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Abstract

Cardiac myocyte-fibroblast electrotonic coupling is a well-established fact in vitro. Indirect 

evidence of its presence in vivo exists, but few functional studies have been published. This review 

describes the current knowledge of fibroblast-myocyte electrical signalling in the heart. Further 

research is needed to understand the frequency and extent of heterocellular interactions in vivo in 

order to gain a better understanding of their relevance in healthy and diseased myocardium. It is 

hoped that associated insight into myocyte-fibroblast coupling in the heart may lead to the 

discovery of novel therapeutic targets and the development of agents for improving outcomes of 

myocardial scarring and fibrosis.

This article is part of a special issue entitled “Exploring Fibrosis as the Next Target for Myocardial 

Remodeling.”
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1. Introduction

Although cardiac function is governed by the contractile ability of cardiac myocytes, 

fibroblasts are one of the more numerous cell populations in the heart. While previously 
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thought to be electrical insulators without exception, we now know that fibroblasts may be 

electrically connected among themselves, and with myocytes.

Fibroblasts are key players in myocardial remodeling in response to disease and injury, 

proliferating (or being recruited from progenitors within and outside the heart) and 

differentiating into an activated phenotype that produces excess extracellular matrix (ECM) 

proteins, thereby helping to protect the heart from overdistension or rupture. While 

potentially of mechanical benefit, altered/increased fibroblast activity may contribute to 

cardiac arrhythmias, and may thus be a critical factor in disease progression. The purpose of 

this review is to examine the current knowledge on myocyte-fibroblast biophysical coupling 

in the heart, to sum up how this coupling changes in disease, to identify the steps needed 

toward a deeper understanding of these interactions, and to suggest how one might try to 

target these interactions for therapeutic benefit.

2. What occurs in native tissue

2.1. Cardiac composition and cellular function

While myocytes account for approximately 65–75% of cardiac volume, non-myocytes, such 

as fibroblasts or endothelial cells, constitute more numerous cell populations in the heart. 

Fibroblasts contribute, by some accounts, up to two thirds of total heart cells in rats [1] and 

humans [2,3], although mouse models may yield lower counts (20–30%) [4,5]. It is not 

currently known whether these variations reflect species differences (do large hearts, such as 

those of human [2,3], have higher fibroblast fractions?) or methodological challenges 

(counting approaches based on prior cell isolation [1,4,5] require identical ‘relative survivals 

rates’ of the different cell types – a precondition that is difficult to prove, while 

morphometric approaches are limited by their partial tissue ‘snapshot’ nature and the 

difficulty of extrapolating from two-dimensional [2D] section data to three-dimensional 

[3D] volumes, as cells with extended processes may traverse a given histological sectioning 

plane multiple times). Fibroblasts were initially thought to serve as a structural support 

system only, generating ECM into which cardiac cells are embedded, and thus providing the 

deformable skeleton of the heart. We now know that fibroblasts are of critical importance for 

a variety of cardiac functions, and that they are extensively involved in signaling in normal 

myocardium, and in remodeling/fibrosis during cardiovascular diseases. Of note, ‘fibrosis’ is 

a term that should not be confused with fibroblast density, as it is assessed by, and indicative 

of, elevated ECM levels, specifically of collagen.

In adult heart, myocytes are ‘brick-shaped’, with lengths in the order of 10−4 m and width/

depth in the 10−5 m domain. Ventricular myocytes are organized into laterally reinforced 

laminae, 3–5 cells thick, that allow sliding of muscle layers (‘sheetlets’) during ventricular 

deformation. Long axis cell orientation (often, if incorrectly, referred to as ‘fibre’ 

orientation) varies from roughly −45° (relative to the horizontal plane of the ventricles and 

‘viewed’ from the outside) in the epicardium, to +45° in the endocardium. Sheetlet structure 

is less easily described, and – depending on cutting angle of the virtual imaging or 

mechanical sectioning plane – could range from a transmural swirl (short-axis planes) to a 

fishbone pattern (long-axis planes) [6,7]. This fish-bone pattern is important for wall 
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thickening, which is associated with a more horizontal alignment of sheetlets during 

contraction [7].

