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Abstract

Cardiomyopathies are an important and heterogeneous group of common cardiac diseases. An 

increasing number of cardiomyopathies are now recognized to have familial forms, which result 

from single-gene mutations that render a Mendelian inheritance pattern, including hypertrophic 

cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right 

ventricular cardiomyopathy and left ventricular noncompaction cardiomyopathy. Recently, clinical 

genetic tests for familial cardiomyopathies have become available for clinicians evaluating and 

treating patients with these diseases, making it necessary to understand the current progress and 

challenges in cardiomyopathy genetics and diagnostics. In this review, we summarize the genetic 

basis of selected cardiomyopathies, describe the clinical utility of genetic testing for 

cardiomyopathies and outline the current challenges and emerging developments.
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Cardiomyopathies are a heterogeneous group of heart muscle diseases associated with 

mechanical and/or electrical dysfunction that predispose patients to sudden cardiac death 

[1,2]. Familial cardiomyopathies are typically diagnosed in the third or fourth decades of 

life, but may present at any age. Over the last 20 years, and at an ever quickening pace in 

recent years, the association of specific genes involved with cardiomyopathies has 

illuminated their pathophysiology and identified potential therapeutic targets that may one 

day allow clinicians to stall, regress or even prevent certain cardiomyopathies. Hypertrophic 

cardiomyopathy (HCM), dilated cardiomyopathy (DCM), restrictive cardiomyopathy 

(RCM), left ventricular noncompaction cardiomyopathy (LVNC), and arrhythmogenic right 

ventricular cardiomyopathy (ARVC) are all now recognized to have a genetic component 

(TABLE 1). The identification of cardiomyopathy-susceptibility genes has enabled the 

development of diagnostic tests that can identify genetic mutations underlying disease in a 

substantial portion of patients. The ability to identify disease-causing genetic mutations is 

still quite limited, largely due to the lack of complete knowledge of all the mutations and 

affected genes that lead to cardiomyopathies. Whenever disease-causing mutations are 

identified, family members at-risk for developing a cardiomyopathy can be determined, 

including those in which little or no clinical suspicion exists.

The recent transition of cardiomyopathy genetic testing from research laboratories into 

clinical practice highlights the need for the education of clinicians in the state of the art and 

the implications of cardiomyopathy genetic testing. This review summarizes the genetic 

basis of selected cardiomyopathies, describes the clinical utility of genetic testing for 

cardiomyopathies and outlines the current challenges and emerging developments in clinical 

genetic testing for cardiomyopathies.

Molecular basis of familial cardiomyopathies

Cardiomyopathies are largely monogenic disorders in which pathogenic mutations and 

disease susceptibility follow predictable Mendelian modes of transmission. In monogenic, or 

‘single-gene’, disorders, disease-causing mutations in a particular individual are restricted to 

a single gene. The mutations typically consist of an alteration of a single nucleotide that 

causes one amino acid within the encoded protein to be substituted for another. 

Alternatively, the mutation may be the deletion or insertion of a short sequence of 

nucleotides that results in a truncated protein. Autosomal dominant inheritance, in which a 

single mutation affecting one copy of an autosomal gene causes disease that may affect 

either gender, is the most commonly observed inheritance pattern in cardiomyopathies. 

Although far less frequent and differing among the specific diseases and genes involved, 

autosomal recessive and X-linked inheritance patterns are also observed in 

cardiomyopathies. The phenomenon of age-dependent penetrance, where only a portion of 

carriers of a disease-causing mutation clinically manifest disease, can confound recognition 

of a cardiomyopa-thy as a familial disease. Familial cardiomyopathies affect all ethnicities. 
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There is no broad ethnic predisposition outside of small, isolated populations affected by 

specific founder mutations. The precise molecular mechanisms and pathological processes 

leading from single-gene mutations to the development of clinically recognizable 

cardiomyopathies is still largely unknown; however, the identification and characterization 

of many mutations across many genes has begun to uncover the diverse molecular 

mechanisms leading to seemingly similar disease manifestations. Cardiomyopathies were 

initially defined clinically and their diagnosis and management continue to be based on 

clinical presentation, despite the genetic heterogeneity underlying these diseases. While little 

is still known regarding the causes of the heterogeneity of disease, it is known that having 

more than one type of mutation can increase the severity of disease [3]. A number of gene 

polymorphisms have also been shown to modify the severity of cardiomyopathy (for a recent 

review see [4]). Complicating the genetic diagnosis of cardiomyopathies is the realization 

that different mutations in a single gene can lead to two different cardiomyopathic 

phenotypes. For example, different mutations in cardiac troponin, cardiac troponin T, and α-

cardiac actin can cause RCM or HCM (TABLES 2 & 3). Similarly, different mutations in 

lamin A/C can lead to LVNC or DCM phenotypes (TABLES 2 & 4).

Arrhythmogenic right ventricular cardiomyopathy

Arrhythmogenic right ventricular cardiomyopathy is estimated to affect one in 5000 

individuals and is characterized by life-threatening arrythmias due to fatty infiltration and 

scarring of the right or both ventricles [5]. ARVC is an autosomal dominant disease with 

variable penetrance [6]. The replacement of right ventricular myocardium by fibrofatty 

tissue progresses over time, leading to ventricular wall thinning and aneurysms [7–9]. The 

fibrofatty infiltrates also interfere with the conduction of electrical impulses, causing 

characteristic changes in the electrocardiogram (ECG), including epsilon waves (FIGURE 

1), late potentials, right bundle branch block and ventricular arrhythmias. Cell death can be 

seen by histology, frequently associated with inflammatory infiltrates and life-threatening 

arrhythmias [7–11]. The left ventricle is involved in nearly 50% of all cases, generally in the 

postero–lateral subepicardium [7,9]. Cell death can be seen by histology, frequently 

associated with inflammatory infiltrates and life-threatening arrhythmias [7–11]. The 

inflammatory cells may be a reaction to cell death and cardiotropic viruses have been 

reported in the myocardium of some patients with ARVC, suggesting a role for infectious 

etiologies in the pathogenesis of disease [12,13].

Recently, it has been discovered that ARVC is largely a disease of the desmosome. The 

desmosome is a group of cellular structures that mechanically couple cardiomyocytes to 

transmit contractile force (FIGURE 2). The prevailing view of ARVC pathogenesis is that 

disruption of the desmosome leads to progressive myocyte separation, myocyte death and 

subsequent replacement of dead cells with fat and scar tissue. However, mechanisms 

involving aberrant regulation of adipogenesis signaling pathways have also been proposed 

[14–16]. Mutations in five genes making up the desmosome (FIGURE 2) are found in 

approximately 50% of clinically diagnosed ARVC patients, including the genes desmoplakin 

(DSP), plakophilin-2 (PKP2), desmoglein-2 (DSG2), desmocollin-2 (DSC2), and 

plakoglobin (PKG) (TABLE 2) [17]. The PKP2 gene is most frequently mutated in 43% of 

cases (70% of proven familial cases) [18–22]. Mutations in extradesmosomal genes, such as 
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TGFβ3 have also been associated with ARVC [23]. Recently, a founder mutation in the gene 

transmembrane protein 43 (TMEM43) was shown to be the cause of ARVC in 15 unrelated 

families, all with complete penetrance [24]. Whether the protein encoded by TMEM43 is a 

component of the desmosome is not yet known and its association with ARVC may lead to 

the discovery of a novel disease mechanism. There are a number of notable diseases that 

lead to clinical entities that mimic the findings of ARVC; that is, diseases that phenocopy 

ARVC. The closest phenocopy of ARVC is myotonic dystrophy [25], but sarcoidosis also 

can closely mimic ARVC [26]. This suggests an important role for genetic testing (for 

unstable CTG repeats in the DMPK gene) and biopsy (for sarcoid) also in distinguishing 

ARVC cases. The importance of the desmosome in the pathogenesis of ARVC may be 

highlighted in recent studies, which have identified a role for immunohistochemical analysis 

of conventional endomyocardial biopsies for desmosomal plakoglobin [27]. In ten out of 11 

ARVC cases, a decrease in immunoreactive plakoglobin was identified, a finding not seen in 

control samples in blinded studies [27]. This diffuse reduction in plakoglobin demonstrated 

a sensitivity of 91% and a specificity of 82% (positive predictive value: [PPV] = 83%; 

negative predictive value [NPV] = 90%). While a number of proteins may be involved in the 

pathogenesis of ARVC, the ability of these proteins to stabilize the desmosome, regardless 

of their origin, may be key to the pathogenesis of ARVC.

Hypertrophic cardiomyopathy

Hypertrophic cardiomyopathy is the most common genetic heart disease in the USA, 

affecting one in 500 people [28,29]. The diagnosis of HCM is made primarily on patient 

history, physical examination, echocardiography and ECG, identifying hypertrophy in the 

absence of underlying primary disease (FIGURE 3). There is a spectrum of symptoms in 

HCM patients: some patients may be asymptomatic their entire life, while others may 

present with dyspnea, syncope, chest pain or sudden cardiac death due to mechanical or 

electrical abnormalities [30–33]. Despite its namesake, sudden cardiac death can occur in 

HCM patients with little or no cardiac hypertrophy due to the histological hallmark of 

myocardial disarray, which can act as an arrhythmogenic substrate resulting in life-

threatening arrhythmias [34–36]. There is a high degree of disease heterogeneity in HCM 

and in contrast to other genetic diseases, HCM has a preponderance of private, familial 

mutations and a lack of mutational hot spots within causative genes.

Nearly 50–60% of HCM cases have mutations in genes encoding proteins that constitute the 

sarcomere, the fundamental contractile unit of cardiac myocytes (FIGURE 1 & TABLE 3) 

[4]. More than 450 mutations in 20 genes that cause HCM have been described to date [37]. 

The genes most commonly affected are cardiac myosin binding protein C (MYBPC3), 

cardiac β-myosin heavy chain (MYH7), and cardiac troponin isoforms I (TNNI3) and T 

(TNNT2) (TABLE 3). Two mechanisms have been hypothesized to cause HCM. The 

affected protein may affect the heart by acting as a dominant negative ‘poison peptide’, 

disrupting function of the wild-type protein by its presence. Alternatively, mutations in 

sarcomere proteins may lead to haploinsufficiency [38]. In this scenario, it is hypothesized 

that mutations in one gene do not allow the sarcomere to be stoichiometrically balanced, 

resulting in poor performance of the remaining sarcomere [37,39]. Recent studies further 

suggest a disruption in protein quality control mechanisms may also play a causative role in 
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disease [40]. Sarcomere mutations responsible for HCM result in impaired relaxation of the 

heart and significant changes in calcium signaling [41–45] and may also result in metabolic 

defects [46], which could play a role in the increased susceptibility of patients with HCM 

mutations to sudden cardiac death.

Dilated cardiomyopathy

Dilated cardiomyopathy is defined clinically by left ventricular dilation and reduced 

contractile performance (FIGURE 4). DCM is the most frequent diagnosis leading to heart 

transplantation in the USA [2,47]. There are a number of known causes of DCM, including 

coronary artery disease, thyroid disease, viral myocarditis and excessive alcohol intake. 

Idiopathic DCM, that is, DCM in which common acquired/nongenetic causes are excluded, 

is estimated to affect one in 2500 individuals with 20–50% of these estimated to have a 

genetic cause [48–56]. The genetic causes of DCM are particularly heterogeneous. To date, 

mutations in more than 30 genes account for disease in approximately 25% of patients 

(FIGURE 1 & TABLE 4). Candidate gene analyses have identified causative mutations in 

cardiac actin and other sarcomere genes [57], including MYH7 [58], MYBPC3, titin (TTN), 

α-tropomyosin (TPM1) [59] and TNNT2 and TNNC1 [58,60,61]. Several subgroups of 

DCM have been identified based on distinguishing clinical features associated with gene 

mutations [62–64]. Mutations in lamin A/C (LMNA) have been associated with autosomal 

dominant DCM with conduction disease [65,66], autosomal dominant and recessive Emery 

Dreifuss Muscular Dystrophy [67,68], and autosomal dominant limb-girdle muscular 

dystrophy type 1B [69,70]. While there appears to be a continuum of muscular dystrophy 

associated with DCM, the underlying mechanism for LMNA mutations in cardiac and 

extracardiac manifestations, such as the skeletal muscle, is not known.

Interestingly, HCM and DCM share partially overlapping molecular etiologies, as both may 

result from sarcomeric mutations, although the specific mutations associated with each and 

resulting molecular consequences can be different. Functional studies of different HCM- and 

DCM-associated mutations occurring within the same sarcomeric genes suggest that, in 

general, mutations that increase sensitivity of the cardiac sarcomere to calcium result in 

HCM, whereas desensitizing mutations result in DCM [71–74].

Left ventricular noncompaction cardiomyopathy & restrictive cardiomyopathy

Although LVNC was first described in 1900, it has only recently been recognized as a 

distinct clinical entity [1,2]. It is characterized by a pattern of prominent trabecular 

meshwork and deep intratrabecular recesses communicating with the cavity of the left 

ventricle (FIGURE 2). This is thought to be due to an arrest of myocardial morphogenesis 

during cardiac development [75,76]. LVNC is a rare disease, affecting less than 0.3% of the 

population [77,78], or an annual incidence in children of 0.1 per 100,000 [79,80]. The 

clinical manifestations of LVNC can range from asymptomatic to a progressive deterioration 

of cardiac function, arrhythmias, thromboembolic events and sudden cardiac death 

[75,77,81–83]. Approximately 40% of LVNC patients have evidence of familial disease, 

with a wide genetic heterogeneity [82].
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The mainstay of diagnosis for LVNC has historically been echocardiography, as shown in 

FIGURE 5 [84]. The diagnostic criteria for LVNC include the lack of coexisting 

cardiovascular abnormalities, segmental left ventricular wall thickening with a thin 

compacted epicardial layer and a thicker noncompacted endocardial layer, an end-systolic 

noncompacted-to-compacted myocardial ratio greater than 2, and the identification of flow 

on color Doppler within the deep intratrabecular recesses [85]. Additional echocardiographic 

findings may include a decreased fractional shortening, impaired diastolic function, 

abnormal papillary muscle architecture and the presence of thrombi [85]. LVNC has been 

associated with mutations in a number of genes, including LIM domain binding protein 3 

(LDB3/ZASP), dystrobrevin-α (DTNA), tafazzin (TAZ/G4.5) and lamin A/C (LMNA) [86–

92]. Mutations in the sarcomere protein genes MYH7, TNNT2 and α-cardiac actin (ACTC) 
have also been associated with LVNC (TABLE 2) [86–92]. The more common genes 

reported in LVNC have been genes that encode for proteins found in the sarcomere (MYH7, 

TNNT2 and ACTC) [92,93].

