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Abstract

Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, 

which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, 

the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable 

electronic control over the beam geometry and direction, and can be tailored to provide optimal 

energy deposition patterns for a given therapeutic application. Their use in combination with 

modern medical imaging for therapy guidance allows precise targeting, online monitoring, and 

post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some 

technical obstacles hindering the construction of large aperture, high-power, densely-populated 

phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. 

However, recent research has made the construction of such arrays feasible, and it is expected that 

their continued development will both greatly improve the safety and efficacy of existing 

ultrasound therapies as well as enable treatments that are not currently possible with existing 

technology. This review will summarize the basic principles, current statures, and future potential 

of image-guided ultrasound phased arrays for therapy.

1. Introduction

During the past quarter century, there has been a realization that minimally-invasive 

interventions offer significant benefits to patients by reducing overall recovery times and 

lowering infection risks [1]. Indeed, these benefits could be even more dramatic if the 

interventions could be performed completely non-invasively.

The excellent penetration depth of ultrasound within soft tissues at millimeter-scale 

wavelengths provides an ideal method for non-invasive, localized energy delivery for tissue 

ablation and other interventions. Although the ability of focused ultrasound (FUS) to induce 

localized tissue coagulation was first demonstrated over 70 years ago [2, 3], its clinical 

adoption has been slow to date. The first clinical device utilized FUS beams, guided by X-

rays and bony landmarks, to thermally coagulate dysfunctional tissues [4, 5]. In these early 

human studies, it was demonstrated that FUS can be used to selectively ablate targeted 
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regions while sparing surrounding and overlying tissues. Since the integration of FUS with 

ultrasound imaging systems was first proposed in the 1970’s [6], several ultrasound-guided 

devices have been clinically tested and have received regulatory approval for specific 

indications in different parts of the world [7, 8, 9]. In the early 1990’s, FUS applicators were 

combined with magnetic resonance imaging (MRI)-guidance [10]. This approach has 

provided precise tissue targeting and exposure control, increased the effectiveness of the 

treatments, and resulted in approval from the Food and Drug Administration (FDA) for 

uterine fibroid (in 2004) and bone metastasis (in 2012) treatments [18, 11], with many other 

clinical indications currently under testing [12]. The first ultrasound-guided device [13] was 

recently approved by the FDA for prostate therapy in late 2015.

The FUS systems employed in early clinical studies under ultrasound or MR guidance [7, 

14, 15, 16, 17, 8] consisted of single-element transducers, and therefore required mechanical 

translation for targeting and therapy delivery. However, it was soon realized that the 

treatment of many or large tumors would require greater spatial coverage than that provided 

by fixed-focus, single-element transducers. As a result, ultrasound transducer arrays 

comprising multiple elements were investigated for therapy [19, 20, 21, 22], though these 

early devices provided limited electronic control over the focal spots’ shape and location. 

Phased arrays also allow wave-front distortions induced by acoustic propagation through 

heterogeneous tissues to be accounted for, which is not possible with single-element 

transducers and was critical for enabling the use of FUS therapy in the brain [23]. Although 

fully electronically-steered arrays have been used in diagnostic ultrasound for some time 

[24], there have been some major technical obstacles prohibiting their use in the context of 

therapy delivery (see section 3.1). However, these challenges have now been overcome, and 

it is possible to implement full-scale phased array systems for FUS therapy. We anticipate 

that, in the future, the full utilization of phased arrays will allow complete electronic control 

over the beam shape and location of the focal region, hugely improving FUS treatments for 

many indications.

The exploitation of microscopic gas bubbles as acoustic energy concentrators has uncovered 

many new opportunities for FUS therapy, but it also provides the problem of effectively 

controlling and monitoring the energy deposition. This is challenging due to the low acoustic 

powers delivered during these non-thermal treatments, which eliminates the possibility of 

using thermometry-based techniques for exposure control. During such treatments, the 

spatial locations and activity of these microbubbles need to be monitored to ensure the safety 

and efficacy of the therapy. As will be discussed below, recent research has demonstrated 

that this can be accomplished very effectively with passive ultrasound receiver phased 

arrays, and it is therefore expected that in the future, some FUS treatments will be optimally 

executed with combined phased arrays that can simultaneously transmit and receive 

ultrasound energy.

This review begins with a brief discussion of FUS and its effects on tissue (section 2). 

Section 3 covers the basic principles of therapeutic phased arrays, followed by a review of 

the different sonication patterns that are achievable with multi-element devices (section 4). 

Section 5 surveys the various imaging modalities used for FUS therapy guidance to date. 

The existing clinical and experimental image-guided phased array systems are summarized 
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in sections 6 and 7, respectively. Finally, some of the developing therapeutic applications of 

FUS are highlighted in section 8.

2. Basic Principles of Focused Ultrasound

2.1. Generation of an Ultrasound Field

The basic principles of ultrasound generation can be found in many text books (e.g. [25, 

26]). Figure 1 illustrates a simple case of how ultrasound waves can be generated by a 

piezoelectric plate that has metal electrodes on both its front and back surfaces. The 

electrodes are connected to a radio frequency (RF)-driving line that applies a time-varying 

voltage across the electrodes. Due to the inverse piezoelectric effect, the piezoelectric 

material expands and contracts in proportion to the applied voltage and generates a 

mechanical disturbance, at the frequency of the RF-signal, in the medium in contact with the 

front surface.

The fundamental resonance frequency of a transducer corresponds to the case where the 

wavelength in the piezoelectric material is equal to twice the thickness of the plate. When a 

transducer is driven at resonance, all of the reflected waves at the plate surfaces are in phase 

and a maximal acoustic output is achieved. Ultrasonic transducers can also be driven at odd 

integer multiples of their resonance frequency, though the electric-to-acoustic power 

conversion efficiency is diminished. For therapy transducers, a low-impedance backing (e.g. 
air) is commonly used to ensure that total reflection occurs on the back surface of the plate 

and that the majority of the generated energy is directed through the front of the transducer, 

providing maximal power output within a very narrow frequency bandwidth. The acoustic 

impedance of a piezoelectric material is typically high compared to biological tissue and 

coupling liquid, however, matching layers can be used to improve the energy transmission 

from the plate to the tissue. The matching layer thickness that maximizes the energy 

transmission is one quarter of the ultrasound wavelength in the matching layer material, and 

the optimal acoustic impedance is given by the geometric mean of the impedance of the 

piezoelectric material and of the load. It is also possible to manufacture devices that have a 

wider operating frequency range by using composite materials [27]. These materials contain, 

for example, small (compared to the wavelength) pillars of the piezoelectric material that are 

embedded in a softer polymer, resulting in a reduced acoustic impedance. Composite 

material transducers were originally developed for ultrasonic imaging purposes but have 

since found use in therapy [28] due to their increased operating frequency range and reduced 

lateral-mechanical coupling, which enables convenient multi-element array construction by 

simply patterning the electrodes [29].

Typically, the RF-driving line contains a signal source that generates the sinusoidal RF-

signal at the transducer’s resonance frequency. An amplifier connected to a dual-directional 

coupler and a power meter for monitoring the transmitted and reflected power amplifies this 

signal, which then propagates through a tuning network that matches the transducer’s 

impedance to the output impedance of the amplifier at the resonance frequency. For multi-

element phased arrays, each of the array elements is driven independently with its own 

driving line.
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2.2. Focusing of Ultrasound Waves

In order to overcome the signal losses in tissue due to acoustic absorption and scattering 

[30], and concentrate acoustic energy into a small volume, ultrasound beams can be focused. 

This can be accomplished using spherically curved transducers [31], acoustic lenses [32, 

33], reflectors [34], or phased array applicators. By using large (compared to the 

wavelength) sources, ultrasound fields can be focused to a spot with a focal size on the order 

of the wavelength. The size and location of the focus can be controlled by varying the 

geometry (i.e. aperture and curvature) and operating frequency of the transducer (Figure 2). 

For spherically-curved transducers, the focus is ellipsoidal and has dimensions that can be 

approximated by simple formulae [26]: the lateral full-width at half-maximum is given by 

1.4,λ×f-number, and the depth of field in the axial direction is 7.2,λ×(f-number)2 , where ,λ 
is the acoustic wavelength, and the f-number of a transducer is defined as the ratio of the 

focal length to the effective aperture diameter. Therefore, if large aperture transducers are 

used, focal spot diameters on the order of 1-3 mm and lengths of approximately 5-30 mm 

can be achieved deep within the body at clinically-relevant frequencies. Due to the high 

degree of focusing, the energy deposition in the near- and far-fields is small in most cases 

(Figure 2).