Myocytes within sheetlets are connected in the axial direction at intercalated discs where the 

mechanical and most of the electrical junctions are found (Fig. 1A). Gap junctions, 

traditionally viewed as ‘the’ substrate for transmission of electrical signals between cardiac 

cells, are highly concentrated at intercalated discs, though they are also, if to a lesser extent, 

present at lateral cell contacts (Fig. 1B) [8,9]. In keeping with this, there is anisotropy in the 

speed of cardiac action potential (AP) propagation, being fastest along the main orientation 

of cardiomyocytes, slower in the fibre-normal in-sheetlet direction, and slowest normal to 

the plane of sheetlets.

Gap junctions consist of connexin (Cx) proteins. While connexin43 (Cx43) is the most 

abundant gap junctional protein in the working myocardium, other connexins including 

Cx40 and Cx45 are found in parts of the atria and in the pacemaker and conduction system 

[10–14]. All three connexin sub-types have been reported in cardiac fibroblasts [15–17].

Individual fibroblasts in the heart also form sheet-like structures [18], which explains why 

fibroblasts in 2D tissue sections almost invariably appear to have extended ‘spindle-like’ 

processes. They are interspersed between cardiomyocytes throughout the myocardium, and 

themselves interconnected by punctate connexin junctions [15]. Fibroblasts in situ have a 

surprisingly large surface area. One fibroblast, reconstructed in an electron microscopy (EM) 

study of the rabbit sinoatrial node, was measured to have 720 μm2 of membrane surface area 

adjacent to a cluster of myocytes [18]. This only included one face of the cell membrane, 

and did not account the surface area of membrane folds or cell extensions not in direct 

apposition with the neighbouring myocytes. At the very least, the total surface area of this 

fibroblast would have been double the area it shared with the myocyte, i.e. in excess of 1,440 

μm2 [18]. This large membrane surface area highlights the ability of individual cardiac 

fibroblasts to interact, communicate, and signal with multiple homo- and heterotypic cells 

(the larger the membrane surface area, the larger the number of possible reaction and 

interaction sites), and to do so over significant distances. Such interactions may involve 

paracrine signalling, via release of growth factors and cytokines (reviewed in [19–21]), or 

occur via direct biophysical interactions through mechanical or electrical junctions (e.g. 

adhesion molecules, connexins, etc.), facilitating electro-mechanical transduction.

Defining ‘the’ cardiac fibroblast has proven difficult, as will be a common theme throughout 

this focused issue of JMCC. There is considerable variability in the developmental origin of 

cardiac mesenchymal cells [22]. The majority derive from the pro-epicardium [23]. 

Fibroblasts also originate from the epicardium by epithelial-to-mesenchymal transformation, 

followed by migration into atrial and ventricular walls where they differentiate into cardiac 

fibroblasts [24,25]. Additionally cardiac fibroblasts can originate from the cardiac 

endothelium, undergoing endothelial to mesenchymal transformation [26–28]. Although 

perhaps not frequent in normal homeostasis, other contributor pools to the cardiac fibroblast 

population include bone marrow-derived cells [8,9,10], hematopoietic cells [32], and 

mesangioblasts [33] (for review, see [34]).
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This heterogeneity in cardiac fibroblast origins contributes to the ongoing challenge of 

finding suitable cardiac fibroblast markers that are specific and inclusive. In order to 

distinguish fibroblasts from other cardiac cell types, vimentin [35–37], discoidin domain 

receptor 2 (DDR-2) [38,39], transcription factor-21 (Tcf-21) [40,41], and fibroblast 

activation protein (FAP) [42–44] have been used – however, none are strictly specific, and 

each labels only a sub-population of the overall cardiac fibroblast population(s) [44–47].

2.2. Electrophysiological properties of cardiac fibroblasts

While the electrical integration of cardiomyocytes is associated with prominent clusters of 

connexin proteins – in particular Cx43 – at intercalated discs, fibroblasts in the normal 

myocardium of murine and rabbit heart express much smaller amounts of Cx43, Cx45, and 

Cx40 [48,49]. These proteins form punctate coupling sites between fibroblasts, whose 

functional relevance is ill-explored.

In the sinoatrial node of rabbit heart, functional heterotypic cell coupling of fibroblasts and 

cardiomyocytes has been illustrated by dye transfer studies (Fig. 1C) [15]. Apart from this, 

no firm functional data on heterotypic cell coupling in healthy heart has been reported. 