Restrictive cardiomyopathy is characterized by an increase in cardiac wall stiffness, leading 

to decreased diastolic function with preserved systolic function. Patients generally develop 

symptoms of severe heart failure over a relatively short period of time, with the majority 

dying within a few years if they are unable to obtain a heart transplant [94]. Adult patients 

with RCM present with dyspnea, fatigue and a limited capacity to exercise [95], while 

children may present with failure to thrive, fatigue and sometimes syncope [96,97]. Chest 

radiography generally shows a normal sized heart with enlarged atria and varying degrees of 

pulmonary edema. On ECG, large P waves indicative of atrial enlargement may be present 

along with ST segment and T-wave abnormalities. By echocardiography, enlarged atria with 

impaired systolic function may be seen, and Doppler velocities may be indicative of a 

significant diastolic dysfunction. Many etiologies underlie RCM, including inflammatory 

(endomyocardial fibrosis), infiltrative (e.g., amyloidosis), storage (e.g., hemochromatosis) 

and idiopathic (reviewed in [94]). Since 1992, a number of reports have identified mutations 

in sarcomere genes underlying RCM, including TNNI3, TNNT2, MYH7 and ACTC [98–

103].

Uncovering the genetic basis and molecular mechanisms of RCM and LVNC has been 

challenging since they are far less prevalent than HCM or DCM [104,105]. Several of the 

same genes described for HCM or DCM are also associated with RCM and LVNC (TABLE 

2) [87,92,100,104,106,107]. This may indicate that RCM is a later spectrum of other 

clinically defined cardiomyopathies, or may indicate mutation-specific phenotypes. Much 

work is needed to delineate the molecular basis of familial RCM and LVNC in the context of 

other more common and well-defined cardiomyopathies.

General considerations for genetic testing of familial cardiomyopathies

Specific guidelines for the diagnosis, including the molecular diagnosis, and management of 

ARVC, HCM, DCM, LVNC and RCM have been written as expert opinions or consensus 

statements [1,108–110]. In general, physicians diagnosing and managing patients with 

cardiomyopathies should initially obtain a family history of at least three family generations 

[1]. Additional screening of at-risk family members with echocardiogram, ECG, history, 
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physical examination and other tests may be warranted. It is important that genetic 

counseling takes place in parallel with these studies to ensure the patient understands the 

heritable basis of disease, the age at which the diseases might present and the presenting 

symptoms. The role of genetic counseling in genetic testing has never been more important 

because of our incomplete understanding of the genetic basis of cardiomyopathies, which 

continues to evolve. Patients with cardiomyopathies need to understand the utility, 

sensitivity, analytic validity and, most importantly, the implications of the test results [1]. A 

final component to the evaluation of cardiomyopathies is the consideration of genetic 

testing.

A recent practice guideline published by the Heart Failure Society of America provides 

graded recommendations for clinical genetic testing of cardiomyopathies [1]. For each 

cardiomyopathy evaluated by the guideline, the value of genetic testing of an affected 

individual is considered for its role in facilitating family screening and identification of at-

risk relatives. The value was given a letter grade based on the current clinical and genetic 

knowledge, where the letter grade A corresponds to the highest score while C is the lowest. 

Genetic testing for HCM and ARVC were both given A level recommendations, genetic 

testing for DCM was given B level recommendation and genetic testing for RCM and LVNC 

were given C level recommendations [1].

If a disease-causing mutation is identified in a cardiomyopathy patient through genetic 

testing, then testing of family members can accurately predict the risk of those family 

members [1]. For an asymptomatic family member who is negative for their relative’s 

disease-causing mutation, that family member’s risk for developing the cardiomyopathy is 

considered to be the same level of risk as the general population and such individuals can 

forgo ongoing clinical screening for disease development [1]. Conversely, an asymptomatic 

family member who is positive for their relative’s disease-causing mutation is at 

substantially increased risk for developing the cardiomyopathy and should undergo 

continued clinical surveillance for disease development [1]. Genetic testing and targeted 

clinical surveillance of at-risk family members facilitates diagnosis during the early states of 

disease development and enables earlier clinical interventions. Nearly 40% of ARVC 

patients experience sudden cardiac death as their first clinical manifestation, however, with 

an early diagnosis and appropriate monitoring or treatment, often involving an implantable 

cardioverter defibrillator (ICD), most ARVC patients have an excellent prognosis [5,111–

113]. Similarly, in DCM patients, where symptoms generally manifest after the disease has 

progressed to end-stage and the 5-year survival post-diagnosis is 50%, an early diagnosis 

allows for pharmacological treatments that may prevent disease progression and reduce 

complications or lead to transplantation [114]. In addition to confirming a diagnosis in a 

cardiomyopathy patient and identifying at-risk family members, genetic testing may also be 

useful for assessing the risk for conduction defects (ARVC, DCM), distinguishing the 

underlying cause of heart failure (DCM) and distinguishing other causes of adaptive 

hypertrophy with cardiomyopathies (HCM).
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Genetic testing for ARVC

The Heart Failure Society of America assigned the grade of A for genetic testing of the one 

most clearly affected person in a family to facilitate screening and management of ARVC 

[1]. Although ARVC is a rare condition, analysis of a small number of genes can identify a 

significant proportion of cases. The testing modality most commonly applied by laboratories 

is DNA sequence analysis of the entire coding region or select exons of genes in which 

causative mutations have been identified (TABLE 5). Comprehensive sequence analysis of 

large regions of these genes is necessary due to allelic heterogeneity (multiple different 

mutations associated with disease) and the many ‘private’ mutations (mutations found in a 

single family) that can be present [5]. Sequencing of known ARVC-associated genes may 

identify mutations in as many as 50–55% of ARVC patients [5,17,115]. The 1994 Task 

Force diagnostic guidelines do not include genetic testing as a diagnostic criterion since they 

were developed in the pre-genetics era [116]. However, genetic testing may play an 

important role in ARVC diagnosis because the nonspecific features of ARVC render it 

difficult to diagnose, especially in the early disease stages [5]. Therefore, genetic testing for 

ARVC can fulfill an important role in the interpretation of borderline clinical investigations, 

as well as facilitate early diagnosis of family members potentially at-risk for developing 

ARVC. While risk for cardiac events or disease severity cannot be predicted based on 

specific mutations (i.e., genotype/ phenotype correlations), a recent genetic and clinical 

analysis of 82 clinically confirmed or suspected ARVC patients found that, in general, those 

patients with desmosomal mutations had an earlier onset of ARVC and were more likely to 

have ventricular tachycardia [17].

Several diseases mimic ARVC, which are important to recognize and rule out. These 

phenocopy diseases include myotonic dystrophy, which most closely mimics ARVC [25]. 

Myotonic dystrophy is caused by the unstable expansion of CTG trinucleotide repeats in the 

untranslated DMPK gene (encoding myotonic dystrophy protein kinase), localized to the 

intercalated disks of the cardiac muscle in proximity to gap junctions [117]. Similarly, 

sarcoidosis can mimic ARVC [26] and should be considered in the process of diagnosing 

disease.

Genetic testing for HCM

Molecular testing for HCM is the most established of the cardiomyopathies and has strong 

evidence to support clinical genetic testing [1]. The Heart Failure Society of America 

assigned the grade of A for genetic testing of the one most clearly affected person in a 

family to facilitate screening and management of HCM [1] (see also related recent reviews 

[118,119]). Clinical genetic testing is available for more than 20 HCM-susceptibility genes; 

however, analysis of two genes, MYH7 and MYBPC3, account for the majority of mutations 

that are identified in HCM patients (TABLES 3 & 5). Mutations in MYH7 and MYBPC3 
account for approximately 80% of all genotype-positive HCM patients [120]. Genetic testing 

of the eight genes most commonly associated with HCM, which all encode components of 

the cardiac sarcomere, identify mutations in 35–65% of patients that meet the clinically 

accepted definition of HCM [118]. While strict gene- and genotype–phenotype correlations 

have been attempted, definitive relationships between the mutated gene and disease 

manifestation are not generally thought to exist across all populations. For example, based 
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on studies of single mutations in large families or small cohorts, MYBPC3 mutations have 

gained the reputation of causing later onset disease, MYH7 mutations with earlier 

manifestation of disease, and TNNT2 mutations with mild LVH and increased risk of sudden 

death in some families [30,31,35,121–125]. However, in unrelated HCM cases where many 

rare, private mutations exist, the two most common forms of HCM caused by mutations of 

MYH7 and MYBPC3 are phenotypically indistinguishable in terms of age at diagnosis, 

extent of hypertrophy and family history [126,127]. HCM cases with MYH7 mutations have 

been reported with reputed TNNT2-like features of mild hypertrophy and early SCD, while 

other HCM cases with TNNT2 mutations have been shown to exhibit left ventricular 

hypertrophy with thickening of more than 3 cm [36,128]. Moreover, recurrent identification 

and analysis of identical mutations in unrelated HCM cases indicate that the prognostic 

implications of specific mutations, as well as of specific genes, must be assigned with great 

caution [126–129]. Interestingly, a recent prospective analysis of a large cohort of unrelated 

Italian HCM patients showed that HCM patients with a mutation in any one of eight 

myofilamentous sarcomeric genes (MYPBC3, MYH7, MYL2, MYL3, TNNT2, TNNI3, 

TPM1 and ACTC) were at increased risk for cardiovascular death, nonfatal ischemic stroke, 

or progression to severe heart failure symptoms compared with HCM patients with a 

negative genetic test result [130]. In a multivariate model that included established risk 

predictors in HCM, the presence of a myofilamentous sarcomeric gene mutation was 

associated with a more than fourfold independent increase in risk for unfavorable outcomes 

compared with patients with HCM and negative genetic test results [130], supporting a 

prognostic role for genetic testing in patients with clinically diagnosed HCM.

There are several rare diseases that mimic the phenotype of HCM that do not involve 

mutations in the sarcomere or sarcomere-associated genes. These diseases include familial 

Wolff–Parkinson–White syndrome, Anderson–Fabry disease, Pompe disease, Glycogen 

Storage disease Type III, Danon disease, LEOPARD syndrome/Noonan syndrome, and 

Frederich ataxia (for a review see [4]). It is important to recognize the differential 

phenotypes and/or perform the molecular test to identify these phenocopy diseases, as the 

treatments vary considerably. Several rare multisystem metabolic diseases, such as Danon 

disease and Anderson–Fabry disease, can present primarily with cardiac manifestations and 

mimic HCM caused by sarcomeric mutations; however, these metabolic diseases involve 

fundamentally different pathological processes and have different clinical courses and 

therapeutic strategies compared with typical HCM patients (TABLE 3) [131–133]. 

Anderson–Fabry disease is treated primarily with enzyme replacement [134], while Danon 

disease has a severe prognosis that may warrant earlier consideration of a heart transplant 

[131]. The recent Heart Failure Society of America recommends genetic testing when 

cardiomyopathy is associated with extra-cardiac manifestations (level of evidence grade A), 

as many of these HCM phenocopy diseases can be detected by genetic testing [1].

Genetic testing for DCM

The Heart Failure Society of America assigned the grade of B for genetic testing of the one 

most clearly affected person in a family to facilitate screening and management of DCM [1]. 

The recommendation for genetic testing for DCM was less strong because, although an ever-

growing number of genes have been identified in association with DCM, none is associated 
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with a significant proportion of DCM and together the currently known genes account for 

only a small percentage (~25%) of familial DCM. The analysis of 20 genes is currently 

available for patients suspected of having a genetic etiology underlying their idiopathic 

DCM, although most of these genes are infrequent causes of DCM (TABLES 4 & 5). 

Genetic testing of two genes that are the most common causes of DCM, LMNA and MYH7, 

is estimated to identify mutations in approximately 10% of idiopathic DCM patients, while 

testing of the more than 20 DCM-associated genes may account for an additional 10–15% of 

patients [1,56]. However, the frequency of LMNA mutations in DCM patients with 

conduction disease, particularly when skeletal muscle involvement is present, rises to 30–

45% [64,135,136]. Thus, testing for mutations in LMNA is recommended for patients with 

idiopathic DCM and conduction system defects based on the overall higher mutation 

frequency in this subset of patients, even if a family history of DCM is not present [1]. 

Identification of a LMNA mutation portends a particularly poor prognosis, with nearly half 

of cases with LMNA-related cardiomyopathy suffering sudden cardiac death [137,138]. 

LMNA mutations may identify patients at risk for sudden cardiac death prior to presentation 

with heart failure: eight out of 19 (42%) patients who underwent permanent pacing and ICD 

therapy solely on the basis of the presence of LMNA mutations with cardiac conduction 

defects and normal ventricular function received appropriate ICD intervention [139]. Owing 

to the extensive genetic heterogeneity and the high frequency of private mutations in DCM, 

the mainstay of molecular diagnosis in DCM is sequence analysis of entire protein-coding 

regions of multiple DCM-associated genes either by direct Sanger DNA sequencing or with 

resequencing arrays [1,140,141].

As with ARVC and HCM, there are a number of diseases that mimic DCM and these should 

be considered in DCM diagnosis. Approximately 80% of patients with Duchenne’s muscular 

dystrophy and approximately 10% with Becker’s muscular dystrophy have DCM [142]. In 

addition to the mutations in dystrophin associated with these diseases, DCM has been 

associated with mutations in intermediate filament lamin A/C, which underlie Emery–

Dreifuss muscular dystrophy with DCM [143].

Genetic testing for LVNC & RCM: is it worthwhile right now?