2.3. Ultrasound-Tissue Interactions

Ultrasound can induce a variety of biological effects on the vasculature and tissue depending 

on the specific acoustical parameters (e.g. frequency, pressure, pulse length, pulse repetition 

frequency) employed. The mechanisms of action of ultrasound-induced bioeffects can be 

broadly classified into thermal and mechanical categories, though therapies are often based 

on combinations of the two. The biological effects of ultrasound have been widely reviewed 

in the literature [35, 36, 37], and are therefore only briefly covered here.

Depending on the exposure conditions and tissue properties, ultrasound can induce local 

temperature elevations that can be employed in two different regimes of thermal therapy. 

The first is hyperthermia, where long acoustic exposures are used to induce and maintain 

mild temperature rises (absolute temperature range: 40-45°C) for several minutes to hours. 

Hyperthermia can elicit a variety of cellular and physiological effects in both normal and 

tumorous tissues that can either lead to cytotoxic effects directly or can be used as adjuvants 

to other therapies [38]. The second form of ultrasound-mediated thermal therapy is ablation, 

where short, higher power ultrasound exposures are used to raise the absolute temperature of 

tissue to 55-60°C for time scales on the order of seconds to minutes, leading to rapid cell 

death via thermal coagulation [39].

Acoustic cavitation can be induced within tissue and the vasculature through direct 

nucleation of bubbles from the absorbed gasses present in vivo during the rarefactional 

phase of high amplitude, pulsed exposures [40]. For example, in cavitation-cloud histotripsy, 

high intensity, low duty cycle ultrasound exposures are employed to generate and sustain 

dense bubbles clouds, through shock-scattering [41] or direct excitation [42], ultimately 

resulting in tissue homogenization. Boiling histotripsy is a separate approach for tissue 

fractionation [43], which can occur in the absence of thermal effects [44], and appears to 

involve ultrasonic atomization [45]. Alternatively, encapsulated microbubbles [46, 47], or 
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pre-cursors [48], can be introduced into circulation to provide cavitation nuclei and 

substantially reduce cavitation thresholds in tissue. Ultrasound-induced cavitation, with or 

without the use of injected agents, has a variety of therapeutic applications (see reviews [49, 

50, 51, 52, 53, 54]).

Ultrasound beams generate a radiation force in the direction of acoustic propagation, 

through momentum transfer to the propagation medium, resulting in tissue displacements 

and acoustic streaming in fluid-filled cavities [55]. Most notably, it has been shown that 

radiation force effects can trigger premature heartbeats [56], promote the movement of 

microbubbles [57, 58] and thrombolytic agents [59] to vessel walls and their subsequent 

tunneling into gels and fibrin/plasma clots, and increase the clearance of both residual 

kidney stone fragments after lithotripsy [60, 61] and of cavitation nuclei to enhance 

histotripsy efficiency [62].

3. Ultrasound Phased Arrays

3.1. Introduction and History of Therapy Phased Arrays

When an ultrasound transducer has a size that is equal to or smaller than half of the 

wavelength (λ/2) in the medium of interest, it emits a spherical wave that propagates 

amongst the entire half-space in front of it. By placing many small elements in a row, and by 

controlling the timing of the transmitted wave from each element so that the individual 

waves arrive in phase at the desired location, an acoustic focus can be created. With such 

linear one-dimensional (1D) arrays, the focal location can be scanned within the axial plane 

of the transducer by adjusting the driving phases of the RF-signals, facilitating electronic 

beam focusing (Figure 3). By making the array two-dimensional (2D), full three-

dimensional (3D) control of the ultrasound beam can be achieved, enabling the generation of 

multiple simultaneous focal spots, focal rings, and pressure minima (see section 4.3). Phased 

arrays have been used extensively in radar and sonar technology [63, 64] and have more 

recently been employed for diagnostic ultrasound imaging [24, 65]. The use of phased arrays 

in the context of therapeutic ultrasound was first proposed in the early 1980’s [66] for 

controlling the focal depth in hyperthermia treatments with a concentric ring array.

There have been some major challenges in implementing fully steerable arrays for high-

power therapy applications and, so far, they have not been fully utilized for this purpose. To 

have a full (i.e. 2π steradian) steering range, the transducer element center-to-center spacing 

needs to be less than or equal to half of the wavelength (λ/2) corresponding to the driving 

frequency in the medium of interest. This condition is relaxed to an element spacing of λ in 

the case where only focusing along the central axis of the array is needed. With larger 

element sizes, and hence greater element spacings, the waves from individual array elements 

can form grating lobes due to constructive interference occurring at locations other than the 

desired focus (Figure 4). Thus, for a given array aperture, the operating frequency places an 

upper bound on the size of individual array elements, and consequently a lower bound on the 

number of elements, if a full steering range is desired. However, focusing acoustic energy 

deep into the body requires large geometric gains between the transducer surface and the 

focus, particularly when higher frequencies are employed since the effects of attenuation in 

biological tissue become more pronounced [67]. As a result, the individual transducer sizes 
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needed for therapy are typically much larger than those used in diagnostic ultrasound. 

Additionally, for a fixed driving frequency, the electrical impedance of a transducer 

increases as its size is reduced, and thus the delivery of adequate RF power to small 

elements becomes challenging. Moreover, the conversion efficiency of RF to acoustic energy 

diminishes with decreasing element size. These factors all favor the use of larger elements 

for therapy arrays and, as a result, it has not been possible to deliver sustained high powers 

from fully electronically steerable (i.e. λ/2-spaced) arrays. Furthermore, each transducer 

element needs to be connected to its own individual driving circuit, resulting in a substantial 

interconnect problem for arrays containing a large number of elements. In the following 

section, a brief overview of the current solutions to these issues surrounding high powered, 

densely populated phased arrays will be provided.

3.2. JD Arrays

The annular, or concentric ring, array design provides the ability to move the focal spot 

along the axis of the transducer and only requires one RF-driving line per ring, thus 

effectively reducing the complexity of the array to lD. Concentric ring arrays have been 

proposed for imaging [68], and are used for controlling the focal depth in an endocavity FUS 

prostate treatment system [69, 70]. Linear 1D arrays can steer the beam in the axial plane of 

the array, and have also been proposed for endocavity applications [71, 72, 73]. For 

completeness, it is worth noting that 1.25D, 1.5D, and 1.75D arrays (for definitions, see 

[74]) have also been proposed for use in therapy arrays [74, 75, 76].

3.3. 2D Large Element Arrays

The requirement of having a center-to-center element spacing of less than or equal to λ/2 

can be relaxed by making the array curved and restricting the focal steering to regions in 

proximity to the geometric focus. Spherically curved sector arrays and spherically focused 

arrays with large elements have been proposed to increase the focal size and provide multi-

focus capabilities [20, 77, 78, 79]. The early experimental arrays for thermal FUS surgery 

demonstrated the practicality and benefits afforded by the increased focal volume [21, 79, 

80, 81, 29]. The first clinical MRI-guided uterine fibroid treatment device [18] was based on 

the design of these early prototype arrays.

3.4. 2D Fully Electronically Steerable Arrays

3.4.1. Sparse Arrays—An array design method that has been used effectively in antenna 

arrays to reduce the number of driving lines is to use small array elements, but to populate 

only a fraction of the total array surface in a random manner [82, 83, 84]. The randomness 

of the element locations mitigates the formation of grating lobes by incoherently distributing 

the off-focus energy within the field. Random sparse arrays have since been proposed for 

both diagnostic [85, 86, 87] and therapeutic [88, 89, 90] ultrasound arrays, and are capable 

of providing acceptable focal quality (Figure 5). A more recently developed MRI-guided 

FUS device for clinical uterine fibroid treatments employs a spherically curved, random 

sparse array design with large elements [90]. Indeed, a more robust alternative to the random 

array design is to use ultrasound field simulations to optimize the element distribution to 

maximize array performance [91, 87, 92], for example, by minimizing grating/side lobes or 
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maximizing the allowable steering range. Computer simulations [93] can also provide useful 

insights related to optimal array driving frequencies for specific applications [21, 94, 95].

The primary cost associated with sparse arrays is that energy is lost from the main lobe of 

the array’s diffraction pattern and deposited away from the focus. With random and 

simulation-optimized phased arrays, this energy is incoherently distributed amongst a large 

volume, thereby minimizing the formation of local hot spots in tissue. The reduction in focal 

intensity is proportional to the transducer surface area that is not emitting ultrasound [96]. 

Therefore, more total energy is required from a sparse array to achieve the same acoustic 

intensity or temperature elevation at the focus than a fully populated array, all else equal. 

This is a significant drawback for thermal surgery treatments since the extra energy is 

transmitted through the superficial tissues, causing increased near-field heating that limits 

the rate of ablation (Figure 5) [96, 97]. However, sparse arrays may be useful for cavitation-

based therapy [98], where the required time-averaged powers are much lower, meaning that 

superficial tissue heating is no longer a limiting factor. Sparse receiver arrays have also 

found application in passive acoustic imaging (see section 5.2) for cavitation mapping [99, 

100, 101].

