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ABSTRACT

Evidence indicates that the mechanisms controlling photosynthesis efficiency also regulate plant response
to biotic and abiotic stress. Light-induced cell death is genetically maintained for the control of innate
immunity. In a recent study we showed that the expression of AtWDR26 was induced by light, multiple
plant hormones, and abiotic stress; increased AtWDR26 strongly upregulated gene groups related to
chloroplast metabolism, disease resistance, and abiotic stress tolerance. Gain- and loss-of-function
analyses in transgenic plants demonstrated the involvement of AtWDR26 in signaling pathways; these
controls were osmotic as well as salt stress tolerance. More detailed transcriptome evidence suggested
that AtWDR26 was a powerful inducer of gene expression associated with chloroplast metabolism. This
included the electron transport chain of the photosystem, carbohydrate synthesis, and enzymatic activity
involved in photorespiration. Moreover, genes in auxin synthesis (and perception) constituted a significant
portion of those that were upregulated. Gene expression involved in disease resistance, control of cell wall
flexibility, Zn uptake, and AP2/ERF transcription factors was also be upregulated. We concluded that
AtWDR26 is one component in the regulatory network between light-regulated plant growth and the
adaptation response to disease resistance and abiotic stress. Auxin signal acts downstream for AtWDR26
regulation and the adaptation response to biotic and abiotic stress: this occurs through modulating cell
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wall flexibility, Zn homeostasis, and controlling stress-related transcription factors.

Light is the most essential environmental factor for plant
growth and development. Plant cells have evolved a highly
responsive and flexible system to cope with excess excitation
energy, generated by high light stress. Efficient acclimation to
high light growth conditions is relied on a proper communica-
tion between chloroplast signals and nucleus gene expression.
Accumulating evidence suggests the involvement of cellular
pathways, including redox signals derived from the electron
transport chain, carbohydrate metabolism, and phytohormones
for chloroplast retrograde signaling.! In a previous study, we
characterized the function of the Arabidopsis WDR gene,
AtWDR26.> The homolog of AtWDR26 plays a role in the cellu-
lar pathway of H,O,-induced cell death.” The AtWDR26 tran-
script was regulated by light and the phenotypes of transgenic
seedling overexpressing AtWDR26 and T-DNA knockout lines
exhibited changes in light-regulated seed germination and seed-
ling growth.” More evidence indicates that the function of
WDR family proteins act as scaffolding for diverse cellular
pathways.* The 3 largest groups of upregulated genes in trans-
genic seedlings overexpressing AtWDR26 are gene groups for
metabolism, stress response, and transcription regulation.” A
detailed analysis of the AtWDR26-induced transcriptome
revealed a large number of upregulated genes for chloroplast
function, including photochemical reaction, carbohydrate syn-
thesis, and photorespiration enzymes; moreover, genes corre-
lated with sugar metabolism constituted the largest portion in
this gene group (Fig. 1A). Photochemical reactions and

peroxisome-associated reactions play important roles in high
light acclimation.” Sugar metabolism is essential to plant cell
acclimation to excess light energy.® Several phytohormone sig-
nals are associated with the regulation of chloroplast retrograde
signaling; this includes salicylic acid (SA), abscisic acid (ABA),
and jasmonic acid (JA) in the chloroplast retrograde system.”
However, overexpression of AtWDR26 can significantly upre-
gulate genes involved in auxin synthesis and perception
(Fig. 1B). It has been reported that carbohydrate metabolism
can regulate auxin levels via the PHYTOCHROME-INTER-
ACTING FACTOR (PIF) proteins in Arabidopsis.® Thus, it is
plausible that the increased auxin signal in transgenic plants
overexpressing AtWDR26 could be the result of increased car-
bohydrate metabolism. More evidence for the role of auxin sig-
naling in AtWDR26-regulated transcription showed increased
gene expression in transgenic plants. These are genes involved
in cell wall flexibility, which constituted a large portion of upre-
gulated genes (Fig. 1C). Auxin is an important hormone in cell
growth regulation that works through the modulation of cell
wall flexibility.” Cell wall metabolism is closely correlated with
the acclimation response to abiotic stress.'” Overexpression of
AtWDR26 also upregulated genes in the control of Zn homeo-
stasis (Fig. 1D), which is an important constituent of superox-
ide dismutase (SOD) functioning for the removal of oxidative
stress derived from the electron transport chain in the chloro-
plast.'' Tt is reported that exogenous auxin increases CuZn
SOD levels in the tomato.'” Auxin also plays a protective role
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Figure 1. Selective upregulated gene groups in the transcriptome overexpressing AtWDR26. Transcriptome of transgenic Arabidopsis seedlings overexpressing AtWDR26
was analyzed by a DNA microarray. Upregulated genes associated with chloroplast signaling (A), auxin signaling (B), cell wall flexibility (C), Zn uptake (D), transcription fac-
tors of AP2/ERF family (E), and disease resistance (upregulation levels > 5-fold) (F).
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Figure 2. Model for AtWDR26s role in plant growth and defense response. AtWDR26 is one component in the signaling pathway controlling light-regulated growth and
development. AtWDR26 could modulate auxin signaling through chloroplast function modification. Auxin signal can act downstream to regulate the adaptation response
to light stress, as it modulates cellular pathways in cell wall flexibility and Zn homeostasis. Auxin also controls the ET/JA-mediated transcription regulation, which in turn
governed by AP2/ERF transcription factors.



in photosynthesis by remodeling its apparatus against photoox-
idative inhibition."> Hence, transcriptome evidence suggests
that AtWDR26 might regulate physiological response to oxida-
tive stress, which occurs through modulation of auxin signaling
in plant cells.

Overexpression of AtWDR26 upregulated expression of
AP2/ERF transcription factors and genes involved in disease
resistance (Figs. 1E and F). Among these AP2/ERF transcrip-
tion factors, the expression of C-repeat binding factor 1 (CBFI)
and REDOX RESPONSIVE TRANSCRIPTION FACTORI
(RRTFI) was induced at 13.8 and 8.3 folds, respectively, in
transgenic seedlings, which overexpress AtWDR26.” CBF1 plays
a role in the H,O,-triggered chloroplast retrograde signaling in
response to stress.'* The RRTFI transcript has a rapidly-
induced switch from low light to high light conditions.'” Ethyl-
ene (ET) and JA are 2 crucial hormones in plant cells that adapt
to biotic and abiotic stress through regulation of AP2/ERF fam-
ily transcription factors.'® Transgenic seedlings overexpressing
AtWDR26 exhibited altered sensitivity to ET and JA, and up-
regulated gene expression involved in ET and JA synthesis.”
The stimulating role of auxin on ethylene synthesis has been
systematically studied (Abel et al., 1995). A positive relation-
ship between the auxin and JA signal was also demonstrated, in
which auxin-responsive factors like ARF6 and ARF8, and a
member of the AUX/TAA family like IAAS8 regulate maturation
of floral organs by controlling JA synthesis."”'® It is plausible
that increased auxin, signaling by the overexpression of
AtWDR26, can lead to an increased defense response by the
ET/JA-mediated signaling pathway. We propose that
AtWDR26 is a regulator in controlling plant growth in its
response to light quality and quantity. Auxin signaling acts
downstream to AtWDR26, and controls cellular pathways for
oxidative stress protection and tolerance acquisition for biotic
and abiotic stress (Fig. 2).
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