation of these and other structural
alphabets is performed by Karchin et al. [38].

In this study, we first explore whether the conformation
variants can capture protein flexibility. The multiple confor-
mations of proteins are taken from the Baker decoy sets [39].
Each three-dimensional conformation is represented by the
one-dimensional series of letters from a structural alphabet.
Four different structure alphabets, including the secondary

structure in 3-class and 8-class, the PB structure alphabet
[37], and the DW structure alphabet [40], are investigated
here. Here, the conformational entropy is used to quantita-
tively indicate the flexibility.The results show that the confor-
mational entropy has high correlation with B-factor. We then
predict the protein flexibility frombasic amino acid sequence.
The structure alphabet letters of proteins are predicted using
only sequence information and the entropy function of the
predicted class distribution is used to be indicators of protein
flexibilities. Experiment is performed on a subset of the
MolMovDB database [26]. The results indicate that the con-
formational entropy is a good indicator of protein flexibility.

2. Materials and Method

2.1. Dataset. Three datasets are used in this study for different
experimental validation.

The first dataset is taken from the work of Bodén and Bai-
ley [1], which is used for the prediction of protein flexibility.
This dataset contains 171 nonredundant protein sequences, in
which no pair of sequences has larger than 20% sequence
identity. All the proteins exhibit conformational flexibility
according to the comprehensive database of macromolecular
movements (MolMovDB) [26]. Each sequence in this dataset
has been annotated with a list of residue positions that have
more than one local structure according to the structure
alphabets.

The second dataset is used to train the support vector
machine which is used for the local structure predictions
of proteins. This dataset is a subset of PDB database [41]
obtained from the PISCES [42] web-server. There is less than
25% sequence identity between any two proteins and any
protein has a resolution better than 2.5 Å.The structures with
missing atoms and chain breaks are excluded. The proteins
that show homologue with the proteins from the first dataset
are also excluded. The resulting dataset contains 928 protein
chains.

The third dataset is used to test whether the changes
of local structures can characterize the protein flexibility.
To achieve this goal, a variant of conformations for one
protein must be provided. We use the Baker decoy sets [39]
previously used for the evaluation of knowledge-based mean
force potentials. This dataset consists of 41 single domain
proteins with varying degrees of secondary structures and
lengths from 25 to 87 residues. Each protein is attached with
about 1400 decoy structures generated by ab initio protein
structure prediction method of Rosetta [43].

2.2. Training and Test of Local Structures. Many methods
have been presented for the prediction of protein local struc-
tures. The dual-layer model has been adopted here, which
is developed in our previous studies [44]. The method is
based on the observation that neighboring local structures are
strongly correlated. A dual-layer model is then designed for
protein local structure prediction.The position specific score
matrix (PSSM), generated by PSI-BLAST [45], is inputted to
the first-layer classifier, whose output is further enhanced by
a second-layer classifier. At each layer, a variant of classifiers
can be used, such as support vector machine (SVM) [33],
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neural network (NN) [46], Hidden Markov Models (HMM).
In this study, the SVM is selected as the classifier, since
its performance is better than those of other classifiers.
Experimental results show that the dual-layermodel provides
an efficient method for protein local structure prediction.

2.3. Characterization of Protein Flexibilities by Conforma-
tional Changes. The conformations of proteins are repre-
sented by the local structures in the form of a structural
alphabet. All the local structure types can be referred to
as structure alphabet. Four different structure alphabets,
including the secondary structure in 3-class and 8-class, the
PB structure alphabet [37], and the DW structure alphabet
[40], are investigated here. The three-dimensional protein
structures can be represented by one-dimensional structure
alphabet sequences according to a specific structure alphabet.
Given a protein and its variable conformations, we can
convert them into several structure alphabet sequences. The
changes of local structures can be used to characterize the
protein flexibility. For example, there is a protein sequence
𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
. Its three-dimensional structures and conforma-

tions are labeled as structure alphabet sequences; we then
obtained a structure alphabet matrix 𝑎

11
, 𝑎
12
, . . . , 𝑎

𝑛𝑚
, where

𝑎
𝑖𝑗
is the probability of the structure alphabet letter of the 𝑗th

conformation at the amino acid position 𝑖, 𝑛 is the length of
the protein sequence, and 𝑚 is the total number of letters in
the structure alphabet. The conformational entropy is then
used as an indicator of the protein flexibility:

𝐻(𝑖) = −

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
ln 𝑎
𝑖𝑗
, (1)

where 𝐻(𝑖) is the conformational entropy of the protein at
sequence position 𝑖.

The correlation between the conformational entropies
and the 𝐵-factors is calculated as follows:
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∑
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𝑖
− Ave (𝐵))
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𝑖
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, (2)

where 𝐵
𝑖
is the B-factor of the protein at sequence position 𝑖

andAve(𝐻) andAve(𝐵) are the average of the conformational
entropy and the average of B-factor of the protein.