Structural coupling, for example, as indicated by co-localization of Cx proteins with 

membranes of heterotypic cells in the heart, is more common than was initially appreciated. 

This underappreciation may have been caused by the gap junction size, as this is near or 

below the detection limit of the early fluorescence techniques that gave rise to the text-book 

notion of cardiac Cx distribution and function [16].

Connective tissue, and by implication the fibroblast itself, was historically thought to be an 

electrical insulator. More recent studies have shown that this is not the only possible function 

of these tissues and cells. Patch clamp experiments have shown that the resting membrane 

potential of electrically discrete fibroblasts is between −10 and −50 mV in situ [50–52]. 

Fibroblasts in tissue have a high input resistance, with values in the GΩ region [50,51,53]. 

Since fibroblasts can be electrically interconnected to other fibroblasts in vivo, their 

membrane capacitance is difficult to quantify accurately. In vitro, values of 6–11 pF have 

been recorded [54,55], though freshly isolated fibroblasts are about an order of magnitude 

smaller than what has been documented in vivo (see above). In any case, their relatively low 

membrane capacitance, combined with a high membrane resistance, could make cardiac 

fibroblasts excellent long-distance electrical signal conductors.

Fibroblasts, while not an electrically excitable cell type, are able to mimic the AP of 

electrotonically coupled myocytes, as shown in dual-cell patch clamp experiments [50,52]. 

In this setting, cardiac myocyte AP generation drives membrane polarization in the passive 

fibroblast follower (helped by high resistance and limited capacity of the latter cell type). 

Fibroblasts further experience changes to membrane resistance and potential through 

mechanical perturbation, thus potentially assisting mechano-electric feedback in the heart 

[56].

2.3. Myocyte-fibroblast coupling

Exhaustive EM studies of gap junctions in the rabbit sinoatrial node have found extensive 

coupling between myocytes, small gap junction plaques between fibroblasts, but only a 
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single gap junction-like connection between a myocyte and fibroblast [18]. When fibroblast 

gap junctions are found in tissue, either by EM or by immunolabeling studies, they are small 

and punctate, making them difficult to find, and easy to mistake for background noise or 

artifact. Nonetheless, punctate Cx immunostaining is frequently found in myocardium 

between fibroblasts and at myocyte-fibroblast heterocellular connections [16]. These 

junctions may or may not be functional, as the presence of protein does not confirm 

function.

Tunneling nanotubes, which may involve (but do not require) connexins at their point of 

contact, can provide an alternative direct link for electrotonic coupling between myocytes 

and fibroblasts [57]. These thin (20–50 nm wide) membranous tubes can stretch between 

dendritic corneal cells as far apart as 300 μm in vivo [58], and they can propagate AP from 

cell to cell [59]. While evidence of myocyte-fibroblast coupling via nanotubes has been 

shown in vivo and in vitro [57], the electrophysiological function of nanotubes in the 

myocardium in health or disease has yet to be ascertained [34].

Ephaptic coupling – a non-electrotonic form of coupling – must also be considered as a 

possible mechanism of heterocellular electrical communication. Computer models have 

shown that ephaptic effects may be present in all areas of extracellular space, not just at the 

intercellular clefts of intercalated discs between myocytes [60]. More recent experimental 

evidence demonstrates this phenomenon in cardiac tissue [61], though there is still a need to 

understand how fibroblasts may be involved, if they are engaged at all [62].

Based on the arrangement of fibroblasts and myocytes in the heart, there are at least three 

conceptual modes in which these heterotypic cells could interact electrically. These modes 

may exist in healthy myocardium, as well as in various disease states.

First, in ‘zero-sided coupling’, fibroblasts are electrically not connected to myocytes, and 

instead are separating layers of functionally-connected myocytes, serving as an electrical 

insulator (Fig. 1D). This is presumably the most common form of fibroblast 

electrophysiological integration in native myocardium.

Second, ‘single-sided coupling’ may connect fibroblasts to an electrophysiologically 

homogeneous group of myocytes (Fig. 1D). In this case, fibroblasts would serve as a passive 

load, which could affect myocyte electrophysiological properties. Computer simulations 

over the past few decades have shown that functional myocyte-fibroblast coupling – by as 

few as 10–13 gap junctional channels [50] – could give rise to electrical source-sink 

relations, where fibroblasts may slightly depolarize the myocyte resting membrane potential, 

potentially accelerating pacemaker rate [50,63] or even having arrhythmogenic 

consequences [64].

