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Multipolar, time-dynamical model 
for the loss compensation and 
lasing of a spherical plasmonic 
nanoparticle spaser immersed  
in an active gain medium
Alessandro Veltri1, Arkadi Chipouline2 & Ashod Aradian3,4

The plasmonic response of a metal nanoparticle in the presence of surrounding gain elements is 
studied, using a space and time-dependent model, which integrates a quantum formalism to describe 
the gain and a classical treatment for the metal. Our model fully takes into account the influence of the 
system geometry (nanosphere) and offers for the first time, the possibility to describe the temporal 
evolution of the fields and the coupling among the multipolar modes of the particle. We calculate the 
lasing threshold value for all multipoles of the spaser, and demonstrate that the dipolar one is lowest. 
The onset of the lasing instability, in the linear regime, is then studied both with and without external 
field forcing. We also study the behaviour of the system below the lasing threshold, with the external 
field, demonstrating the existence of an amplification regime where the nanoparticle’s plasmon is 
strongly enhanced as the threshold is approached. Finally, a qualitative discussion is provided on later, 
non-linear stages of the dynamics and the approach to the steady-state of the spaser; in particular, it is 
shown that, for the considered geometry, the spasing is necessarily multi-modal and multipolar modes 
are always activated.

Metallic nanostructures have since long attracted interest in different fields of nanotechnology, since they can 
sustain localized plasmon resonances which act as nanoscale concentrators of optical fields. In the presence of 
optical gain (active medium) near or within the nanostructures, new possibilities open up with the ability to 
further control, amplify and tune these localized surface plasmon resonances1–8. The interest of coupling metallic 
nanostructures with active media culminates in the concept of the “spaser” (Surface Plasmon Amplification by 
Stimulated Emission of Radiation, the plasmonic equivalent of a laser), which widened their potential applica-
bility to nanoscale lithography, probing, microscopy, optoelectronics and more9,10. In order to effectively shape 
optical energy to the nanoscale according to our needs, it is of high importance to dispose of accurate theoretical 
descriptions taking fully into account not only the effects of the metal to active medium coupling and the asso-
ciated dynamics, but also, on equal footing, the effects of the nanostructure geometry which governs the spatial 
structure of the spaser field. In this report, we propose a semi-classical model describing the coupling of the 
temporal quantum dynamics of the gain elements with a homogeneous, spherical nanoparticle (NP), taking into 
account not only the lowest, but also all other higher electromagnetic modes of the NP as well.

The past few years have seen a number of works on the optical properties of gain-assisted nanoparticles (NPs) 
with various geometries: spheres, core-shell, multiple core-shell, ellipsoids… , using more or less refined analytical  
descriptions, or numerical simulation tools like the finite-element method3,11–16. All these works were carried 
out in stationary regimes for the NP and the gain (assuming flat, or Lorentzian, emission lineshapes for the lat-
ter). While such a simplification is acceptable far from the lasing threshold and it has been successfully used to 
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describe experimental results17–19, it has to fail near and above it, making the obtained predictions inconsistent:  
gain saturation or complex time-dependent effects may rise, begging for a more elaborate dynamical and 
non-linear description of the system.

Time-dependent approaches were also developed but are more scarce, starting with the seminal work of 
Bergman and Stockman introducing the spaser20, and then in subsequent works4,21–24. Nevertheless, often these 
approaches are incomplete: either space-dependent modes were not considered for the sake of generality, or they 
were averaged out through homogeneization, or only the dipolar mode was considered, leaving out all the effects 
related to the specific geometry of the actual nanoresonator used to generate the spasing. A few purely numerical 
works have integrated all time and space-dependent effects using two or four-level population dynamics for gain 
carriers (see ref. 2 and references therein) locally coupled to Maxwell equations, but they were only concerned 
with so-called “fishnet” geometries, unrelated to NP-based spasers. Moreover, powerful as they are, full-wave 
simulations do not necessarily allow for a deep understanding of the mechanisms at work, and a complementary 
model-based approach is undoubtedly useful. Finally, ref. 25 provides an analytical, time-dependent study of a 
NP in a gain core-metal shell configuration, where only the dipolar mode can exist.