2.4. Prediction of Protein Flexibilities by Local Structure
Entropies. Let the predicted local structure for a given residue
be 𝑌 = 𝑌

1
, . . . , 𝑌

𝑚
, where 𝑌

𝑗
is the probability that the

residue is in the 𝑗th local structure class, and𝑚 is the number
of local structure classes: 3 for 3-class secondary structure
alphabet, 8 for 8-class secondary structure alphabet, 16 for
PB structure alphabet, and 28 for DW structure alphabet.The
conformation entropy of a residue is defined as

𝐻 = −

𝑚

∑

𝑗=1

𝑌
𝑗
ln𝑌
𝑗
. (3)

High entropy indicates relative disorder. Low entropy
indicates relative order.

2.5. Performance Metrics. The following measures are used
to evaluate the prediction of protein flexibilities: sensitivity,
specificity, precision, and the Receiver Operator Characteris-
tic (ROC) curves, which are defined as follows:

Sensitivity = TP
TP + FN

,

Specificity = TN
TN + FP

,

Precision = TP
TP + FP

,

(4)

where TP is the number of true positives (flexible residues
correctly classified as flexible residues), FP is the number of
false positives (rigid residues incorrectly classified as flexible
residues), TN is the number of true negatives (rigid residues
correctly classified as rigid residues), and FN is the number of
false negatives (flexible residues incorrectly classified as rigid
residues).

The ROC curve is plotted with true positives as a function
of false positives for varying classification thresholds. A ROC
score is the normalized area under the ROC curve. A score
of 1 indicates the perfect separation of positive samples from
negative samples, whereas a score of 0 denotes that none of
the sequences selected by the algorithm is positive.

3. Results and Discussions

3.1. Local Structure Prediction. Four different structure alpha-
bets are used in this study. They are the secondary structure
in 3-class and 8-class, the PB structure alphabet [37], and the
DW structure alphabet [40]. All of them are the description
of the local structures of proteins.

The 3-class secondary structure provides a three-state
description of backbone structures: helices, strands, and
coils. The 8-class secondary structure provides a more detail
description [28]. However, this description of protein struc-
tures is still very crude [47].

Two other structure alphabets are investigated in this
study: the DW structure alphabet and the PB structure
alphabet. They are represented in Cartesian coordinate space
and in torsion angles space, respectively. The PB alphabet
[37] is composed of 16 prototypes, each of which is 5-
residue in length and represented by 8 dihedral angles. This
structure alphabet remains valid although the size of the
databank becomes large [48]. The DW structure alphabet is
developed in our previous study [40], which is represented in
Cartesian coordinate space. This structure alphabet contains
28 prototypes with lengths of 7 residues.

The dual-layer model is used to predict the local struc-
tures of proteins [44]. The experiment is performed on the
second dataset. The 𝑄-score is used to assess the prediction
results, that is, the proportion of structure alphabet proto-
types correctly predicted. This score is equivalent to the 𝑄

3

value for secondary structure prediction. After 5-fold cross-
validation, the results are shown in Table 1. The accuracy of
secondary structure prediction is comparable with the cur-
rently state-of-the-art method [29], while the performances
of the other two structure alphabets are significantly better



4 BioMed Research International

Table 1: The average Q-scores of local structure prediction for the
four structure alphabets.

Sec3 Sec8 PB DW
Number of letters 3 8 16 28
Single-layer model 0.756 0.593 0.564 0.432
Dual-layer model 0.765 0.614 0.585 0.456
The single-layer model uses the position specific score matrix (PSSM) as
input and output probability of the structure alphabet letters. The dual-layer
model adds an additional classifier, which uses the output of single-layer
model as input and output final prediction. For both models, the support
vector machine is used as the classifiers.

than those of other related works [33, 37, 49, 50]. For detailed
results, please refer to Dong et al. [44].

3.2. Results for the Characterization of Protein Flexibilities.
Since proteins are dynamic molecules, we can investigate
whether the conformational changes can capture protein flex-
ibilities. The protein structures are represented by structure
alphabet sequences.The conformational entropy is used as an
indicator of protein flexibility. The experiment is performed
on the third dataset.

The initial results demonstrate that some of the proteins
showhigh correlations between the conformational entropies
and the B-factors while the other proteins show low and even
negative correlations. After detail analysis, we find that the
correlations are influenced by the distribution of the decoy
structures. Uniform distribution often leads to high corre-
lation. The decoy structures are first classified by the Root-
Mean-Squared Deviation (RMSD) with the native structures.
We then select the decoy structures so that they are approxi-
mately uniform distribution between different classes. Some
of the proteins and the correlations and are listed at Table 2
together with the number of decoy structures. As the number
of letters increases, the correlations also increase.