3.4.2. Large Number of RF-Drivers and Interconnects—Our lab has explored two 

ways to economically solve the need for thousands of RF-drivers and interconnects in 

ultrasound therapy phased arrays. First, it is well known that the phase resolution of the 

driving signals does not need to be very precise, and that good focusing can be achieved 

with low-resolution signals [102, 71]. Indeed, this same outcome was discovered when flat 

lenses were designed for ultrasound therapy [103]. As a result, only a subset of high-power 

RF-drivers need be used, combined with switches to connect each of the array elements to 

the RF-line with the closest phase to that which is needed. A combined simulation and 

experimental study [104] demonstrated that this indeed is possible, and that good electronic 

steering can be achieved with only four driving lines (Figure 6). The other advantage of this 

driving method is that the elements are connected in parallel, effectively increasing the 

transducer element area and reducing its electrical impedance. Such an approach could be 

easily implemented with CMUT arrays (see section 3.4.4).

Another approach for reducing the large number of interconnects, which offers more 

flexibility, is to take advantage of modern electronic device manufacturing and use 

application-specific integrated circuit (ASIC) technology to design custom circuits in order 

to reduce the cost and size of the drivers, as has been done with the electronics in diagnostic 

ultrasound systems [105]. The downside of this method is the initial high cost of reaching a 

satisfactory chip design and the subsequent time and cost required if any modifications are 

needed. However, the advantage is that the full potential of phased arrays can be achieved at 

a relatively low manufacturing costs once a satisfactory design has been achieved. Both the 

reduced phase resolution method and ASIC technology can be combined to offer practical 

solutions for fully electronically steerable arrays.

3.4.3. High Electrical Impedance—Our lab has provided a solution the problem of high 

electrical impedance by placing the metal electrodes on the sides of the transducer elements 

instead of on their front and back surfaces (Figure 7). This method increases the electrode 
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surface area and reduces the thickness of the transducer material in between the electrodes, 

both of which act to reduce the element's electrical impedance. However, instead of driving 

the element at the frequency corresponding to the thickness of the material between the 

electrodes, the driving frequency is instead selected to be that which corresponds to the 

length of the element in the direction parallel to the electrode surfaces. Since an element's 

resonance frequency is primarily determined by the thickness of the transducer material in 

the vibration direction, the impedance can be tuned by changing the thickness of the 

transducer element between the electrodes while keeping the frequency constant. This 

allows transducers to be manufactured at the optimal impedance for the driving electronics. 

We first demonstrated this lateral mode coupling method with cylindrical elements [106, 

107] and subsequently with a lD phased array made out of multiple plates [108]. More 

recently, a 2D planar array was constructed using this technology [109].

3.4.4. Capacitive Micromachined Ultrasonic Transducers (CMUTs)—Ultrasound 

can also be generated using a capacitive method where the transducer is formed by a back 

plate, a cavity, and a thin metallic membrane electrode that can stretch and be displaced 

closer to or farther away from the back plate in response to an applied voltage [110]. 

Micromachining methods can be used to build these transducers so that large arrays can be 

manufactured at relatively low costs, and since silicon is used for manufacturing these 

devices, the driving electronics can be built right into the back of the array. This approach 

has been successfully used in diagnostic imaging [111, 112] and more recently in catheter-

based devices for thermal ablation [113]. CMUT technology holds a lot of promise for high-

power therapy devices since it solves most of the challenges related to phased arrays, such as 

the interconnect problem.

3.5. Performance Measurements of Phased Arrays

The performance of phased array transducers can be evaluated using standard experimental 

methods commonly used for single-element transducers [114]; radiation force balance 

measurements can be used to quantify the total acoustic power of the array, while 

hydrophone measurements can provide additional information regarding the spatiotemporal 

pressure field generated by the device. It has been demonstrated that hydrophone 

measurements of a pre-focal 2D planar field can be used to infer the velocity distribution on 

the transducer surface as well as the pressure field in the focal region using back- and 

forward-projection methods, respectively [115, 116, 117, 118]. This combined measurement 

and modeling approach has several uses as a quality assurance tool, but of particular 

importance to phased arrays, back-projection onto the surface of the transducer can be used 

to determine the functionality of individual array elements [115, 116, 117, 118]. This 

approach can be used to test if any significant phase or amplitude variations exist from 

element-to-element, which could subsequently be compensated for in order to improve the 

overall acoustic field generated by the array.
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4. Phased Array Sonication Patterns

Phased arrays provide unparalleled flexibility in tailoring the acoustic field to be optimal for 

different treatment situations. In the following section, some of the approaches explored to 

date will be reviewed.

4.1. Single Focus Scanning

The simplest option for exposing a target volume that is larger than the acoustic focus is to 

scan the beam to provide the desired spatial coverage (Figure 8). Although in many cases 

mechanical scanning of a fixed-focus, single-element transducer is capable of providing the 

increased spatial coverage needed to treat large volumes, electronically steered phased arrays 

can do it faster and with more control over the energy deposition [119, 120]. For thermal 

FUS therapy, simple circular patterns simulating those used in the early hyperthemia 

treatments [121] have been proposed. When using this approach, the focal spots should be 

scanned fast enough to avoid excessive temperature fluctuations [122] such that the thermal 

dose can be accurately calculated based on temporally sparse temperature sampling (on the 

order of seconds per image [123]). For the rapid thermal ablation of large volumes, this 

means that at each focal spot the sonications should be repeated at a period of approximately 

600 ms, and they should be positioned close enough to each other such that a uniform 

thermal dose is delivered [81].

For FUS treatments that utilize preformed microbubbles, repeat sonications are performed 

after new bubbles have been perfused into the focal volume. For ultrasound-mediated blood-

brain barrier (BBB) opening, most of the experiments reported to date have used a repetition 

interval of 1 s [46], although longer intervals may provide better bubble recovery [124]. For 

cavitation-cloud histotripsy, the repetition time is typically shorter (1-100 ms), while for 

boiling histotripsy sonications a 1-2 s interval seems adequate [54]. Similarly, for tissue 

vaporization [125] the focal location could be held constant for the 0.5 s needed to form a 

cavity before moving on to the next location.

4.2. Aberration Correction

An important feature of phased arrays is that they can correct for wave-front aberrations 

induced during acoustic propagation through heterogeneous media by varying both the 

phase and amplitude of the individual transducer elements, which is particularly important in 

transcranial [126, 127, 128, 129] and transcostal [130, 131, 132] applications. The necessary 

aberration corrections can be obtained using various methods, including acoustic 

measurements with a small transducer [127], hydrophone [126, 128, 133], or acoustically-

stimulated microbubble [134, 135, 136, 137] placed near the desired focal point, pitch-catch 

[138] or pulse-echo [139] ultrasound measurements, MR acoustic radiation force imaging 

(ARFI) [140], as well as patient-specific ultrasound propagation simulations using MRI 

[141, 142, 143] or computed tomography (CT) [144, 145, 146] scans to define the 

computational domain. Such imaging-based approaches have been proposed to determine 

which array elements should be switched off during transcostal FUS treatments to avoid 

overheating the ribs [147, 148].
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4.3. Advanced Sonication Patterns

Phased arrays can also use the amplitude and phase of the driving signals to change the 

focus shape or generate multiple foci simultaneously (Figure 9). Cain and Umemura were 

the first to exploit this capability of ultrasound phased arrays to generate a ring-shaped focus 

[149, 20], and ultrasound field optimization methods were subsequently developed to allow 

optimal field generation [150, 151]. This method has been studied for both hyperthermia 

[150, 151, 152, 153, 154] and thermal surgery applications [155, 21, 120], and more recently 

in the context of neuromodulation [156]. Furthermore, the quick scanning of several multi-

focus patterns could be used to generate optimal heating patterns [81]. The advantage of 

multi-focus approaches over scanning a single focus is that the peak acoustic pressure is 

reduced; an important feature if inertial cavitation is to be avoided. Finally, the control over 

the phase and amplitude of the driving signals of large aperture phased arrays also allows 

pressure field minima to be generated at critical locations where energy deposition should be 

minimized [157], which may have use in specific applications of transcranial FUS brain 

therapy [158].