Third, in ‘double-sided coupling’, fibroblasts would link myocytes that are structurally 

separated, and could serve as short (between muscle layers, Fig. 1D) or long range (in the 

case of multiple interconnected fibroblasts) conductors of electrical excitation. In vitro, this 

has been confirmed, as fibroblasts are able to electrotonically connect myocytes that are 

otherwise separated [65], passively bridging AP conduction over gaps of up to 300 μm [66]. 

If present at tissue and organ levels, this would have important effects on 
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electrophysiological behavior [67,68]. However, it is challenging to devise a conclusive 

experiment to test this possibility in native tissue, using traditional electrophysiological 

techniques. This is because the high membrane resistance of fibroblasts makes them 

excellent passive followers of an electrical source signal. While this is good for passive AP 

conduction, it is bad for experimental identification in situ – as well-coupled fibroblasts will 

be ‘voltage-clamped by coupled myocytes’ to passively display a myocyte-like AP.

3. What is different in a dish

Some of the above already points to differences between the in vivo and in vitro settings, 

such as increased electrical coupling of cells in a dish, compared to native myocardium. 

There is more.

Freshly isolated fibroblasts are small and rounded, without the membrane extensions and 

processes they possess while in situ (by the way: this reinforces the concern about cell 

quantification approaches that are based on prior isolation of cardiac tissue components). 

Their diameters are in the 7–9 μm range [54,69,70], and their membrane resistances are an 

order of magnitude higher than in fibroblasts assessed in situ [52,55].

Isolated atrial and ventricular fibroblasts ‘carry through’ to the dish some of their differences 

in morphology, with atrial fibroblasts being more elongated than ventricular fibroblasts [71]. 

When cultured, fibroblasts undergo a phenotype transition to myofibroblasts, induced, in 

part, by the large increase in substrate stiffness (from 10–15 kPa in native myocardium to 

GPa levels in plastic tissue culture dishes) [72–74]. This phenotype change involves 

increased expression of myofibroblast markers [75], including α-smooth muscle actin (α-

SMA) [76], increased proliferation and migration, production of (and response to) 

transforming growth factor-beta (TGF-β) [77] and – increased Cx expression [78].

As a result of the Cx overexpression, electrical coupling of myocytes and fibroblasts via gap 

junctions in vitro is well-established. Indeed, synchronized contraction of distant 

cardiomyocytes, interconnected by fibroblasts only, has been observed in vitro in some of 

the earliest cell culture studies published [65,79,80].

Fibroblasts in culture have been found to express a number of ion channels and several 

currents have been recorded in patch clamp experiments in vitro. These include voltage 

gated K+ channels with delayed rectifier currents and transient potassium currents in 

cultured rat and human cells [55,81–83]. Additionally, it is likely that Kir is a primary 

determinant of resting membrane potential in both fibroblasts and myofibroblasts in culture, 

with changes in potassium concentration affecting not only membrane polarization, but also 

fibroblast proliferation and contraction [55]. Cardiac fibroblasts contain stretch activated 

non-selective cation channels [84–87]. In a rare report, Nav1.5 expression was seen after 

long-term culture of human atrial fibroblasts [88], though this may have been a result of cell 

fusion [89] or exosome transfer [90], as no fast Na+ currents are seen in freshly isolated 

fibroblasts – defined as a non-excitable cell population.

Genetically altering the expression of Cx and ion channels in fibroblasts in vitro has 

provided vivid illustrations of plausible effects of fibroblast coupling to myocytes [91]. Cx-
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overexpression in fibroblasts has shown that coupling between myocytes and fibroblasts is 

not necessarily disruptive to conduction, and additional engineered ion channel expression in 

non-excitable cells can lead to conduction velocities close to those seen in pure myocyte 

cultures [92]. Interestingly, these genetic tools have shown potential as a therapy in post-

myocardial infarction scars, as discussed below (section 5).

Fibroblasts cannot generate AP, but their membrane potential is responsive to mechanical 

stimuli. They may respond differentially to compression and stretch [93,94]. In cultures of 

rat ventricular fibroblasts and myocytes, increased heterocellular mechanical interactions via 

adhesion proteins caused conduction slowing in cardiomyocytes [95]. This suggests 

mechanical interactions may impair conduction as a result of increased mechanosensitive 

channel activation. Thus mechanical, in addition to electrical, coupling of myocytes and 

fibroblasts may affect cardiac electrophysiology.