In this article, we consider a single, homogeneous, metallic nanosphere (NP) of radius a (as illustrated in 
Fig. 1), immersed in a gain medium consisting of a dielectric host in which active elements are dispersed (e.g., a 
laser dye or quantum dot solution). This is the simplest imaginable geometry for spasing, but we will show that it 
gives rise to rich effects nonetheless. We emphasise that the aim of this work is not to study and optimize a given 
design for experimental spaser realizations, but rather to lay some understanding of basic physical effects that 
may arise in spaser systems across various geometries. Still, the situation of homogeneous plasmonic spheres 
immersed in a gain medium is of experimental relevance to some existing experimental studies26,27.

The model we present is combining together aspects treated separately in the literature, namely: (i) taking 
into account the appropriate electromagnetic response of the NP, as induced by its specific geometry and inclu-
sive of all multipolar fields; (ii) including the population dynamics of quantum emitters, in order to explore 
the time-dependent behavior of the NP-cum-emitters system; (iii) integrating interaction with a sea of emitters 
around the NP, which is coupled to the spatially inhomogeneous local field created by the NP.

The system will be studied in conditions where it is either excited by a probe field linearly polarized along the 
z-axis (with unit vector ẑ): = ˆEE z0 0 , or it is left isolated (E0 =  0). Note that E0 refers to the value of the exciting 
field taken inside the active medium. We refer to the region inside the spherical inclusion as region 1 and to the 
region outside as region 2, with respective electric fields E1 and E2 and respective polarizations P1 and P2. The 
system is taken in the quasi-static limit: λ  a where λ denotes the exciting probe wavelength, so that E0 is 
assumed to be uniform over the NP.

Metallic Nanoparticle and Active Medium Description
We start by describing how the field E1(r, t), where r is the spatial coordinate with origin at the particle center 
and t is time, acts on the electrons in the metallic nanoparticle. We describe this interaction using a free-electron 
model28:
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where the polarization P1 =  need is produced by the displacement d of the electron cloud with respect to the equi-
librium position (ne is the electron density, e is the electron charge); γ is the ionic collisions friction coefficient. We 
also used the plasma frequency ω π= n e m(4 / )pl e e

2 1/2 with me the electron mass. Assuming e−iωt harmonic nota-
tion for fields, Eq. 1 classically gives back the Drude formula for the metal’s relative permittivity:
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Figure 1. The system under study: a single, homogeneous spherical nanoparticle made of metal (in light 
gray), immersed in an active host medium made of many active dipolar elements (red dots) dispersed into  
a background dielectric host. 
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In the following, we will focus on the metal, silver, using experimental data from ref. 29 for numerical values 
of εm. Values for ωpl and γ are found by fitting Eq. 2 against these data (also adding a constant offset ε∞ to account 
for non-Drude contributions seen in the experimental measurements). We find: ħωpl =  9.6 eV and ħγ =  0.0228 eV.

We now consider how the field E2 interacts with the active medium outside the nanoparticle, which is 
described as a continuum of two-level emitters in a thermal bath using the the optical Bloch equations and the 
density matrix formalism4,30,31:
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Here ρij is the i, j element of the density matrix; τ τ= +− −


W1
1

1
1  is an effective relaxation rate, with W the 

phenomenological pumping rate, and τ
1 and τ2 the time constants associated with energy (spontaneous emission) 

and phase relaxation processes due to the interaction with the thermostat; ω21 is the transition frequency between 
levels 1 and 2; N =  ρ22 −  ρ11 is the population inversion, where ρ22 and ρ11 are the diagonal matrix density ele-
ments, and finally τ τ= − +

 
Ñ W W( 1)/( 1)1 1 . The term μ · E2 accounts for the non-radiative coupling to the 

metal, with μ the transition dipole moment, while the radiative contribution is taken into account in Eq. 4 
through the τ1 relaxation time. Importantly, note that all quantities in Eqs 3 and 4 are taken implicitly as both 
space and time-dependent (functions of r and t).