The Heart Failure Society of America assigned the lowest grade of C for their 

recommendation for genetic testing of the most clearly affected person in a family to 

facilitate screening and management for both LVNC and RCM [1]. These recommendations 

are largely due to the fact that there are few known genotype–phenotype correlations for 

either of these conditions [107], and only a fraction of the patients with disease have 

identifiable mutations. Collective testing of all known LVNC-associated genes may identify 

mutations in 20–25% of patients with LVNC. Identification of affected genes is primarily 

useful for identifying at-risk family members, including at-risk pregnancies. Genetic testing 

is available to identify LVNC-causing mutations in the DTNA, TAZ, LMNA and LDB3 
genes by sequence analysis of the entire coding region (TABLE 5). It is not known what 

percentage of patients with LVNC have mutations in these four genes, but mutations in 

additional genes have been identified, including FK506-binding protein (FKBP-12), MYH7, 

ACTC and TNNT2 [92,107]. The most commonly affected proteins that can be tested for in 

LVNC include MYH7, TNNT2 and ACTC based on their reported prevalence. Similarly, no 
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genotype–phenotype correlations have been described for RCM and estimates for the 

prevalence of mutations in MYH7 and TNNI3 are unavailable, as only a few studies have 

reported RCM families with mutations in these genes [99,104]. Since RCM is quite rare, it 

may be some time before large-scale studies can be performed to determine how common 

MYH7 and TNNI3 mutations are and to identify other causative genes. As more genes and 

mutations underlying LVNC and RCM are discovered, testing sensitivity will increase, thus, 

improving the clinical utility of testing. This will require identification of additional disease-

associated genes and whether any genotype–phenotype correlations exist that may help in 

the prognosis and therapeutic strategies applied to patients with these clinical phenotypes.

Challenges in genetic testing for cardiomyopathies

There are a number of challenges that arise in genetic testing for cardiomyopathies. The 

major challenges are the difficulty and cost of testing due to the large number of genes 

(locus heterogeneity) and different mutations (allelic heterogeneity) associated with each of 

the cardiomyopathies, the poor sensitivity for diagnosis of familial cardiomyopathies and the 

interpretation of the significance of individual mutations identified, particularly novel 

variants. For these reasons, it is particularly important to have good clinical correlation and 

to rule out other causes of cardiomyopathy or demonstrate strong evidence of a family 

history prior to undergoing genetic testing. Critical to this process is genetic counseling to 

ensure that the patient understands the heritability of cardiomyopathies, family screening 

recommendations, genetic testing options, and the value and interpretation of testing based 

on recent guidelines for the genetic evaluation of cardiomyopathies [1,119].

Direct DNA sequence analysis of all protein-coding regions of selected genes is the most 

common methodology applied to cardiomyopathy genetic testing. Owing to the high cost 

and labor associated with DNA sequencing of multiple large genes, mutation scanning of the 

entire (or selected) coding regions is sometimes performed, which is a less costly method of 

identifying region(s) of the gene likely harboring mutation(s). These regions can then be 

targeted for subsequent sequence analysis to identify the mutation(s) (for a review see [4]). 

In addition, some laboratories have incorporated microarray chip-based ‘resequencing’, in 

which overlapping DNA oligonucleotides specific for every possible single nucleotide 

substitution are tiled onto a custom DNA microarray chip [144–146]. The major advantage 

of microarray resequencing approaches is that multiple genes can be analyzed on a single 

chip, which allows for a significant savings in labor and cost after the initial investment in 

capital equipment and assay development. A major disadvantage of resequencing arrays is 

that novel insertions and deletions (indels) are difficult to detect, thus decreasing the 

sensitivity for mutation detection, although previously identified indels can be detected 

using specific tiled probes [144,145,147]. In the future, next-generation sequencing (NGS) 

technologies may enable clinical large-scale testing of multiple genes; at the present time 

NGS approaches are expensive and have not been well validated for clinical accuracy, so 

they are primarily useful as a research tool to identify additional genes that may be 

associated with cardiomyopathy.

Despite extensive analysis of the entire coding regions of multiple genes, not all patients are 

found to have disease-causing mutations because the genetic basis of these diseases are not 
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completely understood. For example, even in HCM, the best characterized of the 

cardiomyopathies, at least 40% of HCM patients have no identifiable mutation with current 

genetic tests [118,148]. The list of cardiomyopathy-associated genes is constantly evolving 

and sensitivity may be improved as additional genes are added; however, the inclusion of 

each additional gene may improve test sensitivity only slightly, as each gene individually 

may account for a small percentage of cases. Another possible explanation for decreased test 

sensitivity is the presence of mutations that are undetectable by commonly used approaches. 

Most genetic tests for cardiomyopathy-susceptibility genes are not designed to detect deep 

intronic mutations, large indels or gross genomic rearrangements, any of which may be 

deleterious and lead to cardiomyopathy. However, at least in the case of MYBPC3 and 

TNNT2, large deletions or rearrangements do not appear to play a role in the pathogenesis of 

HCM [149]. This contrasts with the RYR2 and LMNA gene deletions found to cause 

cardiomyopathy (ARVC and DCM, respectively), which were missed because standard 

sequencing techniques were unable to identify mutations [150,151].

Thus, because not all genetic causes of cardiomyopathy have been determined, genetic 

testing has limited sensitivity for diagnosis, despite high specificity. In practical terms, low 

test sensitivity and high specificity means that if a known disease-causing mutation is found, 

it should be considered as strong evidence for the diagnosis of familial cardiomyopathy. 

However, in cases where a disease-causing mutation is not found, the presence of familial 

cardiomyopathy cannot be ruled out, making clinical diagnosis still important. As the full 

spectrum of genetic mutations associated with the cardiomyopathies is identified, the 

sensitivity of genetic testing will continue to improve and may eventually evolve to the point 

that genetic testing is useful to ‘rule out’ a diagnosis of familial cardiomyopathy.

Another major challenge in clinical genetic testing is differentiating pathogenic mutations 

from benign ‘background’ genetic variation unrelated to disease. The human genome 

demonstrates significant genetic sequence variability, and differentiating deleterious 

mutations from benign sequence variation is a universal challenge for clinical genetic 

laboratories. The term ‘mutation’ is traditionally defined by the rarity of a genetic variant 

within a given population and not by an association with disease [152]. By this definition, 

any genetic variant with an allele frequency of less than 1% is considered a mutation, 

whereas variants present in the population with more than 1% frequency are considered 

common polymorphisms. Cardiomyopathies collectively result from mutations in more than 

30 different genes in which hundreds of mutations are already known and new mutations are 

continuously identified in suspected cardiomyopathy patients. Most of these mutations are 

so rare that they are effectively ‘family-specific’ causes of disease (private mutations). Both 

novel sequence variants and previously identified variants whose association with disease is 

not definitively established are considered ‘variants of uncertain/unknown significance’ 

(VUS) [153]. A recent example of this was reported by Christensen et al. who screened 53 

unrelated patients fulfilling Task Force criteria for ARVC for mutations in PKP2 by direct 

sequencing [154]. Seven patients carried missense mutations, which were also identified in 

healthy control populations, leaving their significance unknown at this time [154].

Multiple direct and predictive approaches have been used to distinguish disease-causing 

mutations from benign variants, including genetic testing of healthy individuals to determine 
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allele frequency, cosegregation studies to determine if disease and mutation track together 

within a family, analysis of protein sequence conservation across different species to predict 

the importance of a specific mutated amino acid for a protein’s function, prediction of the 

effect of a mutation upon mRNA splicing or translation and functional characterization of 

the mutant gene product using in vitro and in vivo model systems.

Mutation analysis of control populations of different ethnic groups is critical for aiding 

interpretation of genetic test results, as the extent and type of genetic sequence variability 

varies between evolutionarily related populations. Cohort samples from control populations 

are available, both commercially and in individual genetics laboratories, and may consist of 

fewer than a hundred individuals to more than a thousand depending on the source and 

ethnic group. Sequencing the same genomic region in approximately 350 individuals in a 

population is estimated to identify all of the common polymorphisms (those variants with at 

least a 1% allele frequency) in the entire population. However, the real challenge lies in 

distinguishing pathogenic mutations from more rare benign ‘background’ variants with less 

than 1% frequency. While sequencing just 150 individuals in a control population is 

estimated to identify 80% of variants with a frequency of at least 0.1%, confidently 

identifying all variants with a frequency of at least 0.1% in a given population requires more 

than 3000 individuals [155]. Such large control datasets do not exist for cardiomyopathy 

genes today; however, large-scale genetic variation sequencing projects, such as the 

International HapMap Project and the 1000 Genomes Project, will make gene-specific 

variation data from large numbers of individuals universally available [156,157]. As 

increasing numbers of healthy individuals have specific disease-associated genes sequenced 

as part of these projects, knowledge of the extent of normal genetic variation within these 

disease-associated genes will increase and enable more informed interpretations of novel 

variants encountered in clinical genetic testing.

A promising population-based approach for distinguishing pathogenic mutations from 

benign variants was recently described for long QT syndrome (LQTS) [158]. Enabled by an 

extensive collection of mutations identified in LQTS patients and rare variants identified in 

more than 1000 control subjects, Kapa and colleagues identified regions of high and low 

specificity for predicting the pathogenicity of novel variants within the most common 

LQTS-susceptibility genes [158]. The practical outcome of such case–control variant 

analyses is to assign disease-causing probabilities to novel, uncharacterized variants. A 

prerequisite for such analyses is large genetic databases of both case and control 

populations. While large numbers of cases have been screened for HCM mutations, similar 

numbers of control subjects have not. Fortunately, the 1000 Genomes Project will soon 

enable such analyses in the cardiomyopathy genetic testing field by publicly providing 

variant data within HCM-susceptibility genes of healthy control subjects [156,157].

Another approach to determine whether a mutation is deleterious is to conduct family 

studies that track whether the cardiomyopathy and the mutation present in a family segregate 

together; however, such family studies are often hindered by the lack of relatives available 

for evaluation and the phenomena of reduced penetrance and/or age-related penetrance. 

Functional characterization of mutant gene products may help determine the pathogenic 

effect of sequence variants identified in cardiomyopathy patients. However, given the large 
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number of novel putative pathogenic mutations still being discovered, it is impossible to 

expect timely functional characterization of all variants in the current labor-intensive in vitro 
and in vivo functional assays. Moreover, universally applicable ‘gold standard’ functional 

characterization assays do not exist for cardiomyopathy-associated proteins and a negative 

result in current assays may simply indicate the existence of novel and presently 

undetectable disease mechanisms.

Without ‘gold standard’ functional assays, reliable and accurate predictive algorithmic 

approaches that model the pathogenicity of novel mutations identified would be very useful. 

Sort Intolerant from Tolerant (SIFT) and Polymorphism Phenotype (PolyPhen) are two 

sequence homology-based software tools intended to predict the potential impact of a 

mutation on protein function [159,160]. While these tools are particularly useful for 

prioritizing research-based studies of specific mutations, they should be used cautiously for 

interpreting the significance of novel genetic variants identified in a clinical genetic test. An 

analysis of nearly 45,000 nonsynonymous polymorphisms by SIFT and PolyPhen 

demonstrated that each program independently predicted approximately a third of common 

polymorphisms to be deleterious or damaging with approximately 60% concordance [161]. 

This may indicate that these programs are overly sensitive and likely to label many benign 

variants as potentially disease-associated, resulting in false-positive interpretations of genetic 

test results. These tools should undergo rigorous evaluation in a disease- and gene-specific 

fashion by comparing the predictions produced for proven disease-associated mutations to 

the predictions for known benign variants in the same genes.

With whole-genome scale sequencing technologies promising affordable and overwhelming 

amounts of sequence data, resolving the significance of new genetic variants will continue to 

be a major challenge. Extending sequencing from protein coding regions to non-protein-

coding regions of genes, including intronic regions, promoters, 5′ and 3′ untranslated 

regions, may identify synonymous deleterious variants that alter splicing or gene-expression 

levels, but as noncoding regions tend to harbor extensive genetic variability, such expanded 

analyses will greatly increase the number of VUSs identified. Until the extent of variability 

in relevant genes is cataloged and characterized, the interpretation of VUSs will continue to 

be a real challenge to interpretation of genetic testing for cardiomyopathies.

Conclusion

Over the past 20 years, there has been an increasing appreciation for the genetic basis of 

cardiomyopathies. The recognition of a number of clinically distinct cardiomyopathies 

(HCM, DCM, RCM, ARVC and LVNC) has led to intense investigation for underlying 

genetic defects. The genetic defects in HCM are the best characterized to date, with up to 

65% of patients having identifiable disease-causing mutations. Similarly robust genetic 

testing for ARVC can identify an estimated 50–55% of ARVC patients. However, the 

collective testing of more than 20 genes identifies a genetic cause for only approximately 

25% of idiopathic DCM patients. Since RCM and LVNC are relatively rare, studies 

determining the prevalence of mutations in these populations have not been performed. 

Thus, genetic testing for cardiomyopathies is currently limited by poor sensitivity for disease 

diagnosis, although the specificity of these tests is high. Despite these limitations, 
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professional recommendations have been published for the use of genetic testing in the 

diagnosis of familial HCM, ARVC and DCM, with the caveat that negative test results do 

not rule out the presence of a heritable cardiomyopathy [1,108–110]. Furthermore, 

genotype–phenotype correlations are not well understood at this time, limiting the utility of 

genetic testing for prediction of disease course or severity in an affected individual and 

making genetic testing primarily useful for identifying the presence of known familial 

mutations in at-risk family members in order to target appropriate relatives for careful follow 

up. Although mutation- and disease-specific therapies have been suggested and may become 

available in the future, genetic testing for this use is currently premature [162].

Expert commentary

The diagnosis of cardiomyopathy often begins with the identification of characteristic 

structural and functional abnormalities of the heart, typically using clinical imaging 

techniques, such as echocardiography or MRI. Such findings should prompt a thorough 

discussion between the physician and the patient, directed at elucidating the clinical 

consequences and possible etiologies for the abnormalities. In the absence of other causative 

factors, the diagnosis of familial cardiomyopathy must be considered. The interplay between 

increasing diagnostic awareness and significant advances in DNA sequencing technology 

has revealed a rapidly expanding list of genes that cause heritable cardiomyopathies.

At present, the tools available to the clinician for diagnosing familial cardiomyopathies have 

outstripped the therapeutic options available for their treatment, although it is exciting to 

imagine a future in which the diagnosis of gene-specific abnormalities could prompt the 

initiation of gene-specific therapy. Nor is there currently a sufficient understanding of the 

relationship between the genotype and phenotype of these disorders to support the 

differential use of existing therapies for patients with familial cardiomyopathy. Thus, a 

patient with DCM due to a mutation in MYH7 is treated using the same clinical approach as 

a patient with DCM secondary to viral myocarditis. The true clinical benefit to making a 

diagnosis of familial cardiomyopathy arises from the possibility of identifying relatives of 

the proband who are presymptomatic and initiating life-extending evidence-based therapies.