4. What occurs in disease

Regardless of origin, if activated by injury, fibroblasts proliferate and increase production of 

ECM – one of the mechanisms believed to contribute to the domestication of atrial 

fibrillation [96]. Atrial and ventricular fibroblasts respond differently to disease, with atrial 

fibroblasts tending to generate larger amounts of ECM [71].

In the pressure-overloaded heart, resident cardiac fibroblasts of epicardial origin contribute 

to fibrosis [97], with a minor contribution from neural crest cells [98]. In contrast, studies of 

myocardial infarction (MI) suggest that, in addition to epicardially derived resident 

fibroblasts, bone-marrow derived cells contribute up to 60% of fibroblasts in the scar 

[29,32,99,100]. While TGFβ is an important regulator of cardiac fibrosis post-MI, 

fibroblasts are also activated by interleukin-1α (IL-1α), released by necrotic myocytes, 

which may be a critical contributor to the recruitment of extra-cardiac cells to the site of 

injury [101], compared to pressure-overload models.

In the ventricles, the increase in fibroblast number and ECM deposition after MI is thought 

to help prevent wall rupture. However, the changes that occur in the injury border zone–

separation of myocytes by fibroblasts and ECM deposition, and lateralization of Cx43 (Fig. 

1B) – affect AP propagation detrimentally [102–104]. Fibroblasts also remodel 

electrophysiologically post-MI, and show more hyperpolarized membrane potentials, 

increased outward current densities [105], and increased membrane resistance compared to 

fibroblasts isolated from normal hearts [53]. Further, the alteration in connexin profiles post-

infarction can lead to increased fibroblast Cx43 expression [17,106,107]. Interestingly, 

decreased Cx43 expression in Cx43 knockout mice led to cardiac fibroblast activation and 

increased fibrosis in hearts, with a subsequent increase in arrhythmias [108].

The scar, as a whole, is formed largely by fibroblasts and ECM and is consequently 

considered to be electrically non-conducting. However, scars are more dynamic than this. 

Heterotypic fibroblast-myocyte coupling via Cx is often seen in the infarct border zone (Fig. 

1B). Indeed, optical mapping of AP spread showed wave-front propagation into post-MI scar 

tissue, even after chemical ablation of any surviving sub-endocardial myocyte layers, 
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indicating a possible role for non-myocytes in passively conducting electrical signals [68]. 

The AP measured within the scar showed a reduced upstroke velocity and reduced amplitude 

– characteristics previously identified in vitro for cardiac fibroblasts coupled to myocytes 

[50,52] and compatible with computer modeling predictions [105,109]. Additional optical 

mapping studies identified a lack of calcium transients (a characteristic signature activity of 

myocytes) in the infarct scar [67]. This suggests that fibroblasts may serve as passive 

conveyors of AP waveforms in scar tissue. This could potentially explain trans-scar 

conduction recovery across atrial ablation lines seen in a majority of patients [110], and 

electrical coupling of recipient and donor tissue seen in about 20% of heart transplant 

patients [111].

That said, the above observations provide circumstantial evidence only, and functional 

heterocellular coupling in diseased heart has not been demonstrated with certainty. In the 

normal heart, functional in vivo data confirming heterocellular coupling has been shown by 

dye coupling in rabbit sinoatrial node [15]. Understanding the presence, extent, and 

regulation of myocyte-fibroblast functional coupling in vivo, how this coupling varies during 

development, by region, in various disease conditions, and whether it responds to medical 

interventions, is critical for development of fibroblast-targeting therapeutics. This is an area 

where 3D image reconstruction of scars may be incorporated into detailed computer models 

of conduction in disease [112,113], to assess plausibility of various concepts, and to devise 

testable hypotheses for experimental validation [114].

Beyond cellular resolution data, super-resolution microscopy may provide new insight into 

molecular and structural interactions important for heterocellular interactions within the 

heart. To date, super-resolution imaging has been applied to the structure of the intercalated 

disc and perinexus [61,115], the calcium handling machinery [116,117], and the Z-disc 

[118], some of which may be relevant for ephaptic coupling [61]. Super-resolution studies of 

cardiac fibroblast surface topography are a critical step towards better understanding of 

myocyte-fibroblast interactions in the heart.