With χb the susceptibility of the background (passive) dielectric host, and n the number density for the active 
elements (e.g., dye molecules), the space and time-dependent polarization of region 2 is obtained by averaging 
over the dipole moments of the gain elements, assuming they are randomly oriented with respect to the field E2 
(due to Brownian motion in the host solution):
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where Ω denotes solid angle.
We have defined the new quantity Π as
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Physically, the role of Π is to keep track of the part of the polarization in medium 2 contributed to by the 
emitters. Integrating the system of equations 3 and 4 over solid angles, we obtain:
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We next use the rotating waves approximation, assuming that the frequency of the probe field E0 is 
near-resonant ω ω( )21  and assuming an e−iωt harmonic form for all time-dependent quantities. The system to 
solve becomes:
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together with

χ Π= + .⁎P E 2 (12)b2 2

(Now Π, E1,2 and P1,2 from here on denote only the slowly-varying enveloppes of previously introduced phys-
ical quantities.) It is worth noting that the population inversion N =  N(r, θ, t) as it appears in this system of equa-
tions is, in the general case, non-uniform due to the non-uniformity of the source term appearing in the r.h.s. of 
Eq. (10).
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We can now in particular calculate the permittivity εh of the active medium under pumping (without particle), 
when excited by a uniform field E2 =  E0: using Eq. (12), and the steady state-value of Π  extracted from Eq. (9), one 
finds a Lorentzian lineshape centered on ω =  ω21,
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where εb =  1 +  4πχb is the permittivity of the background medium, ε ε ω π µ τ″ = = − ħ˜I n N[ ( )] 4 /(3 )hmax 21
2

2  is the 
maximum level of gain and Δ  =  2/τ2 is the emission linewidth. Such Lorentzian emission lineshapes have been 
widely used in classical steady-state models for plasmon-gain interaction3,11.

A metallic nanoparticle such as the one studied here naturally has a dipolar localized plasmon resonance fre-
quency ω0, which can be obtained from the permittivities εm and εh just calculated through the standard Fröhlich 
condition11,32:

ε ω ε ω+ =R[ ( ) 2 ( )] 0 (14)m h0 0

We will from here assume that the gain lineshape is centered exactly at the plasmon frequency, i.e., that 
ω21 =  ω0. Note that, while this ensures a better efficiency of coupling between gain and metal, it is by no means a 
requirement for the effects described below to occur.

Multipolar Mode Equations and Boundary Conditions
We now look into describing the complete system composed of the NP immersed in the active medium. We start 
by assuming that the probe field amplitude E0, as well as E2, are sufficiently small that the right-hand-side term 

Π⋅I nE2 [ ]/( )2  of equation 10, which measures the rate at which the population inversion of the gain elements 
is depleted, will remain negligible. This means that the population inversion, according to Eq. (10), remains spa-
tially uniform: N(r, θ, t) =  N0(t). (Situations where this approximation does not hold anymore will be discussed in 
the last Section of this Report.)

Due to the spherical geometry of the problem, we introduce spherical harmonics, i.e., multipolar polarization 
modes of the particle and electromagnetic fields. Introducing the potentials φ1,2 and ψ1,2 such that φ= − ∇E1,2 1,2, 

ψ= − ∇P1 1 and ψΠ = − ∇ 2, one can look for solutions of the Laplace equations for potentials in terms of a 
superposition of multipolar modes which are obtained by expanding the angular dependency on the Legendre 
polynomials 



P . Using spherical coordinates centered on the NP, with r =  |r| as the radial distance, and θ as the 
polar angle, taking into account that the potentials should be regular at r =  0 and that for r a, the field has to 
reconnect to the external, uniform field E0, the following expressions for φ1,2 and ψ1,2 are obtained:

∑φ θ θ=
=

∞
�

�
�

�
�r t p t r P( , , ) ( ) (cos ),

(15)1
0

∑ψ θ θ=
=

∞









r t q t r P( , , ) ( ) (cos ),
(16)1

0

∑φ θ δ θ=




 −







=

∞

+






 

r t
p t

r
rE P( , , )

( )
(cos ),

(17)
2

0
1 0 1

∑ψ θ
σ

δ θ=






− Π






.
=

∞

+






 

r t t
r

r t P( , , ) ( ) ( ) (cos )
(18)2

0
1 0 1

Here, δ stands for the Kronecker symbol; ��p , 


p  are the mode amplitudes for the electrical fields E1,2; σ


 and 


q  are 
the mode amplitudes for the polarizations P1 and Π. The quantity Π 0 is defined as the uniform component of Π, 
reflecting the polarization response (in the z-direction) arising from only the active elements in the absence of 
nanoparticle, when submitted to the probe field E0.

We can now insert these expansions in system (9–11), to obtain the full set of time-dynamical evolution equa-
tions for Π 0, N0, σ



 and 


q  as functions of the probe field E0:
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where ωω ω ε ωΩ = − +i /[ (1 ) ]P pl m pl
2 2 2 , and the dielectric permittivity εm of the metal from Eq. 2 were used.