Through little fault of their own, the vast majority of clinicians remain unaware of the ever-

lengthening list of disease-causing mutations, let alone how to pursue their identification. 

The National Center for Biotechnology Information (NCBI) maintains a medical genetics 

website that compiles much of the present knowledge regarding the genetic causes of 

heritable disorders, including cardiomyopathies [301]. A search for ‘cardiomyopathy’ on the 

website reveals results organized by type of cardiomyopathy followed by lists of the known 

causative mutations (reviewed in TABLE 5). Many of the listed genes are accompanied by 

links to the contact information for clinical laboratories that will perform sequence analysis 

for the chosen mutation. While not completely contemporary, GeneTests is an extensive and 

important – if somewhat daunting – resource for clinicians interested in evaluating a patient 

for familial cardiomyopathy. In an effort to simplify the diagnostic interface, multiple 

laboratories have begun offering ‘cardiomyopathy panels’ based on the cardiac phenotype 

(e.g., DCM, HCM and ARVC) that use gene chips to screen a single sample for almost all of 

the mutations known to cause the cardiomyopathy of interest. Such an approach removes the 
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onus from the provider for searching either their memory or the internet for a list of the 

genes to be sequenced. These sequencing services are available from both academically 

affiliated (Harvard/ Partners Healthcare) and commercial (Correlagen Diagnostics, Inc., 

GeneDx, PGxHealth/FAMILION) laboratories. Chip-based assays have also been developed 

and may provide cheaper and faster diagnosis of HCM [144,145] and DCM [146], although 

with some limitations. It seems likely that the availability of such efficient and user-friendly 

testing will increase the frequency with which clinicians will seek, and thus find, the 

diagnosis of familial cardiomyopathy.

Five-year view

It would be optimistic to predict that in 5 years we would recognize most of the genes and 

disease-causing mutations for the five clinically distinct cardiomyopathies. However, 

continued research efforts will probably result in a substantial increase in the number of 

genes identified that are associated with familial cardiomyopathies. It is expected that the 

identification of additional genes and the application of recent technical advances, such as 

next-generation sequencing and microarray-based ‘resequencing’ to genetic diagnosis (as 

recently reviewed in [4]) will lead to dramatic improvement in the clinical sensitivity and 

cost–effectiveness of genetic testing for cardiomyopathies. We also predict that the 

bioinformatic and functional approaches reviewed in this article will become valuable in 

distinguishing novel pathogenic mutations from novel benign variants. This will be assisted 

by the rapid increase in our understanding of the genetic variation in the human genome in 

both health and disease by large-scale resequencing efforts, which are currently underway or 

have yet to begin. While not discussed in detail here, genetic modifiers of HCM have been 

identified, which when present are associated with a greater severity of disease in some 

studies [4,163–165]. In the future, more conclusive genotype–phenotype relationships may 

be made by identifying mutations not only in specific structural genes but also in such 

comodifier genes, which may drive specific treatment modalities based on the spectrum of 

mutations identified. Lastly, we predict the identification and experimental application of 

mutation specific therapy to cardiomyopathies. For example, the use of drugs to read-

through specific truncation mutations has been applied to Duchenne muscular dystrophy and 

cystic fibrosis [162,166]; its application to cardiomyopathies is certain to be tested in the 

near future. The prospect of specific therapies guided by mutation testing or targeting 

individual mutations is exciting given the lack of currently available therapies for most of 

the cardiomyopathies.

Acknowledgments

The authors thank Melvin Scheinman from the University of California, San Francisco School of Medicine for 
assistance with the original clinical examples of familial ARVC included in the figures.

References

Papers of special note have been highlighted as:

• of interest

•• of considerable interest

Callis et al. Page 16

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1•. Hershberger RE, Lindenfeld J, Mestroni L, et al. Genetic evaluation of cardiomyopathy – a Heart 
Failure Society of America practice guideline. J Card Fail. 2009; 15(2):83–97. Comprehensively 
evaluated the evidence for genetic evaluation, clinical screening, and molecular genetic testing of 
cardiomyopathies (hypertrophic cardiomyopathy [HCM], dilated cardiomyopathy [DCM], 
restrictive cardiomyopathy [RCM], arrhythmogenic right ventricular cardiomyopathy [ARVC] 
and left ventricular noncompaction cardiomyopathy [LVNC]) based in published studies. 
[PubMed: 19254666] 

2•. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the 
cardiomyopathies: an American Heart Association Scientific Statement from the Council on 
Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and 
Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary 
Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006; 113(14):
1807–1816. Presents the working framework for cardiomyopathies in the context of molecular 
genetics and their diverse phenotypes. Importantly, it recognizes the importance of molecular 
genetic testing and introduces several new entities, including LVNC, in the context of other 
cardiomyopathies. [PubMed: 16567565] 

3. Ingles J, Doolan A, Chiu C, et al. Compound and double mutations in patients with hypertrophic 
cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005; 42(10):e59. 
[PubMed: 16199542] 

4. Rodriguez JE, McCudden CR, Willis MS. Familial hypertrophic cardiomyopathy: basic concepts 
and future molecular diagnostics. Clin Biochem. 2009; 42(9):755–765. [PubMed: 19318019] 

5. Sen-Chowdhry S, Syrris P, McKenna WJ. Role of genetic analysis in the management of patients 
with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol. 2007; 50(19):
1813–1821. [PubMed: 17980246] 

6. Nava A, Thiene G, Canciani B, et al. Familial occurrence of right ventricular dysplasia: a study 
involving nine families. J Am Coll Cardiol. 1988; 12(5):1222–1228. [PubMed: 3170963] 

7. Basso C, Thiene G, Corrado D, et al. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, 
dystrophy, or myocarditis? Circulation. 1996; 94(5):983–991. [PubMed: 8790036] 

8. Fontaine G, Frank R, Guiraudon G, et al. Significance of intraventricular conduction disorders 
observed in arrhythmogenic right ventricular dysplasia. Arch Mal Coeur Vaiss. 1984; 77(8):872–
879. [PubMed: 6435566] 

9. Thiene G, Basso C. Arrhythmogenic right ventricular cardiomyopathy: an update. Cardiovasc 
Pathol. 2001; 10(3):109–117. [PubMed: 11485854] 

10. Corrado D, Basso C, Thiene G, et al. Spectrum of clinicopathologic manifestations of 
arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll 
Cardiol. 1997; 30(6):1512–1520. [PubMed: 9362410] 

11. Thiene G, Corrado D, Nava A, et al. Right ventricular cardiomyopathy: is there evidence of an 
inflammatory aetiology? Eur Heart J. 1991; 12(Suppl D):22–25. [PubMed: 1915454] 

12. Bowles NE, Ni J, Marcus F, Towbin JA. The detection of cardiotropic viruses in the myocardium 
of patients with arrhythmogenic right ventricular dysplasia/ cardiomyopathy. J Am Coll Cardiol. 
2002; 39(5):892–895. [PubMed: 11869858] 

13. Calabrese F, Basso C, Carturan E, Valente M, Thiene G. Arrhythmogenic right ventricular 
cardiomyopathy/dysplasia: is there a role for viruses? Cardiovasc Pathol. 2006; 15(1):11–17. 
[PubMed: 16414451] 

14. Garcia-Gras E, Lombardi R, Giocondo MJ, et al. Suppression of canonical Wnt/β-catenin signaling 
by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular 
cardiomyopathy. J Clin Invest. 2006; 116(7):2012–2021. [PubMed: 16823493] 

15•. Djouadi F, Lecarpentier Y, Hebert JL, et al. A potential link between peroxisome proliferator-
activated receptor signalling and the pathogenesis of arrhythmogenic right ventricular 
cardiomyopathy. Cardiovasc Res. 2009; 84(1):83–90. As ARVC is recognized as a defect in the 
desmin structure (desminopathy), novel underlying causes are still being identified as underlying 
causes of ARVC, such as mutations in PPAR signaling pathways described in this work. 
[PubMed: 19497962] 

Callis et al. Page 17

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Awad MM, Calkins H, Judge DP. Mechanisms of disease: molecular genetics of arrhythmogenic 
right ventricular dysplasia/cardiomyopathy. Nat Clin Pract Cardiovasc Med. 2008; 5(5):258–267. 
[PubMed: 18382419] 

17. den Haan A, Tan B, Zikusoka M, Llado L. Comprehensive desmosome mutation analysis in North 
Americans with arrythmogenic right ventricular dysplasia/ cardiomyopathy. Circ Cardiovasc 
Genet. 2009; 2(5):428–435. [PubMed: 20031617] 

18. van Tintelen JP, Entius MM, Bhuiyan ZA, et al. Plakophilin-2 mutations are the major determinant 
of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2006; 113(13):
1650–1658. [PubMed: 16567567] 

19. Syrris P, Ward D, Asimaki A, et al. Clinical expression of plakophilin-2 mutations in familial 
arrhythmogenic right ventricular cardiomyopathy. Circulation. 2006; 113(3):356–364. [PubMed: 
16415378] 

20. Antoniades L, Tsatsopoulou A, Anastasakis A, et al. Arrhythmogenic right ventricular 
cardiomyopathy caused by deletions in plakophilin-2 and plakoglobin (Naxos disease) in families 
from Greece and Cyprus: genotype–phenotype relations, diagnostic features and prognosis. Eur 
Heart J. 2006; 27(18):2208–2216. [PubMed: 16893920] 

21. Dalal D, James C, Devanagondi R, et al. Penetrance of mutations in plakophilin-2 among families 
with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol. 2006; 48(7):
1416–1424. [PubMed: 17010805] 

22. Corrado D, Thiene G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: clinical impact 
of molecular genetic studies. Circulation. 2006; 113(13):1634–1637. [PubMed: 16585401] 

23. Beffagna G, Occhi G, Nava A, et al. Regulatory mutations in transforming growth factor-β3 gene 
cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res. 2005; 65(2):366–
373. [PubMed: 15639475] 

24. Merner ND, Hodgkinson KA, Haywood AF, et al. Arrhythmogenic right ventricular 
cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense 
mutation in the TMEM43 gene. Am J Hum Genet. 2008; 82(4):809–821. [PubMed: 18313022] 

25. Sen-Chowdhry S, Syrris P, McKenna WJ. Genetics of right ventricular cardiomyopathy. J 
Cardiovasc Electrophysiol. 2005; 16(8):927–935. [PubMed: 16101641] 

26. Ott P, Marcus FI, Sobonya RE, et al. Cardiac sarcoidosis masquerading as right ventricular 
dysplasia. Pacing Clin Electrophysiol. 2003; 26(7 Pt 1):1498–1503. [PubMed: 12914628] 

27••. Asimaki A, Tandri H, Huang H, et al. A new diagnostic test for arrhythmogenic right ventricular 
cardiomyopathy. N Engl J Med. 2009; 360(11):1075–1084. Identifies for the first time that 
routine immunohistochemical analysis of conventional endomyocardial-biopsy samples appear to 
be a sensitive and specific test for ARVC. [PubMed: 19279339] 

28. Maron BJ, Gardin JM, Flack JM, et al. Prevalence of hypertrophic cardiomyopathy in a general 
population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study 
Coronary Artery Risk Development in (Young) Adults. Circulation. 1995; 92(4):785–789. 
[PubMed: 7641357] 

29. Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, 
including sudden death. Circulation. 2006; 114(15):1633–1644. [PubMed: 17030703] 

30. Niimura H, Bachinski LL, Sangwatanaroj S, et al. Mutations in the gene for cardiac myosin-
binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med. 1998; 
338(18):1248–1257. [PubMed: 9562578] 

31. Charron P, Dubourg O, Desnos M, et al. Genotype–phenotype correlations in familial hypertrophic 
cardiomyopathy. A comparison between mutations in the cardiac protein-C and the β-myosin 
heavy chain genes. Eur Heart J. 1998; 19(1):139–145. [PubMed: 9503187] 

32. Fananapazir L, Epstein ND. Genotype–phenotype correlations in hypertrophic cardiomyopathy. 
Insights provided by comparisons of kindreds with distinct and identical β-myosin heavy chain 
gene mutations. Circulation. 1994; 89(1):22–32. [PubMed: 8281650] 

33. Havndrup O, Bundgaard H, Andersen PS, et al. The Val606Met mutation in the cardiac β-myosin 
heavy chain gene in patients with familial hypertrophic cardiomyopathy is associated with a high 
risk of sudden death at young age. Am J Cardiol. 2001; 87(11):1315–1317. [PubMed: 11377367] 

Callis et al. Page 18

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Watkins H, McKenna WJ, Thierfelder L, et al. Mutations in the genes for cardiac troponin T and 
α-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995; 332(16):1058–1064. 
[PubMed: 7898523] 

35. Moolman JC, Corfield VA, Posen B, et al. Sudden death due to troponin T mutations. J Am Coll 
Cardiol. 1997; 29(3):549–555. [PubMed: 9060892] 

36. Christiaans I, Lekanne dit Deprez RH, van Langen IM, Wilde AA. Ventricular fibrillation in 
MYH7-related hypertrophic cardiomyopathy before onset of ventricular hypertrophy. Heart 
Rhythm. 2009; 6(9):1366–1369. [PubMed: 19539541] 

37. Keren A, Syrris P, McKenna WJ. Hypertrophic cardiomyopathy: the genetic determinants of 
clinical disease expression. Nat Clin Pract Cardiovasc Med. 2008; 5(3):158–168. [PubMed: 
18227814] 

38. van Dijk SJ, Dooijes D, dos Remedios C, et al. Cardiac myosin-binding protein C mutations and 
hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte 
dysfunction. Circulation. 2009; 119(11):1473–1483. [PubMed: 19273718] 

39. Thierfelder L, Watkins H, MacRae C, et al. A-tropomyosin and cardiac troponin T mutations cause 
familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994; 77(5):701–712. 
[PubMed: 8205619] 

40••. Mearini G, Gedicke C, Schlossarek S, et al. Atrogin-1 and MuRF1 regulate cardiac MyBP-C 
levels via different mechanisms. Cardiovasc Res. 2009; 85(2):357–366. Reports specific 
mechanisms by which the ubiquitin proteasome system targets wild-type and mutant saromere 
MyBP-c differentially by cardiac specific ubiquitin ligases. This article may give vital insight to 
the underlying pathophysiology of a number of cardiomyopathies and may also help identify 
where therapies need to target to be specific and effective in treating sarcomere-based 
cardiomyopathies. [PubMed: 19850579] 