5. Image Guidance

The non-invasive nature of FUS therapy necessitates the concurrent use of technology that is 

capable of performing precise ultrasound beam targeting, therapy monitoring, and post-

treatment evaluation. To date, three major medical imaging methods have been used for 

these purposes: X-ray/CT, ultrasound, and MRI (see reviews [159, 12, 160]). For image-

based targeting, the chosen modality should be able to ensure correct patient positioning, 

clearly delineate the target region, identify an appropriate acoustic window for the beam 

path through the intervening tissue, and locate the focal zone within the target tissue. For 

treatment monitoring, it is necessary to detect and confirm the target location prior to 

producing irreversible damage, monitor or predict tissue damage and lesion formation as it 

occurs in the target zone, and provide feedback with regards to potential unintended heating 

or tissue damage outside the intended target zone. Finally, the ability to evaluate the 

therapeutic effects after completion of the ultrasound exposures is also important from a 

treatment verification perspective. The following section will review the different medical 

imaging methods used for FUS therapy guidance, and discuss the benefits and drawbacks of 

each modality in this context.

5.1. Magnetic Resonance Imaging Guidance

MRI has two major advantages for guiding FUS therapy compared to other alternative 

methods. First, its excellent soft-tissue contrast allows for the accurate delineation and 

boundary mapping of both the intended target region as well as the treated volume post-

therapy. Second, MRI can map ultrasound-induced temperature elevations in tissue (see 

reviews: [161, 162]), and it can do so with adequate sensitivity such that the focal 

temperature elevation can be detected and localized at exposure levels that do not cause any 

harm to even the most thermally sensitive tissues [163]. This unique ability can be utilized to 

ensure precise targeting before applying therapeutic sonications, ensure accurate mapping of 

the thermally coagulated tissue volume, as well as to monitor heating in surrounding tissues 

outside of the intended treatment zone. Although several MR parameters are temperature 
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sensitive, at present only MR-thermometry based on the dependence of the proton resonance 

frequency-shift on temperature [164, 165] has been shown to be capable of quantitative 

temperature monitoring during clinical treatments. This approach has been shown to have 

good temperature sensitivity and linearity in most tissue types, but is highly sensitive to 

tissue motion and is not temperature dependent in either fat or bone [166, 167]. MR-ARFI 

has also been proposed as a method for detecting the focal spot location in situ during FUS 

treatments [168].

In MR-thermometry, multiple temperature maps are obtained during each sonication to 

provide a time history of the temperature elevation that can be used to calculate a thermal 

dose map [169], which gives an indication of the tissue effects resulting from the thermal 

exposure [170]. The manner in which individual sonications are placed to cover a given 

treatment volume can vary from inducing sequential, partially overlapping focal volumes to 

more complex patterns that permit cooling of tissue between sonications. The initial 

implementations of MR-thermometry for monitoring therapy required operators to obtain 

temperature maps at each location both to ensure that sufficient heating occurred and to 

permit adjustment of sonication parameters between locations. Since then, a number of more 

sophisticated closed-loop feedback control approaches have been proposed and 

demonstrated through simulations and experiments [171, 172, 173, 174].

At the end of thermal FUS treatments, the ablated tissue is most commonly mapped through 

the use of contrast-enhanced T1-weighted imaging, which can detect perfusion-deficient 

regions indicative of vascular stasis [175, 17, 18], though both tissue stiffness measurements 

via MR elastography [176] and diffusion-weighted MRI sequences [177] have also been 

proposed for this purpose. Additionally, T2-weighted imaging can be used to detect any 

cytotoxic edema resulting from FUS therapy [178, 179]. A case example of uterine fibroid 

treatment via MR-guided FUS ablation is shown in Figure 10, illustrating the use of 

temperature monitoring to determine the ablation region, followed by treatment confirmation 

with contrast-enhanced imaging. MRI has several additional uses for monitoring non-

thermal, FUS-induced BBB opening treatments: contrast-enhanced T1-weighted imaging is 

used to detect changes in BBB permeability [46], while - or susceptibility-weighted 

imaging can monitor for the presence of hemorrhage [180].

Despite the clear advantages of MRI as a modality for guiding FUS therapy outlined above, 

it carries with it considerable purchasing and maintenance costs, which may therefore limit 

its immediate use primarily to Western countries.

5.2. Ultrasound Guidance

Despite the fact that ultrasound imagmg is largely inferior to MRI in terms of soft tissue 

contrast, it is the most widely used modality for guiding FUS therapy when the number of 

treated patients is counted globally. The main reasons for this are its low cost, compact size, 

portability, high temporal resolution, and rapid data acquisition capabilities. Ultrasound 

imaging also allows for monitoring of cavitation events over short timescales in the absence 

of thermal effects, which is not possible with current MRI methods. Indeed, the current 

clinical FUS systems for brain therapy use several hydrophones to monitor the generated 

acoustic activity to ensure that the inertial cavitation threshold is not reached [181], in order 
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to avoid potential hemorrhaging and other unwanted effects [182]. However, unlike MRI, 

ultrasound imaging is currently unable to provide reliable and precise temperature mapping 

during FUS exposures. Researchers are actively exploring the feasibility of using a variety of 

diagnostic ultrasound-derived parameters (e.g. absorption, speed of sound, coefficient of 

non-linearity) for temperature monitoring, with success so far in phantoms and pre-clinical 

experiments, though clinical demonstrations have not yet been realized [183]. Tissue 

echogenicity has been proposed as a method to indicate lesion formation [184], but its 

correlation with the coagulated tissue volume has not been precise. Nevertheless, changes in 

tissue stiffness resulting from thermal coagulation can be measured using various 

ultrasound-based elasticity methods [185, 186, 187, 188, 189], and hence may prove to be a 

useful alternative to temperature for the monitoring and control of thermal FUS treatments. 

Finally, contrast-enhanced ultrasound can be used to assess non-perfused regions as a means 

of detecting patient response to thermal FUS therapy [190].

In order to effectively harness acoustic cavitation for therapeutic purposes, the distribution of 

active microbubbles needs to be monitored and controlled during treatment. In addition, 

information regarding the response of the bubbles to the ultrasound exposures should be 

monitored to assure that the desired bioeffects are produced [191, 192, 193, 194]. Therefore, 

ultrasound imaging methods will play a key role when cavitation-based therapies are 

translated into the clinic, since they are the only means for effectively providing all of the 

aforementioned information. Traditional pulse-echo ultrasound imaging can be used to 

localize bubbles using specialized imaging sequences [195, 196, 197]. Alternatively, since 

FUS therapy exposures are already transmitting ultrasound into the tissue, the backscattered 

components of the therapy pulses can be detected, processed using passive beamforming, 

and used for imaging and control purposes. This imaging approach, termed passive acoustic 

mapping (PAM), has been proposed for acoustic source localization [198] as well as for 

seismic imaging [199], but has more recently been investigated by many research groups for 

monitoring cavitation activity during the application of FUS [200, 201, 202, 136, 203, 204, 

101]. Although the majority of the experiments to date have used commercial 1D linear 

phased arrays for PAM that are separate from the therapy applicator, it is expected that a full 

integration of the therapy and imaging arrays will provide the best results. With integrated 

arrays, the spectral information of the backscattered signals can be collected and used to 

control the subsequent exposures so that the desired biological endpoints can be consistently 

reached [205, 206]. Furthermore, integrated arrays are particularly attractive for brain 

applications, since the large-aperture hemispherical arrays used for therapy provide optimal 

imaging resolution and sensitivity for PAM [199], and enable 3D cavitation mapping 

without mechanical translation of the array [101].

5.3. X-ray and Computed Tomography Guidance

X-ray imaging can be used to determine target locations for FUS therapy relative to 

anatomical landmarks such as bones and other easily visible structures present on imaging. 

Indeed, it was the first imaging modality used for guiding FUS interventions; X-ray imaging 

was effectively used by Fry et al. to target structures in the brain during early experiments of 

FUS therapy on patients with Parkinson’s disease and various other neurological afflictions 

[4, 5]. Fluoroscopy has been investigated for guiding ultrasonic catheter systems to the 
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appropriate anatomical site [207, 208]. X-ray guidance is also used during shock-wave 

lithotripsy for kidney stone disintegration [209]. CT is used for treatment planning of FUS 

brain treatments (see section 4.2): CT-based aberration corrections are used in the current 

generation of clinical FUS brain devices [210], and have also been shown to improve image 

quality during transcranial PAM [100, 211, 212, 146]. Finally, CT imaging also has the 

potential of detecting thermal effects during FUS treatments through the dependence of 

tissue density on temperature [213]. However, compared to other imaging modalities, X-ray 

and CT imaging suffer from relatively poor soft-tissue contrast and can deliver high 

radiation doses to both the patient and medical technician.

5.4. Hybrid Guidance Methods

Perhaps the most effective, yet expensive, method for guiding FUS treatments would be to 

combine the best features of each imaging modality and use them for therapy monitoring 

and control. For example, combined MR and ultrasound ARFI during thermal FUS therapy 

has been demonstrated in animal studies [214], with MR-thermometry and PAM having also 

been shown to be feasible simultaneously [215]. In the future, it is expected that a fully-

integrated transmit/receive phased array could be used with simultaneous MR imaging and 

thermometry. Ultimately, for cancer treatments, one could envision using a transmit/receive 

ultrasound phased array guided by a combined MRI-positron emission tomography (PET) 

system [216] for molecular imaging and targeted drug delivery. Such a composite system 

could utilize the superb soft-tissue contrast, spatial resolution, and temperature mapping 

provided by MRI, together with the high sensitivity to radioactive tracer molecules offered 

by PET, combined with the ability of PAM to map the locations and strength of the 

microbubble activity during FUS treatment.