Finally, it is necessary to take boundary conditions at the NP surface (r =  a) into account. The continuity con-
dition for the tangential electrical field writes as δ= −+�� �

�
�p p a E/ 2 1
1 0, and has been already implemented to 

obtain Eq. (22). Continuity of the normal electrical displacement links 
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the system in the following way:
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The set of Eqs (19–23) represents the first complete treatment of a spherical NP immersed in an active gain 
medium, taking into account the full array of multipolar modes. We are now in a position to consider spasing and 
amplification effects in the optical response of this system.

Spasing Threshold and Onset of Instability Under Zero External Field
In a similar way to classical lasing, spasing occurs as a self-oscillation of the electromagnetic field inside and out-
side the NP, in the absence of an external driving (probe field E0 =  0), when the gain level in the system reaches a 
given threshold. The self-oscillation spasing condition is therefore defined as an unstable point.

This will be reflected by the appearance a non-zero outside field E2, or in other words, by the appearance of (at 
least) one non-zero multipolar component 



p . We therefore look for the condition for any given 


p  to be non-zero, 
independently of other modes (pk =  0, ≠ k ). For this, we assume steady-state in Eqs (19–22) by canceling out all 
time derivatives, as well as zero external field (E0 =  0), which directly leads to Π 0 =  0 and = ˜N N0 . Substituting 
steady-states values for Π 0, 



q  and σ


 into the boundary condition 23 brings the following equality:
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This is the spasing condition for the -th mode. The imaginary part of the spasing condition yields the value 
for the gain threshold for the -th mode to start self-oscillating: it can be concluded that higher modes require 
more gain to be triggered. Therefore, the dipolar mode =( 1) is the one that will be most easily activated:

ε ε= −I I[ ] 1
2

[ ], (26)h m

and it is the dipolar threshold that sets the absolute spasing threshold for the NP.
Note that this is the same condition as discussed in ref. 11 for the singularity of the classical dipolar polariza-

bility formula for a sphere (see also further down). We also have analytically checked that this spasing condition 
corresponds to the point where losses in the system are exactly balanced by the gain, as holds for the threshold of 
classical lasers.

We now continue with describing the first stages of the spasing instability, right at the onset of oscillations, 
when the gain value in the active medium exceeds the above threshold. Because the dipolar mode has the lowest 
threshold, it will initially have the fastest growing rate among all unstable modes for a given gain value, and hence 
is expected to dominate this onset.

We therefore consider a dipolar approximation to the set of equations (19–23), valid as long as all modes with 
> 1 are negligible. In this situation, and still assuming E0 =  0, the system (19–23) reduces significantly:
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Equations (27) and (28) have trivial solutions, and assuming physically meaningful initial conditions, where 
Π 0|t=0 =  0 (due to the absence of externally imposed field) and =

=
˜N Nt0 0

 (stable pumping), these variables do 
not evolve in time: Π 0(t) =  0, = ˜N t N( )0 . One then only needs to solve the two remaining equations (29) and (30). 
Using the boundary condition (23) to express p1, (29) and (30) form a linear system that can be solved 
analytically:
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It appears that the temporal dynamics of the system is dictated by two eigenvalues κ1,2:
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The parameters 1,2 are
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and the constants c1,2 are related to initial conditions.
The spasing instability (self-oscillation) will arise if at least one of these eigenvalue has a positive real part. 

Figure 2 shows that indeed the real part of κ1 becomes positive exactly when the gain exceeds the spasing thresh-
old, i.e., when ε ε+ ≤I( 2 ) 0m h  (calculated at the plasmon frequency, ω =  ω0). The real part of the other eigen-
value, κ2, remains always negative.

It is interesting also to consider the span of the unstable region with κ ≥R( ) 01  when the overall gain value 
ε ε ω″ = I[ ( )]hmax 0  varies: this is mapped in Fig. 3 for a 10 nm-size silver nanoparticle. It is at first quite narrow 
around the plasmon wavelength 2πc/ω0 =  386 nm (with c the celerity of light) when the gain is close to the thresh-
old, but then reaches spectral widths of a few tens of nanometers, as gain is further increased. This provides a 
rather large frequency range operation for the nanolaser; note, however, that this spectral range should not be 
confused with the actual linewidth emission of the lasing system: the latter should be calculated in the non-linear 
steady-state lasing regime, as the full width at half maximum of the emission intensity, and is expected to be much 
narrower.