41. Kirschner SE, Becker E, Antognozzi M, et al. Hypertrophic cardiomyopathy-related β-myosin 
mutations cause highly variable calcium sensitivity with functional imbalances among individual 
muscle cells. Am J Physiol Heart Circ Physiol. 2005; 288(3):H1242–H1251. [PubMed: 15550524] 

42. Wang Y, Xu Y, Kerrick WG, et al. Prolonged Ca2+ and force transients in myosin RLC transgenic 
mouse fibers expressing malignant and benign FHC mutations. J Mol Biol. 2006; 361(2):286–299. 
[PubMed: 16837010] 

43. Landstrom AP, Weisleder N, Batalden KB, et al. Mutations in JPH2-encoded junctophilin-2 
associated with hypertrophic cardiomyopathy in humans. J Mol Cell Cardiol. 2007; 42(6):1026–
1035. [PubMed: 17509612] 

44. Minamisawa S, Sato Y, Tatsuguchi Y, et al. Mutation of the phospholamban promoter associated 
with hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2003; 304(1):1–4. [PubMed: 
12705874] 

45. Haghighi K, Kolokathis F, Gramolini AO, et al. A mutation in the human phospholamban gene, 
deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci USA. 2006; 
103(5):1388–1393. [PubMed: 16432188] 

46. Crilley JG, Boehm EA, Blair E, et al. Hypertrophic cardiomyopathy due to sarcomeric gene 
mutations is characterized by impaired energy metabolism irrespective of the degree of 
hypertrophy. J Am Coll Cardiol. 2003; 41(10):1776–1782. [PubMed: 12767664] 

47. Mestroni L, Maisch B, McKenna WJ, et al. Guidelines for the study of familial dilated 
cardiomyopathies. Collaborative Research Group of the European Human and Capital Mobility 
Project on Familial Dilated Cardiomyopathy. Eur Heart J. 1999; 20(2):93–102. [PubMed: 
10099905] 

48. Franz WM, Muller OJ, Katus HA. Cardiomyopathies: from genetics to the prospect of treatment. 
Lancet. 2001; 358(9293):1627–1637. [PubMed: 11716909] 

49. Schonberger J, Seidman CE. Many roads lead to a broken heart: the genetics of dilated 
cardiomyopathy. Am J Hum Genet. 2001; 69(2):249–260. [PubMed: 11443548] 

50. Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to 
mechanistic paradigms. Cell. 2001; 104(4):557–567. [PubMed: 11239412] 

Callis et al. Page 19

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



51. Codd MB, Sugrue DD, Gersh BJ, Melton LJ 3rd. Epidemiology of idiopathic dilated and 
hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975–
1984. Circulation. 1989; 80(3):564–572. [PubMed: 2766509] 

52. Michels VV, Moll PP, Miller FA, et al. The frequency of familial dilated cardiomyopathy in a series 
of patients with idiopathic dilated cardiomyopathy. N Engl J Med. 1992; 326(2):77–82. [PubMed: 
1727235] 

53. Honda Y, Yokota Y, Yokoyama M. Familial aggregation of dilated cardiomyopathy – evaluation of 
clinical characteristics and prognosis. Jpn Circ J. 1995; 59(9):589–598. [PubMed: 7500542] 

54. Keeling PJ, Gang Y, Smith G, et al. Familial dilated cardiomyopathy in the United Kingdom. Br 
Heart J. 1995; 73(5):417–421. [PubMed: 7786655] 

55. Grunig E, Tasman JA, Kucherer H, et al. Frequency and phenotypes of familial dilated 
cardiomyopathy. J Am Coll Cardiol. 1998; 31(1):186–194. [PubMed: 9426039] 

56. Hershberger, RE.; Kushner, JD.; Parks, SB. GeneReviews at GeneTests. Medical Genetics 
Information Resource; WA, USA: 2009. Dilated cardiomyopathy overview. 

57. Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT. Actin mutations in dilated 
cardiomyopathy, a heritable form of heart failure. Science. 1998; 280(5364):750–752. [PubMed: 
9563954] 

58. Kamisago M, Sharma SD, DePalma SR, et al. Mutations in sarcomere protein genes as a cause of 
dilated cardiomyopathy. N Engl J Med. 2000; 343(23):1688–1696. [PubMed: 11106718] 

59. Olson TM, Kishimoto NY, Whitby FG, Michels VV. Mutations that alter the surface charge of α-
tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol. 2001; 33(4):723–
732. [PubMed: 11273725] 

60. Li D, Czernuszewicz GZ, Gonzalez O, et al. Novel cardiac troponin T mutation as a cause of 
familial dilated cardiomyopathy. Circulation. 2001; 104(18):2188–2193. [PubMed: 11684629] 

61. Mogensen J, Murphy RT, Shaw T, et al. Severe disease expression of cardiac troponin C and T 
mutations in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2004; 44(10):
2033–2040. [PubMed: 15542288] 

62. MacLeod HM, Culley MR, Huber JM, McNally EM. Lamin A/C truncation in dilated 
cardiomyopathy with conduction disease. BMC Med Genet. 2003; 4:4. [PubMed: 12854972] 

63. Antoniades L, Eftychiou C, Kyriakides T, Christodoulou K, Katritsis DG. Malignant mutation in 
the lamin A/C gene causing progressive conduction system disease and early sudden death in a 
family with mild form of limb-girdle muscular dystrophy. J Interv Card Electrophysiol. 2007; 
19(1):1–7. [PubMed: 17605093] 

64. van Tintelen JP, Hofstra RM, Katerberg H, et al. High yield of LMNA mutations in patients with 
dilated cardiomyopathy and/or conduction disease referred to cardiogenetics outpatient clinics. 
Am Heart J. 2007; 154(6):1130–1139. [PubMed: 18035086] 

65. Graber HL, Unverferth DV, Baker PB, et al. Evolution of a hereditary cardiac conduction and 
muscle disorder: a study involving a family with six generations affected. Circulation. 1986; 74(1):
21–35. [PubMed: 3708775] 

66. Nelson SD, Sparks EA, Graber HL, et al. Clinical characteristics of sudden death victims in 
heritable (chromosome 1p1–1q1) conduction and myocardial disease. J Am Coll Cardiol. 1998; 
32(6):1717–1723. [PubMed: 9822101] 

67. Bonne G, Di Barletta MR, Varnous S, et al. Mutations in the gene encoding lamin A/C cause 
autosomal dominant Emery–Dreifuss muscular dystrophy. Nat Genet. 1999; 21(3):285–288. 
[PubMed: 10080180] 

68. Raffaele Di Barletta M, Ricci E, Galluzzi G, et al. Different mutations in the LMNA gene cause 
autosomal dominant and autosomal recessive Emery–Dreifuss muscular dystrophy. Am J Hum 
Genet. 2000; 66(4):1407–1412. [PubMed: 10739764] 

69. Shackleton S, Lloyd DJ, Jackson SN, et al. LMNA, encoding lamin A/C, is mutated in partial 
lipodystrophy. Nat Genet. 2000; 24(2):153–156. [PubMed: 10655060] 

70. Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type 
familial partial lipodystrophy. Hum Mol Genet. 2000; 9(1):109–112. [PubMed: 10587585] 

Callis et al. Page 20

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



71. Carballo S, Robinson P, Otway R, et al. Identification and functional characterization of cardiac 
troponin I as a novel disease gene in autosomal dominant dilated cardiomyopathy. Circ Res. 2009; 
105(4):375–382. [PubMed: 19590045] 

72. Chang AN, Harada K, Ackerman MJ, Potter JD. Functional consequences of hypertrophic and 
dilated cardiomyopathy-causing mutations in α-tropomyosin. J Biol Chem. 2005; 280(40):34343–
34349. [PubMed: 16043485] 

73. Michele DE, Gomez CA, Hong KE, Westfall MV, Metzger JM. Cardiac dysfunction in 
hypertrophic cardiomyopathy mutant tropomyosin mice is transgene-dependent, hypertrophy-
independent, and improved by β-blockade. Circ Res. 2002; 91(3):255–262. [PubMed: 12169652] 

74. Mirza M, Marston S, Willott R, et al. Dilated cardiomyopathy mutations in three thin filament 
regulatory proteins result in a common functional phenotype. J Biol Chem. 2005; 280(31):28498–
506. [PubMed: 15923195] 

75. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left 
ventricular myocardium. A study of eight cases. Circulation. 1990; 82(2):507–513. [PubMed: 
2372897] 

76. Dusek J, Ostadal B, Duskova M. Postnatal persistence of spongy myocardium with embryonic 
blood supply. Arch Pathol. 1975; 99(6):312–317. [PubMed: 1147832] 

77. Ritter M, Oechslin E, Sutsch G, et al. Isolated noncompaction of the myocardium in adults. Mayo 
Clin Proc. 1997; 72(1):26–31. [PubMed: 9005281] 

78. Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 
adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor 
prognosis. J Am Coll Cardiol. 2000; 36(2):493–500. [PubMed: 10933363] 

79. Nugent AW, Daubeney PE, Chondros P, et al. The epidemiology of childhood cardiomyopathy in 
Australia. N Engl J Med. 2003; 348(17):1639–1646. [PubMed: 12711738] 

80. Lipshultz SE, Sleeper LA, Towbin JA, et al. The incidence of pediatric cardiomyopathy in two 
regions of the United States. N Engl J Med. 2003; 348(17):1647–1655. [PubMed: 12711739] 

81. Pignatelli RH, McMahon CJ, Dreyer WJ, et al. Clinical characterization of left ventricular 
noncompaction in children: a relatively common form of cardiomyopathy. Circulation. 2003; 
108(21):2672–2678. [PubMed: 14623814] 

82. Ichida F, Hamamichi Y, Miyawaki T, et al. Clinical features of isolated noncompaction of the 
ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic 
background. J Am Coll Cardiol. 1999; 34(1):233–240. [PubMed: 10400016] 

83. Jenni R, Oechslin EN, van der Loo B. Isolated ventricular non-compaction of the myocardium in 
adults. Heart. 2007; 93(1):11–15. [PubMed: 16670098] 

84. Eidem BW. Noninvasive evaluation of left ventricular noncompaction: what’s new in 2009? Pediatr 
Cardiol. 2009; 30(5):682–689. [PubMed: 19184176] 

85. Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA. Echocardiographic and 
pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards 
classification as a distinct cardiomyopathy. Heart. 2001; 86(6):666–671. [PubMed: 11711464] 

86. Ichida F, Tsubata S, Bowles KR, et al. Novel gene mutations in patients with left ventricular 
noncompaction or Barth syndrome. Circulation. 2001; 103(9):1256–1263. [PubMed: 11238270] 

87. Vatta M, Mohapatra B, Jimenez S, et al. Mutations in Cypher/ZASP in patients with dilated 
cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol. 2003; 42(11):2014–
2027. [PubMed: 14662268] 

88. Kenton AB, Sanchez X, Coveler KJ, et al. Isolated left ventricular noncompaction is rarely caused 
by mutations in G4.5, α-dystrobrevin and FK binding protein-12. Mol Genet Metab. 2004; 82(2):
162–166. [PubMed: 15172004] 

89. Chen R, Tsuji T, Ichida F, et al. Mutation analysis of the G4.5 gene in patients with isolated left 
ventricular noncompaction. Mol Genet Metab. 2002; 77(4):319–325. [PubMed: 12468278] 

90. Xing Y, Ichida F, Matsuoka T, et al. Genetic analysis in patients with left ventricular 
noncompaction and evidence for genetic heterogeneity. Mol Genet Metab. 2006; 88(1):71–77. 
[PubMed: 16427346] 

Callis et al. Page 21

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



91. Hermida-Prieto M, Monserrat L, Castro-Beiras A, et al. Familial dilated cardiomyopathy and 
isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am J Cardiol. 
2004; 94(1):50–54. [PubMed: 15219508] 

92. Klaassen S, Probst S, Oechslin E, et al. Mutations in sarcomere protein genes in left ventricular 
noncompaction. Circulation. 2008; 117(22):2893–2901. [PubMed: 18506004] 

93. Hoedemaekers YM, Caliskan K, Majoor-Krakauer D, et al. Cardiac β-myosin heavy chain defects 
in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, 
restrictive, and dilated cardiomyopathies. Eur Heart J. 2007; 28(22):2732–2737. [PubMed: 
17947214] 

94. Benotti JR, Grossman W, Cohn PF. Clinical profile of restrictive cardiomyopathy. Circulation. 
1980; 61(6):1206–1212. [PubMed: 6445242] 

95. Mogensen J, Arbustini E. Restrictive cardiomyopathy. Curr Opin Cardiol. 2009; 24(3):214–220. 
[PubMed: 19593902] 

96. Chen SC, Balfour IC, Jureidini S. Clinical spectrum of restrictive cardiomyopathy in children. J 
Heart Lung Transplant. 2001; 20(1):90–92. [PubMed: 11166616] 

97. Russo LM, Webber SA. Idiopathic restrictive cardiomyopathy in children. Heart. 2005; 91(9):
1199–1202. [PubMed: 16103558] 

98. Angelini A, Calzolari V, Thiene G, et al. Morphologic spectrum of primary restrictive 
cardiomyopathy. Am J Cardiol. 1997; 80(8):1046–1050. [PubMed: 9352976] 

99. Mogensen J, Kubo T, Duque M, et al. Idiopathic restrictive cardiomyopathy is part of the clinical 
expression of cardiac troponin I mutations. J Clin Invest. 2003; 111(2):209–216. [PubMed: 
12531876] 

100. Kaski JP, Syrris P, Burch M, et al. Idiopathic restrictive cardiomyopathy in children is caused by 
mutations in cardiac sarcomere protein genes. Heart. 2008; 94(11):1478–1484. [PubMed: 
18467357] 

101. Karam S, Raboisson MJ, Ducreux C, et al. A de novo mutation of the β cardiac myosin heavy 
chain gene in an infantile restrictive cardiomyopathy. Congenit Heart Dis. 2008; 3(2):138–143. 
[PubMed: 18380764] 