6. Clinical Image-Guided Phased Array Systems

There are now several companies exploiting the therapeutic potential of FUS phased arrays, 

the majority of which are focused on device development for tissue ablation via ultrasound-

induced temperature elevations. The basic approach for thermal FUS surgery is to point the 

focal zone to a location within the target volume, sonicate to coagulate the tissue and then 

move on to the next location, thereby accumulating damage in a conformal manner over the 

entire region of interest [217, 218]. In certain clinical systems, the focus can be spatially 

scanned during the exposures to increase the coagulated volume during each sonication 

[219, 220]. At each target location, acoustic intensities ranging from 103-104 W/cm2 are 

delivered, with dwell times on the order of 1-100 s to allow the overlying tissue to cool 

between successive sonications. In the following section, the commercially available image-

guided phased array systems will be reviewed, grouped by anatomical target region in the 

body.

6.1. Pelvic

Uterine fibroids [221] (or leiomyomas) are remarkably common, benign, and often large 

tumors that can cause clinical symptoms that are so severe that surgical removal of the tumor 

is necessary. However, surgical resection can cause a large number of unwanted 

complications and is associated with long recovery times, even after minimally invasive 
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fibroid removal. Thermal ablation FUS therapy is a relatively new treatment approach for 

uterine fibroid surgery. There are currently two commercially available FUS phased array 

systems for uterine fibroid treatments [18, 219]. Both of these devices are guided by MRI 

and employ spherically-curved arrays with relatively large array elements, resulting in 

limited electronic focal steering capabilities. In these devices, which are described below, the 

phased arrays are mounted on mechanical translation devices that are built into the MRI bed. 

During treatment planning, the transducer is registered with the MRI coordinate system so 

that the computer-controlled positioning system can aim the acoustic focus by moving the 

transducer based on image-derived target locations. The transducer chamber is filled with 

liquid and covered with a thin plastic membrane for acoustic coupling.

The InSightec (InSightec, Inc., Tirat Carmel, Israel) fibroid system [18] employs a fully 

populated, hybrid sector-vortex and concentric ring phased array (12 cm aperture) design 

that allows the focal location to be controlled mainly in the depth direction with a small 

degree of lateral steering [20, 79]. The array has a total of 208 elements and operates at a 

frequency between 0.96-1.14 MHz. The system is mechanically positioned to aim the beam 

due to the limited steering range afforded from electronic focusing, and the device can also 

be rotated along two angular directions to allow the beam orientation to be controlled so that 

near- or far-field structures can be avoided. MR-thermometry is carried out during the 

ultrasound exposures for temperature and thermal dose monitoring [222, 177]. Initially, low-

power sonications are conducted to determine the focal location and assess targeting 

accuracy, followed by additional sonications at therapeutic power levels once the targeting is 

deemed to be adequate. This latest generation of this device allows for interleaved 

exposures, allowing for a greater number of sonications to be delivered in the same 

treatment time [220].

The Philips (Philips Healthcare, Inc., Vantaa, Finland) fibroid system [219] also uses a 

spherically-curved, large element array (12-14 cm aperture) to allow for beam steering in the 

vicinity of the geometric focus. A random sparse array design [90] is employed to extend the 

focal steering range at the cost of increased near-field heating. The array consists of 256 

elements, can be driven at frequencies between 1.2-1.45 MHz, and employs volumetric 

exposures controlled by feedback from MR-thermometry [174]. The current implementation 

of the controller is relatively straightforward: the array begins by sonicating at the geometric 

focus by scanning the focal volume around a 4 mm diameter circle, or treatment cell. When 

the temperature reaches a pre-defined target value the system is designed to terminate the 

sonication, though if a larger ablation volume is desired the scanning will continue with 

treatment cells of 8, 12, and 16 mm in diameter. Otherwise, if the target temperature is not 

reached within a given amount of time, the system is designed to terminate the sonication. 

The system also allows for fixed-power sonications without using the MRI-based controller.

Both of these systems have been shown to be effective in treating uterine fibroids using large 

focal spots. Clinical results have shown that the volume of thermal coagulation can be 

assessed by examining the non-enhanced volume in post-treatment, contrast-enhanced MRI 

scans [223]. This non-enhanced tissue volume has been shown to correlate with both the 

reduction of fibroid volume over time as well as the duration of symptom relief [222, 224]. 

The most notable benefit of FUS treatment for uterine fibroids has been the short recovery 
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time (one day away from normal activity, on average [225]), due to the fact that the 

treatment is completely non-invasive. This compares favorably with standard treatment 

approaches, such as hysterectomy and myomectomy [226]. However, the treatment times for 

large fibroids are still long and only a relatively small proportion of patients are suitable for 

FUS treatment with the currently available clinical systems. Fibroids that are highly 

perfused, indicated as hyperintense in pre-treament T2-weighted imaging [223], or that have 

low acoustic absorption, are difficult to heat [227]. Further complications can arise from the 

location of the fibroid: fibroids located too close to the spine or without an appropriate 

acoustic window (e.g. fibroids located behind bowel, thick fat layers, or large scars) are 

typically ineligible for treatment [220]. However, it is expected that at least some of these 

limitations could be overcome using a more optimal phased array design [228].

6.2. Bone

Metastatic bone tumors, which arise in over 50% of all cancer patients [229], with 

approximately 50-75% of these suffering from severe pain that is difficult to control [230], 

are a significant quality of life issue for advanced cancer patients. The high rate of 

ultrasound absorption in bone makes these tumors easy to heat at low acoustic powers [231]. 

Both of the FUS fibroid systems described above have been clinically tested for the 

treatment of pain caused by bone tumors, showing a quick and lasting impact on pain scores 

[232, 233], with similar pain relief observed in treating back pain using these same devices 

[234]. However, patient positioning on both systems is not straightforward, particularly as 

many patients have difficulty lying on their painful bone tumors. For this reason, InSightec 

has developed a dedicated phased array system for bone metastases, which consists of 1000 

elements operating at a frequency of 550 kHz, that can be strapped on the patient on top of 

the tumor [235]. The system has a focal steering range of approximately 30 degrees, and 

focuses the beam past the tumor, exploiting the high ultrasound absorption in bone and the 

large beam diameter in the near-field region to increase the ablated bone surface area.

6.3. Prostate

Prostate cancer is the most diagnosed cancer type in men, and despite the existence of many 

effective treatments, it is still the third leading cause of death among men from cancer in the 

United States [236]. Although surgical removal of the prostate or radiation therapy can 

effectively control the disease in many men, these treatments are associated with undesirable 

side-effects that reduce the patients’ quality of life [237]. Indeed, a method for image-

guided, precise, and non-invasive ablation of prostate tissue would be a desirable treatment 

option for these patients. The first phased array used for FUS therapy in the prostate was 

developed by EDAP TMS (EDAP TMS, Lyon, France), and exploits a 3 MHz, 16-element 

spherically curved array (5.6 cm aperture) with a concentric ring design to control the focal 

depth [69, 70]. The transrectal device contains a central disk void within which an 

ultrasound imaging probe is placed for treatment guidance [70]. The long-term results from 

this device’s single-element predecessor are comparable with other alternative therapies 

[238], but there are significant side-effects associated with the procedure, which could 

potentially be reduced or eliminated with online temperature monitoring and control. 

Although there is currently no published clinical data on the use of the new phased array 

applicator, it is expected to improve upon the previous fixed-focus device by expanding the 
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size range and therefore number of treatable prostates, providing a more homogeneous 

ablation region, and reducing the length of the procedures.

InSightec has developed a transrectal phased array that aims to minimize the shortcomings 

of the previously described prostate device by employing MRI-guidance and thermometry. 

The array contains 990 elements, operates at a frequency of 2 MHz, and is placed in the 

rectum in an inflatable water bolus similar to the ultrasound-guided array described above. 

The device is mechanically moved in the length direction and rotated to aim the focal 

volume, while the depth of the focus and its size can be controlled electronically to some 

degree. The clinical feasibility of this approach has been demonstrated in a limited number 

of patient treatments [239], though more extensive clinical testing needs to be carried out to 

determine the clinical effectiveness of the device.