Naturally, as the instability develops, the dipolar approximation used in this section will fail: consequences 
of this failure and later stages are discussed in Section 5 (“Above spasing threshold”) further down. We before 
consider a situation of practical importance, namely the behaviour of the system when excited by an external field 
(pump field), both below the spasing threshold and above it, again in the initial stages of the instability.

Figure 2. Spasing threshold and eigenvalues κ1 and κ2: κR( )1  becomes positive (instability) exactly when 
ε ε =+I 2[ ] 0h m  (dipolar spasing threshold). Parameters: εb =  1.85 (ethanol solvent), ħω21 =  ħω0 =  3.21 eV, 

ħΔ  =  0.2 eV.
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Response To An External Field - Linear Amplification Regime
Below spasing threshold. We now consider the case where a probe field ≠E 00  is shone onto the nanopar-
ticle. We begin by considering situations where the overall gain value ε ″max  remains below the spasing threshold. 
Since no field is expected to become extremely strong, we consider as before that θ = = ˜N r t N t N( , , ) ( )0 .

This brings about two physically important consequences: (i) the system (19–22) is linear; (ii) only dipolar 
terms survive =( 1) and all multipolar terms >( 1) are extinct. The latter property can be inferred upon close 
inspection of the differential system: modes are coupled within pairs σ





q( , ) of the same order  only [Eqs (20–22)].  
Among such pairs, however, only the equations for σ1 and q1 exhibit non-zero source terms (proportional to E0 
and Π 0), stemming from the expression of p1. Hence, after a very short time, all multipolar terms must naturally 
decay to zero, except dipolar ones which are fed through the above-mentioned source terms. Finally, it is only 
necessary to solve the equations for Π 0, and the two active modes σ1 and q1:
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alongside the expression for p1:
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We first look for the (linear) steady states of the system under field; this is best represented by computing the 
steady-state dipolar polarizability, α1

ss, of the sphere, which we classically define as the ratio of the dipolar 
moment p1 of the NP to the exciting field28: α = p E/1

ss
1 0. To this purpose, time derivatives are canceled out in the 

above system, and with the help of (39), we find:

α
ε ε
ε ε

= =
−
+

.
p
E

a
2 (40)

m h

m h
1
ss 1

0

3

Unsurprisingly, this no other than the well-known quasi-static formula for the dipolar polarizability of a 
spherical inclusion28. This simple formula, where the active nature of the host medium is described by letting 
εh have a negative imaginary part [as per Eq. (13)], was indeed studied by some of us in a previous work11 as the 
simplest step towards loss compensation phenomena: this empirical approach is here revealed as the steady-state, 
linear approximation of our full time-dynamical model.

The evolution of the steady-state α1
ss is shown in Fig. 4 for the same 10 nm-silver nanoparticle (see also ref. 11), 

where the gain level ε ″max  is progressively increased, i.e., goes from zero towards more and more negative values. 
(Note that we assumed a fixed, large power for the pump: =Ñ 1; The same behaviors can be obtained by fixing 
the value for ε ωI[ ( )]h 0  and varying Ñ  from 0 to 1). We observe that first, the plasmon (here observed as a reso-

Figure 3. Main figure: map of the stable and linearly unstable region (inside contour), as a function of 
frequency/wavelength and the overall gain level in the active medium ε ω ε= ″I[ ( )]h 0 max . Inset: instability 
region width Δ λ as a function of overall gain. Parameters: εb =  1.85 (ethanol solvent), ħω21 =  ħω0 =  3.21 eV, 
ħΔ  =  0.2 eV.
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nance in the polarizability) is gradually amplified with increasing finesse (Fig. 4a–c): this is what we call the “lin-
ear amplification regime” where partial loss compensation occurs. This regime by itself, is a very interesting one 
in practical applications: it requires much less gain to be introduced, is more easily attained than the spasing one, 
and to a certain extent, is able to compensate the intrinsic losses found in natural plasmonic resonances.

Then, when the gain value reaches the spasing condition [canceling the denominator in 40], α1
ss is at its sharpest  

and formally becomes singular (Fig. 4g). This signals the failure of the used linear, dipolar approximation, and 
new effects, including saturation, will set in as discussed further down. In particular, the singularity shall disap-
pear and all quantities shall remain finite.