102. Peddy SB, Vricella LA, Crosson JE, et al. Infantile restrictive cardiomyopathy resulting from a 
mutation in the cardiac troponin T gene. Pediatrics. 2006; 117(5):1830–1833. [PubMed: 
16651346] 

103. Gambarin FI, Tagliani M, Arbustini E. Pure restrictive cardiomyopathy associated with cardiac 
troponin I gene mutation: mismatch between the lack of hypertrophy and the presence of 
disarray. Heart. 2008; 94(10):1257. [PubMed: 18801787] 

104. Kubo T, Gimeno JR, Bahl A, et al. Prevalence, clinical significance, and genetic basis of 
hypertrophic cardiomyopathy with restrictive phenotype. J Am Coll Cardiol. 2007; 49(25):2419–
2426. [PubMed: 17599605] 

105. Sen-Chowdhry S, McKenna WJ. Left ventricular noncompaction and cardiomyopathy: cause, 
contributor, or epiphenomenon? Curr Opin Cardiol. 2008; 23(3):171–175. [PubMed: 18382203] 

106. Kostareva A, Gudkova A, Sjoberg G, et al. Deletion in TNNI3 gene is associated with restrictive 
cardiomyopathy. Int J Cardiol. 2009; 131(3):410–412. [PubMed: 18006163] 

107. Moric-Janiszewska E, Markiewicz-Loskot G. Genetic heterogeneity of left-ventricular 
noncompaction cardiomyopathy. Clin Cardiol. 2008; 31(5):201–204. [PubMed: 17729299] 

108. Maron BJ, McKenna WJ, Danielson GK, et al. American College of Cardiology/ European 
Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A 
report of the American College of Cardiology Foundation Task Force on Clinical Expert 
Consensus Documents and the European Society of Cardiology Committee for Practice 
Guidelines. J Am Coll Cardiol. 2003; 42(9):1687–1713. [PubMed: 14607462] 

109. Semsarian C. Guidelines for the diagnosis and management of hypertrophic cardiomyopathy. 
Heart Lung Circ. 2007; 16(1):16–18. [PubMed: 17188934] 

110. Fatkin D. Guidelines for the diagnosis and management of familial dilated cardiomyopathy. Heart 
Lung Circ. 2007; 16(1):19–21. [PubMed: 17188933] 

111. Dalal D, Nasir K, Bomma C, et al. Arrhythmogenic right ventricular dysplasia: a United States 
experience. Circulation. 2005; 112(25):3823–3832. [PubMed: 16344387] 

Callis et al. Page 22

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



112. Hamid MS, Norman M, Quraishi A, et al. Prospective evaluation of relatives for familial 
arrhythmogenic right ventricular cardiomyopathy/dysplasia reveals a need to broaden diagnostic 
criteria. J Am Coll Cardiol. 2002; 40(8):1445–1450. [PubMed: 12392835] 

113. Nava A, Bauce B, Basso C, et al. Clinical profile and long-term follow-up of 37 families with 
arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2000; 36(7):2226–2233. 
[PubMed: 11127465] 

114. Luk A, Ahn E, Soor GS, Butany J. Dilated cardiomyopathy: a review. J Clin Pathol. 2009; 62(3):
219–225. [PubMed: 19017683] 

115. Pilichou K, Nava A, Basso C, et al. Mutations in desmoglein-2 gene are associated with 
arrhythmogenic right ventricular cardiomyopathy. Circulation. 2006; 113(9):1171–1179. 
[PubMed: 16505173] 

116. McKenna WJ, Thiene G, Nava A, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/
cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the 
European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the 
International Society and Federation of Cardiology. Br Heart J. 1994; 71(3):215–218. [PubMed: 
8142187] 

117. Schiavon G, Furlan S, Marin O, Salvatori S. Myotonic dystrophy protein kinase of the cardiac 
muscle: evaluation using an immunochemical approach. Microsc Res Tech. 2002; 58(5):404–
411. [PubMed: 12226810] 

118. Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of 
genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009; 54(3):201–211. 
[PubMed: 19589432] 

119. Hershberger RE, Cowan J, Morales A, Siegfried JD. Progress with genetic cardiomyopathies: 
screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular 
dysplasia/ cardiomyopathy. Circ Heart Fail. 2009; 2(3):253–261. [PubMed: 19808347] 

120. Cirino AL, Ho CY. Genetic testing in cardiac disease: from bench to bedside. Nat Clin Pract 
Cardiovasc Med. 2006; 3(9):462–463. [PubMed: 16932758] 

121. Niimura H, Patton KK, McKenna WJ, et al. Sarcomere protein gene mutations in hypertrophic 
cardiomyopathy of the elderly. Circulation. 2002; 105(4):446–451. [PubMed: 11815426] 

122. Watkins H, Rosenzweig A, Hwang DS, et al. Characteristics and prognostic implications of 
myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med. 1992; 
326(17):1108–1114. [PubMed: 1552912] 

123. Anan R, Greve G, Thierfelder L, et al. Prognostic implications of novel β cardiac myosin heavy 
chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest. 1994; 93(1):
280–285. [PubMed: 8282798] 

124. Varnava AM, Elliott PM, Baboonian C, et al. Hypertrophic cardiomyopathy: histopathological 
features of sudden death in cardiac troponin T disease. Circulation. 2001; 104(12):1380–1384. 
[PubMed: 11560853] 

125. Watkins H, Conner D, Thierfelder L, et al. Mutations in the cardiac myosin binding protein-C 
gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet. 1995; 11(4):
434–437. [PubMed: 7493025] 

126. Van Driest SL, Ackerman MJ, Ommen SR, et al. Prevalence and severity of “benign” mutations in 
the β-myosin heavy chain, cardiac troponin T, and α-tropomyosin genes in hypertrophic 
cardiomyopathy. Circulation. 2002; 106(24):3085–3090. [PubMed: 12473556] 

127. Van Driest SL, Vasile VC, Ommen SR, et al. Myosin binding protein C mutations and compound 
heterozygosity in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004; 44(9):1903–1910. 
[PubMed: 15519027] 

128. Ackerman MJ, VanDriest SL, Ommen SR, et al. Prevalence and age-dependence of malignant 
mutations in the β-myosin heavy chain and troponin T genes in hypertrophic cardiomyopathy: a 
comprehensive outpatient perspective. J Am Coll Cardiol. 2002; 39(12):2042–2048. [PubMed: 
12084606] 

129. Van Driest SL, Maron BJ, Ackerman MJ. From malignant mutations to malignant domains: the 
continuing search for prognostic significance in the mutant genes causing hypertrophic 
cardiomyopathy. Heart. 2004; 90(1):7–8. [PubMed: 14676227] 

Callis et al. Page 23

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



130. Olivotto I, Girolami F, Ackerman MJ, et al. Myofilament protein gene mutation screening and 
outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2008; 83(6):630–638. 
[PubMed: 18533079] 

131. Maron BJ, Roberts WC, Arad M, et al. Clinical outcome and phenotypic expression in LAMP2 
cardiomyopathy. JAMA. 2009; 301(12):1253–1259. [PubMed: 19318653] 

132. Monserrat L, Gimeno-Blanes JR, Marin F, et al. Prevalence of Fabry disease in a cohort of 508 
unrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2007; 50(25):2399–
2403. [PubMed: 18154965] 

133. Arad M, Maron BJ, Gorham JM, et al. Glycogen storage diseases presenting as hypertrophic 
cardiomyopathy. N Engl J Med. 2005; 352(4):362–372. [PubMed: 15673802] 

134. Hoffmann B. Fabry disease: recent advances in pathology, diagnosis, treatment and monitoring. 
Orphanet J Rare Dis. 2009; 4:21. [PubMed: 19818152] 

135. Arbustini E, Pilotto A, Repetto A, et al. Autosomal dominant dilated cardiomyopathy with 
atrioventricular block: a lamin A/C defect-related disease. J Am Coll Cardiol. 2002; 39(6):981–
990. [PubMed: 11897440] 

136. Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene 
as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999; 
341(23):1715–1724. [PubMed: 10580070] 

137. van Berlo JH, de Voogt WG, van der Kooi AJ, et al. Meta-analysis of clinical characteristics of 
299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden 
death? J Mol Med. 2005; 83(1):79–83. [PubMed: 15551023] 

138. Mestroni L, Taylor MR. Lamin A/C gene and the heart: how genetics may impact clinical care. J 
Am Coll Cardiol. 2008; 52(15):1261–1262. [PubMed: 18926330] 

139. Meune C, Van Berlo JH, Anselme F, et al. Primary prevention of sudden death in patients with 
lamin A/C gene mutations. N Engl J Med. 2006; 354(2):209–210. [PubMed: 16407522] 

140. University of Washington. GeneTests. Medical Genetics Information Resource; WA, USA: 1993–
2009. database online

141. Hershberger RE, Parks SB, Kushner JD, et al. Coding sequence mutations identified in MYH7, 
TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated 
cardiomyopathy. Clin Transl Sci. 2008; 1(1):21–26. [PubMed: 19412328] 

142. Muntoni F, Cau M, Ganau A, et al. Brief report: deletion of the dystrophin muscle-promoter 
region associated with X-linked dilated cardiomyopathy. N Engl J Med. 1993; 329(13):921–925. 
[PubMed: 8361506] 

143. Decostre V, Ben Yaou R, Bonne G. Laminopathies affecting skeletal and cardiac muscles: clinical 
and pathophysiological aspects. Acta Myol. 2005; 24(2):104–109. [PubMed: 16550926] 

144. Waldmuller S, Muller M, Rackebrandt K, et al. Array-based resequencing assay for mutations 
causing hypertrophic cardiomyopathy. Clin Chem. 2008; 54(4):682–687. [PubMed: 18258667] 

145. Fokstuen S, Lyle R, Munoz A, et al. A DNA resequencing array for pathogenic mutation 
detection in hypertrophic cardiomyopathy. Hum Mutat. 2008; 29(6):879–885. [PubMed: 
18409188] 

146. Zimmerman, RS.; Cox, S.; Lakdawala, N., et al. A novel custom resequencing array for dilated 
cardiomyopathy (DCM). Presented at: American College of Medical Genetics Annual Meeting; 
Tampa, FL, USA. 27 March 2009; Abstract 354

147. Kothiyal P, Cox S, Ebert J, et al. An overview of custom array sequencing. Curr Protoc Hum 
Genet. 2009; 7(Unit 7):17. [PubMed: 19360699] 

148. Arad M, Seidman JG, Seidman CE. Phenotypic diversity in hypertrophic cardiomyopathy. Hum 
Mol Genet. 2002; 11(20):2499–2506. [PubMed: 12351586] 

149•. Bagnall RD, Yeates L, Semsarian C. The role of large gene deletions and duplications in 
MYBPC3 and TNNT2 in patients with hypertrophic cardiomyopathy. Int J Cardiol. 2009 (Epub 
ahead of print). Investigates how common large deletions and duplications are in hypertrophic 
cardiomyopathy in MYBP3 and TNNT2 genes. They failed to identify large deletions and 
duplications associated with disease, suggesting that standard methods are probably not missing 
many deletions and duplications in HCM. 

Callis et al. Page 24

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



150. Bhuiyan ZA, van den Berg MP, van Tintelen JP, et al. Expanding spectrum of human RYR2-
related disease: new electrocardiographic, structural, and genetic features. Circulation. 2007; 
116(14):1569–1576. [PubMed: 17875969] 

151. Gupta P, Bilinska ZT, Sylvius N, et al. Genetic and ultrastructural studies in dilated 
cardiomyopathy patients: a large deletion in the lamin A/C gene is associated with cardiomyocyte 
nuclear envelope disruption. Basic Res Cardiol. 2010; 105(3):365–377. [PubMed: 20127487] 

152. Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet. 2001; 27(3):234–236. 
[PubMed: 11242096] 

153. Richards CS, Bale S, Bellissimo DB, et al. ACMG recommendations for standards for 
interpretation and reporting of sequence variations: revisions 2007. Genet Med. 2008; 10(4):294–
300. [PubMed: 18414213] 

154. Christensen AH, Benn M, Tybjaerg-Hansen A, Haunso S, Svendsen JH. Missense variants in 
plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients – disease-causing or 
innocent bystanders? Cardiology. 2010; 115(2):148–154. [PubMed: 19955750] 

155••. Ionita-Laza I, Lange C, Laird MN. Estimating the number of unseen variants in the human 
genome. Proc Natl Acad Sci USA. 2009; 106(13):5008–5013. Based on the frequency of 
mutations, this study estimates the number of control patients that are needed to appreciate the 
genetic variation that exists in the absence of disease. The authors determine for the first time that 
an analysis of as little as 150 people are necessary to identify 80% of the variants for a disease 
frequency of at least 0.1%, whereas more than 3000 are needed to identify them all. This gives a 
rationale guideline for control sample numbers when analyzing novel variants that may be 
associated with disease. [PubMed: 19276111] 

156. Kuehn BM. 1000 Genomes Project promises closer look at variation in human genome. JAMA. 
2008; 300(23):2715. [PubMed: 19088343] 

157. Frazer KA, Ballinger DG, Cox DR, et al. A second generation human haplotype map of over 3.1 
million SNPs. Nature. 2007; 449(7164):851–861. [PubMed: 17943122] 

158. Kapa S, Tester DJ, Salisbury BA, et al. Genetic testing for long-QT syndrome: distinguishing 
pathogenic mutations from benign variants. Circulation. 2009; 120(18):1752–1760. [PubMed: 
19841300] 

159. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic 
Acids Res. 2002; 30(17):3894–3900. [PubMed: 12202775] 

160. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic 
Acids Res. 2003; 31(13):3812–3814. [PubMed: 12824425] 

161. Jegga AG, Gowrisankar S, Chen J, Aronow BJ. PolyDoms: a whole genome database for the 
identification of non-synonymous coding SNPs with the potential to impact disease. Nucleic 
Acids Res. 2007; 35(Database issue):D700–D706. [PubMed: 17142238] 

162. Carrier L, Schlossarek S, Willis MS, Eschenhagen T. Ubiquitin-proteasome system and nonsense-
mediated mRNA decay in hypertrophic cardiomyopathy. Cardiovasc Res. 2009; 85(2):330–338. 
[PubMed: 19617224] 

163. Lechin M, Quinones MA, Omran A, et al. Angiotensin-I converting enzyme genotypes and left 
ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation. 1995; 92(7):
1808–1812. [PubMed: 7671365] 