6.4. Brain

Since invasive interventions in the brain can be associated with detrimental side effects and 

complications, completely non-invasive approaches for neurological disorders have a 

particularly special appeal. However, there are two main obstacles for using FUS in the 

brain: first, the high acoustic attenuation of skull bone combined with the large specular 

reflections occurring at the inner and outer skull surfaces, as well as within the bone itself, 

act to reduce the amount of transmitted energy [240] and can cause extensive heating of the 

bone [241, 242]. Second, the variable structure, thickness, and density of the skull bone, 

together with the large differences of longitudinal sound speed in bone compared to the 

surrounding soft tissues, make the skull act as a defocusing lens, shifting and diffusing the 

focal energy deposition to a degree that trans-skull tissue ablation was not feasible during 

early investigations [2]. After these early experiments, research was conducted to measure 

the acoustic properties of skull bone [240], and subsequent feasibility studies demonstrated 

that low frequency focusing through human skull bone was possible in some instances, and 

that enough energy could be transmitted to focally ablate brain tissue [243]. Around the 

same time, it was demonstrated that small-element, linear 1D ultrasound arrays could correct 

the skull-induced beam distortion based on measurements with a small hydrophone [126] or 

emitting transducer [127] at the focus.

The potential feasibility of through-skull FUS therapy became apparent with the 

demonstration that large-element, high-power 2D arrays can also correct the focal distortion 

and deliver enough energy to ablate brain tissue [128]. This study, along with subsequent 

simulation [244, 245] and experimental [246, 247] investigations, showed that large 

hemispherical arrays covering most of the available skull surface may be able to thermally 

ablate deep brain tissue. It was also shown that enhancing focal energy absorption through 

the use of cavitation bubbles could potentially provide the gains needed to reach the whole 

brain [248]. However, the other key development needed was the ability to predict the 

necessary phase and amplitude corrections for the phased array elements non-invasively. 

This was first attempted by using MRI-derived skull thickness information [141], but 

eventually both the skull geometry and density obtained from high-resolution CT scans was 

needed to reliably focus through the skull [144, 145]. This required extensive experiments to 

determine the human skull properties (i.e. longitudinal sound speed and attenuation) as a 
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function of the skull density [249], which have since been extended to include the 

dependence on the ultrasound driving frequency [250]. Cumulatively, these research findings 

were the basis of the current clinical brain treatment device [251]. Although more advanced 

methods for trans-skull focusing have been investigated (see section 4.2), the current clinical 

systems still use CT-derived information for treatment planning.

The current clinical brain device, made by InSightec, is fully populated and has 1024 

ultrasound transducer elements on a hemispherical surface (30 cm aperture) placed around 

the head of the patient (Figure 11). The array operates at frequencies between 650-720 kHz, 

which is within the range of frequencies that was shown to provide optimal thermal gains 

through human skull bone [245, 246]. A rubber membrane is placed around the patient’s 

head and fixed to the array to allow cooled, degassed water to be circulated around the head. 

The circulating water serves two purposes; it acoustically couples the ultrasound beams to 

the head and acts to cool the skin and the bone to avoid overheating during the exposures 

[252, 253]. During FUS brain treatments, the patient is positioned in the MRI scanner with 

the array in place, and 3D T2-weighted imaging of the head is performed. Based on these 

pre-treatment images, the array is mechanically moved so that the center of the hemisphere, 

and thus the geometric focus of the array, is roughly aligned with the target volume. Next, 

pre-treatment CT scans of the skull are super-imposed over the MR images so that the two 

datasets can be registered, and the CT data is then used to calculate the phase and amplitude 

corrections needed for focusing the beam to the target location of interest. Low-power 

sonications are delivered to check the focusing quality and determine if the generated 

hotspot is located at the intended target, or whether further adjustments are needed. Once the 

target and hotspot are aligned, the power is increased and the sonications are repeated until 

the desired temperature elevation (absolute temperature = 55-60 °C) is reached for 

irreversible thermal coagulation.

Although this technology was first tested for the treatment of tumors [210], currently the 

most experience is found in treating essential tremor, which has found good clinical success 

[254, 255, 256]. Ultrasound-induced thermal ablation in the brain has now been used in 

patients with tumors [257, 210, 258], chronic pain [259, 181], mental disorders [260], and 

Parkinson’s disease [5, 261], with many other indications undergoing either pre-clinical or 

early-phase clinical testing [262].

6.5. Other tumors

As illustrated by the above examples, image-guided FUS phased arrays can be used to ablate 

a variety of tumors deep within the body in a clinical setting. Therefore, these general-

purpose devices have been used to treat breast [263], liver [264], kidney [265], and other 

tumors [266]. Specialized phased array devices that are adapted to specific anatomical 

requirements have also been proposed. For example, two phased array systems have been 

proposed for breast tumor treatments [267, 268], both of which are entering clinical testing. 

Both of these devices suffer from limited electronic steering ranges and therefore rely on 

mechanical device translation for therapy targeting.
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7. Experimental Image-Guided Phased Array Systems

The technical potential of FUS phased arrays has not been fully exploited in the current 

generation of clinical systems, and thus it is expected that large gains in treatment execution 

will be achieved by fully utilizing this technology. As explained previously, there have been 

some technological barriers preventing the full utilization of ultrasound phased arrays for 

therapy, but it appears that the development of fully electronically-steerable arrays is now 

feasible. In the following section, we will provide a brief summary of the research reports 

describing these more advanced phased array systems.

7.1. Pelvic and Abdominal

Although the current clinical treatments of uterine fibroids using FUS have shown great 

effectiveness to date, the treatments are slow and many patients do not pass the inclusion 

criteria (see section 6.1). A recent simulation study indicates that faster and deeper 

treatments could be executed if fully electronically-steerable arrays were to be used [228]. 

For treatment applications in the abdomen, such as liver and kidney tumors, the organs move 

so extensively and rapidly that fast steering is required in order to properly track this motion 

[269, 270], and the presence of the ribcage presents an additional obstacle. Several groups 

have developed phased array prototypes for transcostal FUS treatments [271, 272, 131, 132, 

147], together with aberration correction techniques to focus behind the ribs (see section 

4.2). However, it is expected that the implementation of fully electronically-steerable arrays 

will have a large impact on the execution of these thermal treatments by allowing 

sonications from a stationary device. This is particularly important for long-duration, mild 

hyperthermia treatments executed under MR-thermometry control for localizing drug 

therapy [273, 274, 275], where precise temperature information is needed over the entire 

therapy. Although such treatments have been successful for small animal tumors, either with 

an experimental scanning single-element transducer [273] or with the current limited 

steering phased arrays [274, 275], the heating of large tumors in a clinical setting would be 

greatly simplified if the transducer remained stationary.

7.2. Brain

Although the previously described phased array brain system developed by InSightec is 

currently in clinical use for ablative therapies, its electronic steering range is limited to 

focusing within a few centimeters from the geometric center of the device [262]. A lower 

frequency (220-230 kHz), fully-populated phased array system has also been developed by 

InSightec, which improves upon both through-skull energy transmission and the allowable 

steering range. This device has been mainly used for pre-clinical investigations, such as 

BBB opening [276], sonothrombolysis [277], mechanical [278] and thermal [279] ablation, 

and ultrasound-induced tissue disintegration [280]. However, this device is currently 

entering into clinical testing at our institution, in a trial to examine the safety of non-invasive 

doxorubicin delivery to the brain of glioma patients using FUS applied through the intact 

skull bone.

Researchers in France have developed several higher frequency (0.9-1 MHz) phased array 

prototype systems for brain therapy [89, 136, 281]. The current generation is fully populated 
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(23 cm aperture), consists of 512 elements, and has been tested with an ex-vivo human skull 

[282] and cadavers [283]. The ex-vivo human head experiments conducted with this device 

have reported good targeting ability but insufficient temperature elevations for successful 

tissue ablation [283].

At our institution, a phased array prototype with an increased steering range was achieved by 

fully-populating 1372 smaller cylindrical elements that could be driven at two main 

frequencies (306 and 840 kHz) onto a hemispherical shell (30 cm aperture) [107]. The use of 

cylindrical elements provided an opportunity to place ultrasound receivers in the middle of 

the transmitters, and in a later study a combined transmit/receive phased array was achieved 

by integrating a 128-element sparse receiver array within this transmit array [101]. The 

simulation-optimized sparse receiver array has been shown capable of localizing ultrasound-

stimulated microbubbles through ex-vivo human skullcaps, using similar CT-based 

corrections to those used for transmit focusing [100], both within thin-walled tube phantoms 

and in an in-vivo rat model of BBB opening [211]. In a separate study, this array was found 

capable of imaging single microbubbles in 3D through an ex-vivo human skullcap, and by 

applying super-resolution techniques borrowed from optical microscopy the bubbles were 

localized with a spatial resolution beyond the diffraction limit (Figure 12) [137]. Therefore, 

this array has the potential to allow controlled bubble-based therapies with single-bubble 

precision. This array concept has since been extended to multi-frequency transmit/receive 

mode to provide more opportunities for bubble excitation and imaging (unpublished data).