Finally, while voltage-sensitive fluorescent dyes have allowed research into ‘bulk behaviour’ 

at the organ level, this approach does not allow attribution of observed behaviour to specific 

cell types. Such distinction could be achieved, however, by genetic targeting of reporter (or 

actuator) proteins to a specific cell population (optogenetics; see [119–121]). Recently, use 

of a voltage reporting protein, expressed under the α-myosin heavy chain (αMHC) promoter 

to target myocytes, or the Wilm’s Tumor 1 (WT1) promoter to target non-myocytes in the 

heart, has been reported [122]. This study provided first evidence of AP conduction via non-

myocytes within the scar border tissue.

5. Myocyte-fibroblast coupling as a therapeutic target?

Connective tissue remodeling is understood to contribute to arrhythmogenesis. Traditionally, 

this has ignored altered fibroblast electrophysiology, including potential electrical coupling 

to other cells including cardiomyocytes.
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In vitro, fibroblasts are already well-coupled to co-cultured myocytes, and adeno-viral 

transduction to express additional ion channels and Cx43 in cultured fibroblasts may not 

necessarily give rise to drastic changes in electrophysiological behaviour of co-cultures [92]. 

However, the situation in situ appears different. Work from the Fleischmann group has 

shown that engraftment of Cx-expressing non-myocytes into post-MI ventricular scars of 

mice prevents arrhythmogenesis, and that this anti-arrhythmic action depends on the 

presence of Cx43 [123]. Additionally, injection of (inherently Cx43-expressing) non-

myocytes that were transfected to over-express K+ currents reduced automaticity and 

prolonged refractoriness in rat and pig hearts [124].

Another role of homo- and heterocellular Cx-coupling may be related to spread of injury 

across the cardiac syncytium. Thus, Cx43 mimetics – peptides that alter Cx function – have 

been found to improve outcomes after experimental MI. Examples include the peptides 

Gap26, Gap27 and Gap19, as well as αCT1 – a Cx43 c-terminal mimetic that interrupts 

Cx43-ZO-1 interaction. These peptides have been shown to reduce Cx hemi-channel 

function [125–127]. In experimental models of MI, Gap19 and Gap26 were shown to 

significantly decrease infarct size [128,129], and αCT1 was shown to reduce left ventricular 

dilation, maintain Cx43 at intercalated discs in the border zone, and decrease the number of 

inducible arrhythmias [130,131]. Though there is some understanding of the mechanistic 

effects of these peptides on gap junction intercellular communication, this has yet to be 

examined in the context of heterocellular coupling.

Delivery of bone marrow cells directly to infarcted myocardium as a therapeutic strategy has 

resulted in modest improvement of cardiac function at best. Further studies revealed that 

positive effects of cell injections on tissue repair were likely to be caused by paracrine 

mechanisms [132]. A different approach could exploit the fact that some non-myocytes are 

recruited to a healing infarct directly from the bone marrow [29,99,100]. These cells could 

provide a vehicle for delivering therapeutic ‘payloads’ to post-MI tissue [133]. Intrafemoral 

injection of lentivirus and adenovirus expressing GFP in mice has shown that cells within 

the bone marrow cavity can be efficiently transduced in situ [134,135]. Therapies of this 

type may be challenged by the fact that many more bone marrow cells would be transfected 

than those that home in to sites of cardiac injury [136]. This could be addressed, however, 

using ‘auto-terminating’ transfection strategies, or by the use of heterospecific antibodies, 

which have been shown to increase engraftment of intravascularly injected cells in the heart 

[137]. These antibodies are engineered to be specific for the antigens of two cell types. In 

this case, they first bind to the target cardiac cells, and then to specific antigens on the 

circulating cells. This strategy holds promise both with injected or bone marrow derived 

cells, as well as those recruited to the site of injury from inside the myocardium.

Interestingly, exosomes appear to account for some of the beneficial effects conferred by 

intracardiac cell injection [138,139]. In fact, exosomes administered intravenously are able 

to ameliorate cardiac function in a model of dilated cardiomyopathy [140], and a better 

understanding of exosome contents and their therapeutic potential is certainly high on the 

list of research priorities. As an exciting example, exosome cell surface proteins have been 

genetically engineered to display homing peptides, and this conferred targeting capability to 

cardiac myocytes and ischemic myocardium [141,142]. Of note, Cx43 is involved in the 
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communication between extracellular vesicles and mammalian cells [90], so exploration of 

exosome targeting to cardiac non-myocytes is a realistic prospect.