164. Wang SX, Fu CY, Zou YB, et al. Polymorphisms of angiotensin-converting enzyme 2 gene 
associated with magnitude of left ventricular hypertrophy in male patients with hypertrophic 
cardiomyopathy. Chin Med J (Engl). 2008; 121(1):27–31. [PubMed: 18208662] 

165. Lieb W, Graf J, Gotz A, et al. Association of angiotensin-converting enzyme 2 (ACE2) gene 
polymorphisms with parameters of left ventricular hypertrophy in men. Results of the MONICA 
Augsburg echocardiographic substudy. J Mol Med. 2006; 84(1):88–96. [PubMed: 16283142] 

166. Linde L, Kerem B. Introducing sense into nonsense in treatments of human genetic diseases. 
Trends Genet. 2008; 24(11):552–563. [PubMed: 18937996] 

167. Pinto JR, Parvatiyar MS, Jones MA, Liang J, Potter JD. A troponin T mutation that causes 
infantile restrictive cardiomyopathy increases Ca2+ sensitivity of force development and impairs 
the inhibitory properties of troponin. J Biol Chem. 2008; 283(4):2156–2166. [PubMed: 
18032382] 

Callis et al. Page 25

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



168. Rankin J, Auer-Grumbach M, Bagg W, et al. Extreme phenotypic diversity and nonpenetrance in 
families with the LMNA gene mutation R644C. Am J Med Genet A. 2008; 146A(12):1530–
1542. [PubMed: 18478590] 

169. Marian AJ, Roberts R. The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell 
Cardiol. 2001; 33(4):655–670. [PubMed: 11273720] 

170. Van Driest SL, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ. Yield of genetic testing in 
hypertrophic cardiomyopathy. Mayo Clin Proc. 2005; 80(6):739–744. [PubMed: 15945527] 

171. Richard P, Charron P, Carrier L, et al. Hypertrophic cardiomyopathy: distribution of disease 
genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 
2003; 107(17):2227–2232. [PubMed: 12707239] 

172. Landstrom AP, Parvatiyar MS, Pinto JR, et al. Molecular and functional characterization of novel 
hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell 
Cardiol. 2008; 45(2):281–288. [PubMed: 18572189] 

173. Satoh M, Takahashi M, Sakamoto T, et al. Structural analysis of the titin gene in hypertrophic 
cardiomyopathy: identification of a novel disease gene. Biochem Biophys Res Commun. 1999; 
262(2):411–417. [PubMed: 10462489] 

174. Carniel E, Taylor MR, Sinagra G, et al. A-myosin heavy chain: a sarcomeric gene associated with 
dilated and hypertrophic phenotypes of cardiomyopathy. Circulation. 2005; 112(1):54–59. 
[PubMed: 15998695] 

175. Theis JL, Bos JM, Bartleson VB, et al. Echocardiographic-determined septal morphology in Z-
disc hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2006; 351(4):896–902. 
[PubMed: 17097056] 

176. Geier C, Perrot A, Ozcelik C, et al. Mutations in the human muscle LIM protein gene in families 
with hypertrophic cardiomyopathy. Circulation. 2003; 107(10):1390–1395. [PubMed: 12642359] 

177. Hayashi T, Arimura T, Itoh-Satoh M, et al. Tcap gene mutations in hypertrophic cardiomyopathy 
and dilated cardiomyopathy. J Am Coll Cardiol. 2004; 44(11):2192–2201. [PubMed: 15582318] 

178. Vasile VC, Ommen SR, Edwards WD, Ackerman MJ. A missense mutation in a ubiquitously 
expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy. Biochem 
Biophys Res Commun. 2006; 345(3):998–1003. [PubMed: 16712796] 

179. Vasile VC, Will ML, Ommen SR, et al. Identification of a metavinculin missense mutation, 
R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol Genet Metab. 2006; 
87(2):169–174. [PubMed: 16236538] 

180. Osio A, Tan L, Chen SN, et al. Myozenin 2 is a novel gene for human hypertrophic 
cardiomyopathy. Circ Res. 2007; 100(6):766–768. [PubMed: 17347475] 

181. Arimura T, Bos JM, Sato A, et al. Cardiac ankyrin repeat protein gene (ANKRD1) mutations in 
hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009; 54(4):334–342. [PubMed: 19608031] 

182. Chimenti C, Pieroni M, Morgante E, et al. Prevalence of Fabry disease in female patients with 
late-onset hypertrophic cardiomyopathy. Circulation. 2004; 110(9):1047–1053. [PubMed: 
15313943] 

183. Sachdev B, Takenaka T, Teraguchi H, et al. Prevalence of Anderson–Fabry disease in male 
patients with late onset hypertrophic cardiomyopathy. Circulation. 2002; 105(12):1407–1411. 
[PubMed: 11914245] 

184. Gollob MH, Green MS, Tang AS, et al. Identification of a gene responsible for familial Wolff–
Parkinson–White syndrome. N Engl J Med. 2001; 344(24):1823–1831. [PubMed: 11407343] 

185. Yang Z, McMahon CJ, Smith LR, et al. Danon disease as an underrecognized cause of 
hypertrophic cardiomyopathy in children. Circulation. 2005; 112(11):1612–1617. [PubMed: 
16144992] 

186. Mayosi BM, Khogali S, Zhang B, Watkins H. Cardiac and skeletal actin gene mutations are not a 
common cause of dilated cardiomyopathy. J Med Genet. 1999; 36(10):796–797. [PubMed: 
10528865] 

187. Takai E, Akita H, Shiga N, et al. Mutational analysis of the cardiac actin gene in familial and 
sporadic dilated cardiomyopathy. Am J Med Genet. 1999; 86(4):325–327. [PubMed: 10494087] 

Callis et al. Page 26

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



188. Tesson F, Sylvius N, Pilotto A, et al. Epidemiology of desmin and cardiac actin gene mutations in 
a European population of dilated cardiomyopathy. Eur Heart J. 2000; 21(22):1872–1876. 
[PubMed: 11052860] 

189. Duboscq-Bidot L, Charron P, Ruppert V, et al. Mutations in the ANKRD1 gene encoding CARP 
are responsible for human dilated cardiomyopathy. Eur Heart J. 2009; 30(17):2128–2136. 
[PubMed: 19525294] 

190. Moulik M, Vatta M, Witt SH, et al. ANKRD1, the gene encoding cardiac ankyrin repeat protein, 
is a novel dilated cardiomyopathy gene. J Am Coll Cardiol. 2009; 54(4):325–333. [PubMed: 
19608030] 

191. Becane HM, Bonne G, Varnous S, et al. High incidence of sudden death with conduction system 
and myocardial disease due to lamins A and C gene mutation. Pacing Clin Electrophysiol. 2000; 
23(11 Pt 1):1661–1666. [PubMed: 11138304] 

192. Hershberger RE, Hanson EL, Jakobs PM, et al. A novel lamin A/C mutation in a family with 
dilated cardiomyopathy, prominent conduction system disease, and need for permanent 
pacemaker implantation. Am Heart J. 2002; 144(6):1081–1086. [PubMed: 12486434] 

193. Karkkainen S, Reissell E, Helio T, et al. Novel mutations in the lamin A/C gene in heart 
transplant recipients with end stage dilated cardiomyopathy. Heart. 2006; 92(4):524–526. 
[PubMed: 16537768] 

194. Parks SB, Kushner JD, Nauman D, et al. Lamin A/C mutation analysis in a cohort of 324 
unrelated patients with idiopathic or familial dilated cardiomyopathy. Am Heart J. 2008; 156(1):
161–169. [PubMed: 18585512] 

195. Sebillon P, Bouchier C, Bidot LD, et al. Expanding the phenotype of LMNA mutations in dilated 
cardiomyopathy and functional consequences of these mutations. J Med Genet. 2003; 40(8):560–
567. [PubMed: 12920062] 

196. Taylor MR, Fain PR, Sinagra G, et al. Natural history of dilated cardiomyopathy due to lamin 
A/C gene mutations. J Am Coll Cardiol. 2003; 41(5):771–780. [PubMed: 12628721] 

197. Daehmlow S, Erdmann J, Knueppel T, et al. Novel mutations in sarcomeric protein genes in 
dilated cardiomyopathy. Biochem Biophys Res Commun. 2002; 298(1):116–120. [PubMed: 
12379228] 

198. Ehlermann P, Weichenhan D, Zehelein J, et al. Adverse events in families with hypertrophic or 
dilated cardiomyopathy and mutations in the MYBPC3 gene. BMC Med Genet. 2008; 9:95. 
[PubMed: 18957093] 

199. Shimizu M, Ino H, Yasuda T, et al. Gene mutations in adult Japanese patients with dilated 
cardiomyopathy. Circ J. 2005; 69(2):150–153. [PubMed: 15671604] 

200. Zeller R, Ivandic BT, Ehlermann P, et al. Large-scale mutation screening in patients with dilated 
or hypertrophic cardiomyopathy: a pilot study using DGGE. J Mol Med. 2006; 84(8):682–691. 
[PubMed: 16715312] 

201. Villard E, Duboscq-Bidot L, Charron P, et al. Mutation screening in dilated cardiomyopathy: 
prominent role of the β myosin heavy chain gene. Eur Heart J. 2005; 26(8):794–803. [PubMed: 
15769782] 

202. Haghighi K, Kolokathis F, Pater L, et al. Human phospholamban null results in lethal dilated 
cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest. 2003; 
111(6):869–876. [PubMed: 12639993] 

203. Schmitt JP, Kamisago M, Asahi M, et al. Dilated cardiomyopathy and heart failure caused by a 
mutation in phospholamban. Science. 2003; 299(5611):1410–1413. [PubMed: 12610310] 

204. McNair WP, Ku L, Taylor MR, et al. SCN5A mutation associated with dilated cardiomyopathy, 
conduction disorder, and arrhythmia. Circulation. 2004; 110(15):2163–2167. [PubMed: 
15466643] 

205. Olson TM, Michels VV, Ballew JD, et al. Sodium channel mutations and susceptibility to heart 
failure and atrial fibrillation. JAMA. 2005; 293(4):447–454. [PubMed: 15671429] 

206. Shi R, Zhang Y, Yang C, et al. The cardiac sodium channel mutation delQKP 1507–1509 is 
associated with the expanding phenotypic spectrum of LQT3, conduction disorder, dilated 
cardiomyopathy, and high incidence of youth sudden death. Europace. 2008; 10(11):1329–1335. 
[PubMed: 18697752] 

Callis et al. Page 27

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



207. Murphy RT, Mogensen J, Shaw A, et al. Novel mutation in cardiac troponin I in recessive 
idiopathic dilated cardiomyopathy. Lancet. 2004; 363(9406):371–372. [PubMed: 15070570] 

208. Gerull B, Gramlich M, Atherton J, et al. Mutations of TTN, encoding the giant muscle filament 
titin, cause familial dilated cardiomyopathy. Nat Genet. 2002; 30(2):201–204. [PubMed: 
11788824] 

209. Knoll R, Hoshijima M, Hoffman HM, et al. The cardiac mechanical stretch sensor machinery 
involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell. 
2002; 111(7):943–955. [PubMed: 12507422] 

210. Olson TM, Illenberger S, Kishimoto NY, et al. Metavinculin mutations alter actin interaction in 
dilated cardiomyopathy. Circulation. 2002; 105(4):431–437. [PubMed: 11815424] 

211. Mohapatra B, Jimenez S, Lin JH, et al. Mutations in the muscle LIM protein and α-actinin-2 
genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab. 2003; 80(1–
2):207–215. [PubMed: 14567970] 

212. Li D, Tapscoft T, Gonzalez O, et al. Desmin mutation responsible for idiopathic dilated 
cardiomyopathy. Circulation. 1999; 100(5):461–464. [PubMed: 10430757] 

213. Taylor MR, Slavov D, Ku L, et al. Prevalence of desmin mutations in dilated cardiomyopathy. 
Circulation. 2007; 115(10):1244–1251. [PubMed: 17325244] 

214. Sylvius N, Duboscq-Bidot L, Bouchier C, et al. Mutational analysis of the β- and δ-sarcoglycan 
genes in a large number of patients with familial and sporadic dilated cardiomyopathy. Am J Med 
Genet A. 2003; 120A(1):8–12. [PubMed: 12794684] 

215. Tsubata S, Bowles KR, Vatta M, et al. Mutations in the human δ-sarcoglycan gene in familial and 
sporadic dilated cardiomyopathy. J Clin Invest. 2000; 106(5):655–662. [PubMed: 10974018] 

216. Karkkainen S, Miettinen R, Tuomainen P, et al. A novel mutation, Arg71Thr, in the δ-sarcoglycan 
gene is associated with dilated cardiomyopathy. J Mol Med. 2003; 81(12):795–800. [PubMed: 
14564412] 

217. Bienengraeber M, Olson TM, Selivanov VA, et al. ABCC9 mutations identified in human dilated 
cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet. 2004; 36(4):382–387. 
[PubMed: 15034580] 

218. Schonberger J, Wang L, Shin JT, et al. Mutation in the transcriptional coactivator EYA4 causes 
dilated cardiomyopathy and sensorineural hearing loss. Nat Genet. 2005; 37(4):418–422. 
[PubMed: 15735644] 

219. Taylor MR, Slavov D, Gajewski A, et al. Thymopoietin (lamina-associated polypeptide 2) gene 
mutation associated with dilated cardiomyopathy. Hum Mutat. 2005; 26(6):566–574. [PubMed: 
16247757] 

220. Li D, Parks SB, Kushner JD, et al. Mutations of presenilin genes in dilated cardiomyopathy and 
heart failure. Am J Hum Genet. 2006; 79(6):1030–1039. [PubMed: 17186461] 

221. Towbin JA, Hejtmancik JF, Brink P, et al. X-linked dilated cardiomyopathy. Molecular genetic 
evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. 
Circulation. 1993; 87(6):1854–1865. [PubMed: 8504498] 

222. Milasin J, Muntoni F, Severini GM, et al. A point mutation in the 5′ splice site of the dystrophin 
gene first intron responsible for X-linked dilated cardiomyopathy. Hum Mol Genet. 1996; 5(1):
73–79. [PubMed: 8789442] 

223. Bione S, D’Adamo P, Maestrini E, et al. A novel X-linked gene, G4.5 is responsible for Barth 
syndrome. Nat Genet. 1996; 12(4):385–389. [PubMed: 8630491] 

224. D’Adamo P, Fassone L, Gedeon A, et al. The X-linked gene G4.5 is responsible for different 
infantile dilated cardiomyopathies. Am J Hum Genet. 1997; 61(4):862–867. [PubMed: 9382096] 

Website

301. Medical genetics information resource. www.genetests.org

Callis et al. Page 28

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Key issues

• Cardiomyopathies are a clinically and genetically heterogeneous group 

of heart muscle diseases associated with mechanical and/or electrical 

dysfunction that may predispose patients to sudden cardiac death.