Other research groups have developed multi-frequency phased arrays for brain applications. 

Researchers in Taiwan have developed a 256-channel system (12 cm aperture) for BBB 

opening applications which allows for simultaneous dual-frequency excitation with 

operational frequencies of 400-800 kHz [284]. Similarly, in the United States, a 

simultaneous multi-frequency (0.5-3 MHz) system (6.5 cm aperture) for histotripsy has been 

developed that can provide highly controllable, short (i.e. monopolar), high-amplitude 

ultrasound pulses for tissue disintegration [42]. The same group has also developed a large 

element, single-frequency (500 kHz) hemispherical (30 cm aperture) phased array prototype 

for transcranial histotripsy, which consists of 32 elements [285].

7.3. Cardiac

Cardiac ablation for the treatment of arrhythmia using ultrasound catheters was first 

demonstrated in animals over 20 years ago [286], but it has not progressed to clinical 

practice. However, there has now been renewed interest in developing intra-atrial catheters 

for either ultrasound or MRI-guided cardiac ablations. The main advantages of ultrasound 

devices compared to RF or laser-based devices are that thermal coagulation is more 

predictable, and it can be induced at greater depths using acoustic energy [287]. Small 

catheter-mounted, high-frequency CMUT phased arrays have been developed for this 

purpose and have shown to be capable of inducing thermal ablation [288]. Phased arrays 

may offer a less invasive approach via the trans-esophageal route routinely used for cardiac 

imaging. Simulation studies [289] have demonstrated the feasibility of this approach, and the 

practical development of such arrays has been promising [290, 291], however, fully 

electronically-steerable arrays for this purpose have not yet been realized.
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7.4. Drug Delivery and Gene Therapy

Both cavitation- and hyperthermia-mediated approaches for targeted drug delivery and gene 

therapy (see section 8.2.2) require at least an order of magnitude lower time-averaged 

powers than those used for ablation, and therefore some of the issues associated with the use 

of phased arrays are reduced in severity. Recently, a combined therapy and imaging 

ultrasound phased array utilizing CMUT technology was developed and experimentally 

tested, showing promise for ultrasound-guided drug delivery [292].

7.5. Atherosclerosis

A recent simulation study [293] showing that FUS can be used to target and ablate 

atherosclerotic plaques, under diagnostic ultrasound guidance, has given hope that 

ultrasound can potentially modify the progression of such plaques in vivo. In this study, 

simulations were performed using a spherically-curved composite therapy array that had a 

limited electronic steering range

8. Future Developments

Both the current commercially available FUS technology and imaging-based treatment 

guidance methods are sub-optimal, and stand to benefit from the potential offered by fully 

electronically-steerable phased arrays. Similarly, the various interactions between ultrasound 

and biological tissues have not been fully exploited to date, and there are many new 

therapeutic opportunities in this regard. The following section will outline the expected 

future technical developments of image-guided FUS devices and potential new clinical 

applications of FUS therapy.

8.1. Technical Developments

With laboratory research demonstrating that the development of fully electronically-

steerable arrays is feasible, one can expect several advances with the next generation of 

clinical image-guided FUS systems. First, with the elimination of mechanical parts to move 

the applicator, the reliability of the system should increase and the manufacturing costs 

should be reduced. Second, electronic focusing could be used to track moving targets at 

speeds that are not possible with current mechanical systems, which will be critical for 

ablating moving organs such as the heart and liver. Third, with large aperture, 2D phased 

arrays the ultrasound field for each sonication could be tailored to compensate for distortions 

induced by overlying tissues, minimize the pressure amplitude sensed by critical structures, 

and optimize the spatiotemporal distribution of the energy delivery, thereby reducing 

treatment times and providing better control over the treatment volume. Therefore, it is 

expected that the introduction of fully electronically-steerable phased arrays will make the 

majority of current treatments more effective and efficacious, as well as make other 

treatments feasible, thus taking a major step forward in the widespread clinical adoption of 

FUS technology.

8.2. Potential New Clinical Applications

8.2.1. Vascular Applications—Both thermal and cavitational bioeffects can have an 

impact on the vasculature within tissue [294]. For example, thermal coagulation of blood 
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vessels has been shown to result in complete cessation of blood flow [295, 296]. Ultrasound-

induced hemostasis has been investigated in animal models for the emergency treatment of 

vessel rupture [297, 298] as well as for reducing bleeding during liver surgery [299]. 

Therefore, ultrasound phased arrays may have a future role in emergency medicine or in 

military medical care. Since portable devices are required for these applications, the FUS 

beams would likely need to be guided using ultrasound-based methods.

To date, acoustic cavitation has not been exploited for therapy delivery to the same degree as 

the thermal effects of ultrasound have been. Part of the reason for this is that cavitation 

interactions with tissue are more complex than thermal interactions, and furthermore, that 

there is not the same volume of basic science studies in the literature that can be used to 

guide treatment development. In addition, historically there has been a fear that cavitation 

could promote the spreading of cancer cells in tissue [300, 301, 302], though modern 

evidence now points to the contrary [303, 304]. Another valid concern is that cavitation can 

lead to large blood vessel ruptures and bleeding, which has been observed in some pre-

clinical experiments [182]. However, over the past decade or so it has become evident that 

the majority of our understanding of acoustic cavitation in tissue has been based on studies 

that used ultrasound parameters either similar to or more severe than those used for inducing 

thermal effects, and that these exposure levels are much higher than those needed for 

inducing many desirable cavitation-mediated bioeffects. It has also been discovered that 

cavitation offers a wide range of biological effects on tissue and the vasculature, and that 

microbubbles are highly effective energy concentrators, which has enabled non-thermal FUS 

therapy with orders of magnitude-reduced energy delivery. This is especially important when 

treatments behind highly attenuating barriers, such as the skull or ribs, are considered.

There are many potential new applications of FUS that harness the interactions of ultrasound 

with microscopic gas bubbles, and indeed, cavitation-mediated therapy will continue to be 

an active area of both basic and clinical research. Perhaps the most exiting clinical 

applications that may arise from ongoing pre-clinical work are related to the ability of 

inducing focal and transient opening of the BBB non-invasively using FUS in combination 

with preformed microbubbles injected into circulation [46]. Extensive pre-clinical work has 

demonstrated that almost any molecule, particle, viral vector, or cell can be delivered to an 

MRI-identified location in animal brain using this technique [51, 305, 306, 307]. It has also 

been shown that the delivery of these agents can be effective in animal disease models, with 

huge potential for treating brain tumors [308, 309, 310], Alzheimer’s disease [311, 312], and 

Parkinson’s disease [313], just to name a few. The safety profile of FUS-induced BBB 

opening in large animals has been very promising [276], and the first human treatments have 

recently begun at our institution, in which we are non-invasively delivering doxorubicin to 

the brain of glioma patients to determine the clinical safety of the technique.

In embolic stroke patients, blood flow to part of the brain is blocked by a blood clot in the 

cerebral arteries. Ultrasound alone at high-pressure amplitudes has been used to disintegrate 

such clots in animal models, resulting in quick restoration of blood flow [314]. The same 

method may work for restoring blood flow in other blocked vessels, such as deep-vein 

thrombosis [315] or coronary artery occlusions [316], and may also aid in dissolving blood 

clots in the brain’s ventricles [317]. An alternative approach is to use low-pressure amplitude 
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ultrasound in combination with thrombolytic agents (e.g. tissue plasminogen activator (tPA)) 

to accelerate blood clot lysis, the effectiveness of which has been demonstrated in human 

patients [318]. In the presence of lytic agents, the addition of contrast agent microbubbles 

could further reduce the pressures [319] and/or tPA doses [320] required for thrombus 

dissolution. Clinically, microbubble-mediated strategies have demonstrated enhanced 

recanalization rates in ischemic stroke [321] and are under continued investigation in the 

treatment of myocardial infarction.

Both FUS-induced BBB opening and sonothrombolysis treatments would greatly benefit 

from the use of fully electronically steerable transmit/receive phased array systems, both to 

increase the effective treatment envelope within the brain and to allow for the spatiotemporal 

monitoring of cavitation activity during the procedures. The use of a phased array system 

with a large steering range is particularly important for FUS treatments for both Alzheimer’s 

and Parkinson’s, which, particularly in late disease stages, are associated with neural 

degeneration over large cerebral volumes [322, 323]. Similarly, in sonothrombolysis for 

ischemic stroke, occlusions at superficial locations such as the posterior [324] or anterior 

[325] cerebral arteries could potentially be targeted with a large steering range device. 