Above spasing threshold. We now assume that the gain in the host medium is set above the spasing 
threshold, and that the system is still excited by an external probe field E0.

Although it does not represent a fully valid solution anymore, it is worthwhile commenting on the behaviour 
of the steady-state polarizability above threshold: α1

ss is finite again, but now exhibiting regions in the spectrum 
where the imaginary part is negative (Fig. 4g–i), a situation which cannot be observed for purely passive systems: 
this should here be considered as an indication of the appearance of the spasing regime.

Figure 4. Evolution of the steady-state plasmonic response of a 10-nm silver nanoparticle as gain is 
increased in the surrounding medium. Parameters: εb =  1.85 (ethanol solvent), ω21 =  ω0 =  3.21 eV, ħΔ  =  0.2. 
(a–c,g–i) Steady-state dipolar polarizability α1

ss; (d–f,l–n) Real part of eigenvalues κ1 and κ2, corresponding to 
each of the polarizability curves.
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The onset of the spasing regime under field can indeed be studied following the same analysis as in zero-field 
to demonstrate the onset of an oscillation (instability), by solving the linear system (36–38) analytically. One 
obtains:
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where all parameters are as defined earlier [Eqs (32–35)].
Here again, under field, the spasing instability sets in when κR( )1  becomes positive (the other eigenvalues κ0 

and κ2 remain always stabilizing), as shown in Fig. 4: for low gain values [(d) to (f)], κ <R( ) 01 ; then at the spas-
ing threshold ((g)], κR( )1  reaches 0 exactly at the plasmon frequency; finally, from (l) to (n), there is an unstable 
frequency range around the plasmon frequency, where κ >R( ) 01 ; as before, the width of this region shall corre-
spond to the spaser emission width.

A close inspection of Fig. 4(m,n) (zoomed-in detail not provided) reveals an interesting fact: sign changes in 
κR( )1  always happen extremely near to sign changes of αI( )1

ss , to a precision better than 0.01 eV. Hence, regions 
of spasing instability very closely coincide with regions with α <I( ) 01

ss  (“active” polarizability), and therefore, in 
the present system, an easy rule-of-thumb to predict the extent of the spasing regime is to look for sign changes 
in the imaginary part of the simple formula (40). Obviously, whenever the instability sets in, it prevents the linear 
steady-state solution represented by α1

ss to settle, and the dynamics of the system will become increasingly 
non-linear as discussed further down. To illustrate the instability, in Fig. 5, we compare the evolution of the dipo-
lar moment p1(t), as calculated from the exact solution 41 for ε ω = − .I[ ( )] 0 088h 0  (as in Fig. 4c) and ε ωI[ ( )]h 0  
(as in Fig. 4h), both observed at the same point of the energy spectrum (ħω =  3.23 eV). For the former, κ <R( ) 01  
(i.e., below spasing threshold) and therefore a steady-state (in the “amplifying regime”). For the latter, κ >R( ) 01  
so that the spasing instability sets in with a linear growth rate τ κ= = .−R( ) 2 91nslin 1

1 , preventing the linear 
steady state to appear, and preparing for the coming of a full non-linear temporal dynamics as discussed in the 
next section.

Non-Linear Regime and The Rise of Higher-Order Modes
We now describe qualitatively the later stages of the spasing instability explored in the previous sections.

At the onset of the spasing instability, the amplitude of the plasmonic dipolar mode grows with a typical rise 
time τ κ= −R( )lin 1

1, both with and without excitation by the field E0. For times τt lin, this regime is linear as 
described in the previous sections.

For times τt lin, since the dipolar mode has been growing exponentially (and so does E2), the term 
Π⋅ ħI nE2 [ ]/( )2  will no more remain negligible in Eq. 10: the instability enters a regime of non-linear growth. 

Since both E2 and Π are spatially non-uniform fields, Eq. 10 indicates that the population inversion N will also 
take on a non-uniform distribution. In order to account for this, the following expansion for N can be 
introduced:

Figure 5. Time evolution of the dipolar moment of the nanoparticle p1(t) of a 10-nm silver nanoparticle. 
The nanoparticle is under constant excitation from the probe field E0, while the pump is switched on from t =  0 
on. (a) Example of stable regime (amplifying regime, under spasing threshold). (b) Example of onset of the 
spasing regime (above threshold).
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where η
n are the mode amplitudes of the population inversion and N0 is the already presented, spatially uniform 

(flat) mode. Taking into account this expression transforms the original system (9–11) into a set of non-linear 
equations displaying intricate cross-coupling terms not present in Eqs (19–22).