According to the law of thermodynamics, the native
structure is the one that has the lowest energy. Since pro-
teins are dynamically molecular in living organisms, their
structures often fluctuate around the native state. The decoy
sets used here are generated by the well-known Rosetta
algorithm [43]. These sets contain many decoy structures
whose energies are close to the native one. The conforma-
tional entropies are then derived from the decoy sets. Some
of the conformational entropies show high correlation with
the protein flexibilities. However, the decoy sets are not
the true stories; there still are some proteins that show low
correlations between the entropies and the B-factors (data
not shown).This experiment only tries to investigate whether
the conformational changes can capture protein flexibilities.
If the true decoy sets can be obtained, we can give a definite
answer. However, obtaining the true decoy sets is costly and
labor-intensive work.

3.3. Results for the Prediction of Protein Flexibilities. The
experiment is performed on the first dataset. Each residue
is labeled as a rigid or flexible residue. The animations of
protein motions provided by the MolMovDB database [26]
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Figure 1:The ROC curve of the proposedmethod by using different
structure alphabets on the set of 171 protein sequences.

are converted into structure alphabet letter sequences by the
specific structure alphabet. If a residue changes its structure
alphabet letter among the animations, it is labeled as flexible
residue. Otherwise, it is labeled as rigid residue.

During the prediction process, the protein local struc-
tures are first predicted from amino acid sequence by the
dual-layer model, and then the entropy function is applied
to the predicted class distribution for each residue. Residues
with entropy larger than a given threshold 𝑇 are predicted
to be flexible residues. Otherwise, they are predicted to be
rigid residues. Following the work of Bodén and Bailey [1]
we use the mean entropy of all residues in our conformation
variability dataset as the threshold 𝑇.

The results of the four structure alphabets are shown in
Table 3. The corresponding Receiver Operator Characteristic
(ROC) curves are given at Figure 1. The different structure
alphabets get different number of positive (flexible) and neg-
ative (rigid) samples. As the number of letters in the structure
alphabet increases, the number of positive samples increases
and the prediction performance also increases, which means
that more subtle local structures can be captured by large
number of structure alphabet letters. Particularly, the pre-
cision and ROC scores steadily increase. Overall the DW
structure alphabet gets the best performance.

The results obtained here are similar to the work of Bodén
andBailey [1].Theprecisions of this study are higher than that
of Bodén and Bailey (0.05 for Sec3 and 0.12 for Sec8), but the
ROC scores are a little lower than of Bodén and Bailey (0.61
for Sec3 and 0.64 for Sec8).Themain differences of this study
to that of Bodén and Bailey lie in two aspects. The first one is
that the additional two structure alphabets (the PB and DW
structure alphabet) are investigated here. The second one is
that a decoy set is used to explore whether the conformation
change can capture protein flexibility.
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Table 2: The correlations between the conformational entropies and the B-factors.

ID <3a 3-4 4-5 5-6 >6 Sec3b Sec8 PB DW
1res 73 73 73 7 4 0.1105 0.1505 0.2454 0.2605
1am3 571 177 162 161 400 0.1139 0.2993 0.4110 0.5149
1r69 389 119 284 228 300 0.2028 0.4040 0.3909 0.3794
1utg 1 20 401 290 300 0.2003 0.2990 0.2729 0.1653
1a32 364 125 95 142 300 0.2819 0.4818 0.5077 0.4145
1mzm 9 306 317 171 300 0.0118 0.2734 0.3353 0.3144
1hyp 1 0 34 270 300 0.1491 0.3579 0.1893 0.2889
1cei 1 0 4 64 300 0.0821 0.3583 0.4335 0.4932
1pgx 219 342 182 391 300 0.0264 0.2843 0.3339 0.3674
5icb 3 142 481 225 300 0.4255 0.5660 0.5433 0.5635
Ave 163.1 130.4 203.3 194.9 280.4 0.1604 0.3474 0.3663 0.3762
aShown in the table are the numbers of decoy structures in this class.
bShown in the table are the correlations measured by the specific structure alphabet.

Table 3: Prediction performance of the protein flexibilities by different structure alphabets.

SAa No. pob No. nec Sensitivity Specificity Precision ROC
Sec3 6152 54737 0.6291 0.4543 0.1109 0.5457
Sec8 9468 51421 0.5887 0.5677 0.1942 0.5741
PB 10625 50264 0.6209 0.5521 0.2114 0.5901
DW 16012 44877 0.6399 0.5725 0.2586 0.6193
aThe structure alphabet types.
bThe number of positive samples (flexible residues).
cThe number of negative samples (rigid residues).

4. Conclusion

In this study we provide a simple and efficient method for
the characterization and prediction of the protein flexibility.
We first validate that the conformational change can capture
protein flexibility and then predict protein flexibility from
primary sequences. The results show that conformational
entropy is a good indicator of protein flexibility. Four struc-
ture alphabets with different number of letters are inves-
tigated. Future work will aim at exploring other structure
alphabets that can provide detail description of protein
backbone structures and even the side-chain structures.
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