Finally, as correlations between the acoustic emissions generated during both FUS-induced 

BBB opening [194] and sonothrombolysis [193] procedures and the associated treatment 

outcomes have been reported, the incorporation of the spatial information obtained from 

PAM into existing control algorithms [206] would greatly improve the practicality of such 

non-thermal FUS treatments.

8.2.2. Drug Delivery and Gene Therapy—FUS can be used to effectively localize and 

enhance drug delivery and gene therapy treatments through several mechanisms [326]. As 

discusssed in section 7.1, localized mild hyperthermia can release drugs from temperature-

sensitive carriers within a confined, image-defined tissue volume. Here, the focal 

temperature elevation acts to increase the local blood flow of the tissue, further enhancing 

the drug toxicity in that region. In a similar fashion, elevated temperatures can be used to 

initiate focal gene therapy within the heated volume [327, 328]. Microbubbles can also be 

used for drug and gene delivery in several ways [329, 330]. For example, therapeutic drug-

carrying microbubbles can be created by incorporating molecular payloads either onto the 

shell of the bubble or within its core. Upon ultrasound stimulation these molecules can be 

effectively released within the focal volume and subsequently delivered to the endothelial 

cells in tissue [331]. Alternatively, ultrasound-stimulated microbubbles can also be used to 

enhance the local permeability of blood vessel walls [332] and even cell membranes [333], 

which can be combined with the co-administration of various therapeutics for enhanced 

delivery. Finally, low-power ultrasound exposures combined with the injection of preformed 

microbubbles can activate sonosensitizer agents in a similar manner to how light activates 

photosensitising drugs in photodynamic therapy [334]. This approach is commonly referred 

to as sonodynamic therapy, which was initially proposed by Unemura et al. [335], and many 

research papers have since demonstrated its high effectiveness in animal tumor models using 

various therapeutic agents [336]. All of these ultrasound-mediated drug and gene treatments 

would benefit from precise control of the acoustic field, possible only by using phased 

arrays.
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8.2.3. Nerves—Another promising use of FUS is for inducing either permanent or 

temporary nerve blockages [337], which has potential for applications in pain control [338], 

and may also be used to reduce muscle spasticity [339]. There has also been research 

demonstrating that ultrasound exposures alone can be used for neurological stimulation, 

inhibition, or modulation in humans [340, 341, 342]. Similarly, high-frequency ultrasound 

stimulation may have therapeutic potential for use in a retinal prosthesis [343]. The physical 

mechanisms underlying these findings are currently unclear, but the precise control of the 

applied ultrasound field provided by phased array applicators would make these treatments 

more practical.

8.2.4. Cosmetic Treatments—Since the early pre-clinical MRI-guided FUS studies it 

has been known that ultrasound can be used to thermally coagulate fatty tissues, and that the 

tissue is subsequently absorbed by the body. This ability of FUS to reduce fat was 

recognized by the cosmetic industry and is the most commercially successful use of FUS in 

humans, with several commercial devices on the market [344, 345]. Similarly, the use of 

focal thermal coagulation for the shrinkage of tissue has been investigated for skin-

tightening using an FDA-approved device [346, 347]. Cosmetic treatments employing FUS 

might also benefit from phased array technology.

9. Conclusions

There is an increasing number of ways in which ultrasound can be used to manipulate 

biological tissue in vivo. FUS provides a way to deliver ultrasound exposures deep inside the 

body under image-guidance for precise anatomical targeting, treatment monitoring and 

control. To date, only a very small proportion of the total potential of FUS technology has 

been explored in clinical practice, and it is therefore expected to have a huge impact on 

patient care in the future. The ultrasound phased array technology reviewed here will enable 

optimal control and monitoring of the deposited energy with high spatial and temporal 

resolution. In addition, this technology may provide a way to manufacture clinical devices at 

reduced costs and, as a result, help expand the availability of such high-end medical care to 

low-income countries.
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Figure 1. 
Diagram of a single-element therapy transducer and its accompanying RF-driving line. For 

multi-element phased arrays, this driving line is repeated for each individual element.
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Figure 2. 
Axial intensity plots for various spherically-focused, single-element transducers. (a) 

Transducer diagram. The effects of varying the (b) radius of curvature (ROC; f = 1 MHz, D 

= 50 mm), frequency (f; ROC = 90 mm, D = 50 mm), and diameter (D; f = 1 MHz, ROC = 

90 mm) were simulated for conditions of linear ultrasound propagation in water.
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Figure 3. 
Diagram demonstrating electronic beam steering on transmit with a lD linear array by 

adjusting the time at which individual elements are excited.
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Figure 4. 
Normalized axial pressure fields are plotted for 2D arrays (5 cm × 5 cm) with (top row) 32 × 

32 2λ-spaced, (middle row) 64 × 64 λ-spaced, and (bottom row) 128 × 128 λ/2-spaced 

point source elements (2 MHz). Simulation results are shown for the case of electronic 

focusing to (0,4) cm (left column) and (4,4) cm (right column), for conditions of linear 

ultrasound propagation in water. Grating lobes are formed with the λ- and 2λ-spaced arrays, 

which become more prominent as the beam is steered away from the array's central axis.
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Figure 5. 
Performance of flat, 2D random sparse arrays for FUS therapy [96]. (a) Lateral pressure 

profiles of random sparse arrays are shown with a different number of active elements 

relative to the full array (500 kHz, 4912 elements, element spacing = λ/2), which 

demonstrates good focal quality even with 253 of active elements. (b) Near-field temperature 

(T) elevation as a function of the acoustic power required to obtain the same focal 

temperature for each of the arrays, demonstrating that both the near-field heating and 

required power increase with increasing array sparsity.
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Figure 6. 
(a) Peak focal intensity as a function of the number of phase increments, normalized to the 

case of infinite phase resolution. (b) Impact of phase resolution on the intensity peak 

sidelobe ratio. Simulated data for a fiat, 2D array (1.1 MHz, 128 × 128 elements, element 

spacing < λ/2) focused to (0,0,30) mm. The plots were re-drawn based on the data reported 

in the original article [104].
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Figure 7. 
Diagram of PZT elements driven in thickness mode and lateral coupling mode [108]. (a) A 

single layer PZT element driven in thickness mode. (b) A two-layer PZT element driven in 

thickness mode. (c) A two-layer lateral mode PZT element. The overall dimensions (t = 

thickness, l = length, w = width) are the same for all three PZT elements.

Hynynen and Jones Page 48

Phys Med Biol. Author manuscript; available in PMC 2017 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
(a) Example of a sonication raster pattern used to generate extended lesions [96]. Each of the 

five sonication cells contain 25 foci, shown in detail in the middle cell. (b) Simulated lesion 

projections (axial plane) for a fiat, 2D array (500 kHz, 4912 elements, element spacing = 

λ/2) with maximal temperatures of 60°C using a single sonication cell. The inner and outer 

contours correspond to 5 s and 20 s sonications, respectively [96].
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Figure 9. 
Demonstration of multi-focus sonications using a phased array transducer [21]. The acoustic 

intensity deposition pattern (a,b) and lesion boundaries (c,d) obtained with a spherically-

curved, 2D array (1.5 MHz, 256 elements). In (c,d), the maximum temperature level was 

100°C (dotted line), 90°C (dashed line), 80°C (chained line), and 70°C (solid line). Plots 

(a,c) are axial planes (y = 0), while (b,d) are lateral planes (z = 7.9 cm).
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Figure 10. 
Overview of MR-guided FUS therapy for uterine fibroids. (a) Pre-treatment, axial T2-

weighted MR image with a schematic of the array (Philips system) overlaid in orange. (b) 

Axial MRI-derived temperature map obtained during treatment. Axial contrast-enhanced T1-

weighted images taken (c) immediately and (d) 3 months after the treatment.
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Figure 11. 
Overview of MR-guided FUS therapy for essential tremor. (a) Pre-treatment sagittal MR 

image shows the orientation of the patient relative to the hemispherical transducer array, 

along with the circulating water for acoustic coupling and skull cooling. (b) Coronal MRI-

derived temperature map obtained during treatment, with the patient's skull overlaid in 

green. (c) MRI-derived temperature profile near the focus during therapy, with curves for the 

mean temperature within a 3×3 pixel region of interest (ROI), along with the central pixel 

value. (d) Axial T2-weighted MR image of the same patient shows a lesion in the patient's 

left thalamus (denoted by red asterisk) 1 day post-treatment.
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Figure 12. 
An experimental transmit/receive array under development for trans-skull therapy and 

monitoring [137]. (a) Photo of the fully populated hemispherical transmit array with an 

optimized sparse receiver array. (b) Experimental setup for imaging microbubbles within a 

tube phantom through an ex-vivo human skullcap using the array. (c) Microbubble locations 

superimposed over a micro-CT of the tube phantom containing the bubbles.
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