• Over the last two decades, the association of specific genes involved 

with clinically distinct cardiomyopathies (hypertrophic 

cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, 

arrhythmogenic right ventricular cardiomyopathy and left ventricular 

noncompaction cardiomyopathy) has shed light onto the 

pathophysiology and identification of these diseases. Not all disease-

causing mutations have been identified, which currently limits the 

sensitivity of these tests. Mutations in the same genes may also 

underlie different cardiomyopathies.

• With relatively cheaper and quicker whole-genome scale sequencing 

technologies promising overwhelming amounts of sequence data on the 

horizon, interpreting and resolving the significance of rare genetic 

variants will become a major challenge on which to focus.

• Without ‘gold standard’ assays that can prove a pathogenic effect, it 

can be difficult to differentiate between novel disease-causing 

mutations and rare benign genetic variation that is seen in the general 

population.

• Clinical genetic tests for several cardiomyopathies are commercially 

available. The major clinical utility shared by the different 

cardiomyopathies is the ability to accurately predict the risk for a 

family member for developing a familial cardiomyopathy who 

currently has little or no clinical evidence of disease.

• The role of genetic counseling in genetic testing has never been more 

important because of our incomplete understanding of the genetic basis 

of cardiomyopathies that continues to evolve. Patients with 

cardiomyopathy need guidance to understand the complex and evolving 

issues of testing utility, sensitivity, analytic validity and implications of 

possible testing results.
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Figure 1. Arrhythmogenic right ventricular cardiomyopathy
(A) Cardiac MRI reveals fibrofatty infiltration of the right ventricular free wall, with some 

involvement of the left ventricle. (B) Electrocardiogram in normal sinus rhythm exhibiting a 

repolarization abnormality characteristic of arrhythmogenic right ventricular 

cardiomyopathy, known as the ‘epsilon wave’ (indicated by arrows). (C) Electrocardiogram 

demonstrating ventricular tachycardia originating from the RV. RV: Right ventricle; VT: 

Ventricular tachycardia.
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Figure 2. Selected proteins involved in the pathogenesis of cardiomyopathies shown in the 
context of their respective cellular structures
Cardiomyopathies are a genetically heterogeneous group of diseases that result from 

dysfunction in a multitude of diverse biological processes, including contractile force 

generation and transmission, mechanical stretch sensing, nuclear structure and function, and 

ion channel function.

Callis et al. Page 31

Expert Rev Mol Diagn. Author manuscript; available in PMC 2016 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Hypertrophic cardiomyopathy (HCM)
(A) Transthoracic echocardiogram in the apical four-chamber view demonstrates 

pronounced thickening of the distal interventricular septum and lateral wall of the left 

ventricle, consistent with the apical variant of HCM. (B) 12-lead electrocardiogram with 

evidence of left ventricular hypertrophy and deep T-wave inversions throughout the 

precordium, characteristic of apical variant HCM. (C) Transthoracic echocardiogram in the 

apical long-axis view demonstrates left ventricular hypertrophy, most pronounced in the 

interventricular septum, consistent with HCM. (D) Transthoracic echocardiogram using 

Doppler signal in the left ventricular outflow tract reveals a resting pressure gradient of 85 

mmHg between the cavity of the left ventricle and the aortic root. (E) This pressure gradient 

augments to 213 mmHg with Valsalva maneuver, characteristic of the dynamic left 

ventricular outflow tract gradient of obstructive HCM.
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Figure 4. Dilated cardiomyopathy
(A) Transthoracic echocardiogram in the parasternal long-axis view demonstrates dilation of 

the left ventricle. (B) M-mode echocardiography from the same view reveals markedly 

diminished systolic thickening of the myocardium.
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Figure 5. Left ventricular noncompaction cardiomyopathy
(A)Transthoracic echocardiogram in the parasternal short-axis view reveals prominent 

myocardial noncompaction involving all segments of the left ventricle other than the 

interventricular septum. (B) Use of injectable echocardiographic contrast in the same view 

further defines the structural abnormalities.
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Table 1

Genetic cardiomyopathies.

Disease Inheritance pattern Estimated prevalence Patients with 
mutations based on 
testing known 
causative genes (%)

Arrhythmogenic right ventricular 
cardiomyopathy

Autosomal dominant 1:5000 50–55

Dilated cardiomyopathy Autosomal dominant, autosomal recessive, 
X-linked

1:2500 ~25

Hypertrophic cardiomyopathy Autosomal dominant, autosomal recessive, 
X-linked

1:500 35–65

Left ventricular noncompaction 
cardiomyopathy

Autosomal dominant, X-linked Unknown 20–25

Restrictive cardiomyopathy Autosomal dominant Unknown Unknown
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Table 2

Genetic causes of arrhythmogenic right ventricular cardiomyopathy, left ventricular noncompaction 

cardiomyopathy and restrictive cardiomyopathy.

Protein Frequency in patients (%) Ref.

Restrictive cardiomyopathy

β-myosin heavy chain Unknown [104]

Cardiac troponin I Unknown [99,104]

Cardiac troponin T Unknown [100,102,167]

α-cardiac actin Unknown [100]

Left ventricular noncompaction cardiomyopathy

β-myosin heavy chain 13 [92,93]

α-cardiac actin 3 [92]

Cardiac troponin T <2 [92]

LIM domain-binding protein 3 (Cypher/ZASP) Unknown [87]

α-dystrobrevin Unknown [86]

Tafazzin Unknown [86]

Lamin A/C Unknown [168]

Arrhythmogenic right ventricular cardiomyopathy

Plakophilin 2 25–35 [5,17]

Desmoplakin 5 [5,17]

Desmoglein 2 5 [5,17]

Desmocollin 2 Rare [5,17]

Plakoglobin Rare [5,17]

TGFβ3 Rare [5,23]

Transmembrane protein 43 Unknown [24]
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Table 3

Genetic causes of hypertrophic cardiomyopathy and hypertrophic cardiomyopathy phenocopy diseases.

Gene Description Mutation frequency in familial forms of 
HCM (%)

Ref.

Hypertropic cardiomyopathy

MYH7 β-myosin heavy chain 15–25 [130,169–171]

MYBPC3 Myosin-binding protein C 15–25 [130,169–171]

TNNT2 Cardiac troponin T <5 [130,169–171]

TPM1 α-tropomyosin <5 [130,169–171]

TNNI3 Cardiac troponin I <5 [130,169–171]

MYL2 Myosin regulatory light chain <2 [130,169–171]

MYL3 Myosin essential light chain Rare [130,169–171]

ACTC α-cardiac actin Rare [130,169–171]

TNNC1 Cardiac troponin C Rare [171,172]

TTN Titin Rare [169,173]

MYH6 α-myosin heavy chain Rare [169,174]

LDB3 LIM binding domain 3 (Cypher/ZASP) Rare [175]

CSRP3 Muscle LIM protein Rare [175,176]

TCAP Telethonin Rare [175,177]

VCL Vinculin/metavinculin Rare [175,178,179]

ACTN2 α-actinin 2 Rare [175]

MYOZ2 Myozenin 2 Rare [180]

ANKRD1 Ankyrin repeat domain 1 Rare [181]

JPH2 Junctophilin-2 Rare [43]

PLN Phospholamban Rare [44,45]

Hypertropic cardiomyopathy phenocopy diseases (metabolic/ infiltrative diseases)

GLA α-galactosidase A (Anderson-Fabry disease) <5 [182,183]

PRKAG2 AMP-activated protein kinase subunit (WPW with LVH) Rare [133,169,184]

LAMP2 Lysosome-associated membrane protein 2 (Danon syndrome) Rare [133,185]

HCM: Hypertrophic cardiomyopathy; LVH: Left ventricular hypertrophy; WPW: Wolff–Parkinson–White syndrome.
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Table 4

Genetic causes of dilated cardiomyopathy.

Gene Description Frequency in DCM patients (%) Ref.

ACTC α-cardiac actin Rare [57,186–188]

ANKRD1 Ankyrin repeat domain 1 <5 [189,190]

LDB3 LIM domain-binding protein 3 (Cypher/ZASP) <5 [87,141]

LMNA Lamin A/C 6 [135,136,191–196]

MYBPC3 Myosin-binding protein C <5 [197–200]

MYH7 β-myosin heavy chain <5 [58,141,197,201]

PLN Phospholamban Rare [201–203]

SCN5A Sodium channel <3 [204–206]

TNNC1 Cardiac troponin C Rare [61]

TNNI3 Cardiac troponin I Rare [71,207]

TNNT2 Cardiac troponin T <2 [58,60,61,141,201]

TPM1 α-tropomyosin Rare [59]

TTN Titin Rare [208]

MYH6 α-myosin heavy chain Rare [174]

CSRP3 Muscle LIM protein Rare [141,209]

TCAP Telethonin Rare [141,177]

VCL Vinculin/metavinculin Rare [201,210]

ACTN2 α-actinin 2 Rare [211]

DES Desmin Rare [188,212,213]

SGCD δ-sarcoglycan Rare [214–216]

ABCC9 ATP-binding cassette C member 9 Rare [217]

EYA4 Eyes-absent 4 Unknown [218]

TMPO Thymopoietin Rare [219]

PSNE1 Presenilin 1 Rare [220]

PSNE2 Presenilin 2 Rare [220]

DMD Dystrophin Rare [142,199,221,222]

TAZ Tafazzin Rare [86,223,224]

DCM: Dilated cardiomyopathy.
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Table 5

Current clinically available genetic testing modalities for the diagnosis of familial cardiomyopathies.

Gene affected Description Analysis performed† Laboratories performing test‡ (n)

Arrhythmogenic right ventricular cardiomyopathy

DSC2 Desmocollin-2 1, 7, 10 6

DSG2 Desmoglein-2 1, 7, 10 5

DSP Desmoplakin 1, 2, 7 6

JUP Junction plakoglobin 1 2

PKP2 Plakophilin-2 1, 5, 7, 10 9

RYR2 Ryanodine receptor 2 1, 3, 4, 10 4

TGFB3 TGFβ3 1 1

TMEM43 Transmembrane protein 43 1, 2, 7 7

Left ventricular noncompaction cardiomyopathy§

DTNA Dystrobrevin α 1, 6, 7 3

LDB3 Lim domain-binding protein 3 1, 7 2

LMNA Lamin-A/C 1, 3–5, 7 17

TAZ Tafazzin 1, 6, 7 3

Dilated cardiomyopathy

ABCC9 ATP-binding cassette 1, 7 1

ACTC1 Actin, α cardiac muscle 1 1, 7 4

ACTN2 α-actinin 2 1, 7 1

CSRP3 Cysteine and glycine-rich protein 3 1, 7 1

DES Desmin 1, 7 2

DMD Dystrophin 1–10 37

LDB3 Lim domain-binding protein 3 1, 7 2

LMNA Lamin-A/C 1, 3–5, 7 17

MYBPC3 Myosin-binding protein C, cardiac type 1, 7, 10 6

MYH7 Myosin 7 1, 7, 10 8

PLN Cardiac phospholamban 1, 7 1

SCN5A Sodium channel protein type 5, subunit α 1, 5, 7, 10 8

SGCD Sarcoglycan, δ 1, 7, 10 3

TAZ Tafazzin 1, 6, 7 6

TCAP Telethonin 1, 7 2

TNNI3 Troponin I, cardiac muscle 1, 2, 6, 7, 10 6

TNNT2 Troponin T, cardiac muscle 1, 2, 7, 10¶ 8

TPM1 Tropomyosin α-1 chain 1, 7, 10 4

TTN Titin 2 1

VCL Vinculin 1, 7 1

Hypertrophic cardiomyopathy
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Gene affected Description Analysis performed† Laboratories performing test‡ (n)

Arrhythmogenic right ventricular cardiomyopathy

ACTC1† Actin, α cardiac muscle 1 1, 5, 7 6

CSRP3† Cysteine and glycine-rich protein 3

MYBPC3† Myosin-binding protein C, cardiac type 1, 2, 5, 7, 10 11

MYH7† Myosin heavy chain 7, cardiac muscle, β 1, 2, 5, 7, 10 10

MYL2 Myosin light chain 2, regulatory, cardiac, slow 1, 5, 7 7

MYL3 Myosin light chain 3, ventricular, slow 1, 5, 6, 7 8

TCAP† Telethonin 1, 7 2

TNNC1 Troponin C, cardiac muscle 1, 5, 7 2

TNNI3† Troponin I, cardiac muscle 1, 2, 5, 7, 10 9

TNNT2† Troponin T, cardiac muscle 1, 2, 5, 7, 10§ 10

TPM1† Tropomyosin α-1 chain 1, 5, 7, 10 8

TTN† Titin 2 1

Restrictive cardiomyopathy

TNNI3† Troponin I, cardiac muscle 1, 2, 5, 7, 10 3

†
Types of analysis: 1: Analysis of entire coding region; 2: Sequence analysis of select exons; 3: Linkage analysis.; 4: Mutation scanning of select 

exons; 5: Deletion, duplication analysis; 6: Carrier testing; 7: Prenatal diagnosis; 8: FISH-metaphase; 9: FISH-anaphase; 10: Mutation scanning of 
entire coding region.

‡
Covered in multiple disease phenotypes. The currently available testing methods were compiled from GeneTests. The designation of clinically 

available was made if the laboratory self-reported as being either a US CLIA-licensed laboratory or a non-US clinical laboratory. Verification must 
be made directly with the laboratory.

§
Testing for left ventricular noncompaction cardiomyopathy would include MYH7 as well, although not noted in GeneTests.

¶
Testing procedures appear to be different for TNNT2 depending on what phenotype they are ordered for. Verification must be made directly with 

the laboratories performing the analysis.

Data from [140].
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