Clearly, there is a critical need for a better understanding of exactly how we should alter 

electrophysiology of scar tissue in the heart. Depending on purpose, answers may be at 

opposite ends of the spectrum. In the case of electrical connectivity, for example, ablation 

lines would ideally be made solidly insulating, while (at least small) cardiac infarcts might 

become less problematic if they did pass the wave of electrical excitation with minimal 

delay. So, in one scenario, one might wish to down-regulate nonmyocyte Cx expression, and 

in the other – up. We further need to understand how to improve the overall 

electrophysiological function of scar tissue without jeopardizing scar mechanics [143], how 

to deliver interventions in a spatially and temporally controlled manner, and how to grade 

them to achieve specific effects. All this depends, in part, on further insight into presence, 

distribution, functionality, and regulation of homo- and heterotypic coupling of cells in the 

heart.

6. Conclusions

Myocytes and fibroblasts interact in multiple ways, over a range of space and time scales, 

and in both normal and diseased heart. Molecular interaction substrates include electrical 

and mechanical junctions, and biochemical signaling makes significant contributions to 

myocyte-fibroblast cross-talk, including initiation of cellular phenotype changes in disease.

Presently, there is limited evidence of functional electrical coupling of myocytes and 

fibroblasts in the heart in vivo. Considering the heterogeneity of resident cardiac fibroblast 

populations, and the variability in cell types recruited to injured tissue, there is a need for 

detailed examination of the integrated myocardium in various disease states and regions in 

the heart, compared to steady state homeostasis. Clinical reports and experimental studies 

have provided evidence that scars may passively conduct electrical signals. Passive 

conduction is possible over fairly short distances only (signal amplitude attenuation), unless 

a supra-threshold stimulus reaches a ‘repeater station’, e.g. an island of surviving myocytes 

in post-MI scar tissue. Such active/passive/active chains of excitable and non-excitable cells 

have been engineered to successfully conduct excitation long-range, from atrium to 

ventricles [144,145]. The full extent of myocyte-fibroblast electrical coupling in the heart, 

the mechanisms of its regulation, and its importance in health and disease remain to be 

explored in detail. The growing number of experimental tools available to conduct cell-

specific research raise the hope that we may be able to first, understand, and second, tweak 

scar properties to improve outcomes for patients with cardiac disease.
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3D three-dimensional

αMHC α-Myosin Heavy Chain

αSMA α-Smooth Muscle Actin

AP Action Potential
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Cx43 Connexin43

ECM Extracellular Matrix
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DDR2 Discoidin domain receptor 2

Tcf21 Transcription Factor-21

FAP Fibroblast Activation Protein

IL-1α Interleukin 1α

MI Myocardial Infarction

WT1 Wilm’s Tumor 1
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Highlights

• Fibroblasts (F) matter for cardiac structural integrity

• Furthermore, they are important biochemical and biophysical signaling 

hubs

• Biophysical signaling includes electric coupling of F to other F or to 

myocytes (M)

• F-M coupling may affect M excitability, refractoriness, and conduction

• The therapeutic potential of tuning F-M interactions requires further 

investigation
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Figure 1. 
Heterotypic intercellular connections in cardiac tissue. A) Cx43 (green) localized primarily 

at intercalated discs of myocytes in normal sheep myocardium (right-arrows), but also 

between lateral myocyte (M) contacts (down-arrows) and, occasionally, at points of 

heterotypic cell contact with fibroblasts (F; slanted arrow). B) Cardiac scar border zone, 

showing disturbed Cx43 distribution along M (increased lateralization; down-arrows) and 

abundant punctate presence in F (left-arrowheads), including at F-M junctions (slanted 

arrow). C) Confocal image of dye coupling by fibroblasts between groups of myocytes in 

rabbit right atrial tissue. D) Conceptual representation of myocyte-fibroblast electrotonic 

interaction scenarios via Cx proteins; for detail see section 2.3. Scale bars = 20 μm. From 

[17] in A and B with permission from the European Society of Cardiology, and [15] in C 

with permission from the American Heart Association.
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