The numerical solutions of this system will be explicitly discussed in a forthcoming paper devoted to studying 
the non-linear amplification regime. Qualitatively, the effect of these new non-linear terms is to couple together 
σ


 and 


q -terms of different -orders via the appearance of the η
n modes. As a consequence, electromagnetic 

energy will always cascade from the initially unique = 1 dipolar mode (which benefit from source terms), 
towards higher (sourceless) modes > 1, thereby exciting multipoles in the particle.

Therefore we can conclude that, briefly after the spasing instability launches (a few nanoseconds in the 
example of Fig. 5), the response of the gain-assisted NP always becomes multipolar. Interestingly enough, this 
is true however small the NP is compared to the probe wavelength, due to local feedback effects with the gain 
medium. This result means that the response of the spaser, in the geometry studied in this article, is intrinsically 
a multi-modal one; other geometries for the NP can tailor the response to be exclusively dipolar, for example the 
“nanoshell” geometry25.

Finally, for times τt lin, the population inversion will be sufficiently depleted that it will limit the growth of 
the instability, and a final state will be reached. The exact nature of this long-term state, as it is well-known from 
the physics of laser oscillations, can be diverse24,33,34: steady-state, multistability, stochastic behaviour, burst-like 
dynamics, etc. Moreover, in the case where the system is subjected to a non-zero external external field E0, syn-
chronicity issues will rise between the natural resonant frequencies of the NP oscillator (here, the resonance fre-
quencies of the multipoles) and the forcing frequency25,35. The exact nature of this final state requires a thorough 
study, depending on the various model parameters, which is out of the scope of this paper.

In case the transient evolution results in a final stationary state, however, the steady-state values of N, Π  and P2 
are found easily by canceling time-derivatives in, and solving simultaneously, Eqs (9), (10) and (12). This reveals 
that the saturated gain medium can be described through a non-linear permittivity16,25 εh

NL, as a function of the 
local field E2:

ε ε ε
ω ω

ω ω
= − ″ ∆

− − ∆
− + ∆ +

i
E E

2( )
4( ) [1 ( / ) ] (43)

h b
NL
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12

12
2 2
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2

with the saturation field τ τ µ= ħE 3/( ) /sat 1 2 .
The non-linear permittivity can then either be used inside numerical simulations16 to find the field distribu-

tion and other properties of the stationary lasing state, or equivalently, the associated non-linear, steady-state 
value of N can be introduced into our analytical equations (9–11) to obtain a multipolar mode description of the 
lasing state.

In conclusion, a full multipolar and dynamical model has been established to describe the optical response of 
a single metallic nanosphere immersed in an active medium. We have shown that for low gain values in the active 
medium, the response of the nanoparticle is a steady state and corresponds exactly to the results predicted via the 
quasi-static classical formulae for dipolar polarizability. This is a regime of amplification, where losses are par-
tially compensated and the plasmonic response is amplified. Then, when gain values exceed a threshold, a spasing 
instability occurs, where physical quantities such as the dipolar moment of the NP, initially grow exponentially 
with time. This instability has been demonstrated both in presence, and in absence of an externally-imposed field 
(i.e., spasing self-oscillation). After a short while, a cascade of non-linear couplings always launches and activates 
higher-order, multipolar modes, irrespective of how the NP size compares to the exciting (probe) wavelength. 
Finally, features of the final, non-linear regime were discussed qualitatively.

The importance of geometry for NP-based spasers cannot be overstated, as the nanoparticle’s shape and com-
position determine the natural “resonator” in the spasing system. In our case of a homogeneous NP in an active 
medium, our model shows that the optical response of the resonator is unavoidably multi-modal and multipolar, 
therefore channeling energy into “dark modes” which may or may not suit one needs; then, depending on what 
type of application is envisioned, various geometries may be sought after, and optimised as a means to control las-
ing modes of the nano-emitter. Our analysis predicts where in the spectrum and with which specific gain quantity 
a mode will be activated, allowing in principle to design optical measures aiming at mode-specific amplification 
regimes, in a very simple geometry.
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