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DAMMIF, a revised implementation of the ab-initio shape-determination

program DAMMIN for small-angle scattering data, is presented. The program

was fully rewritten, and its algorithm was optimized for speed of execution and

modified to avoid limitations due to the finite search volume. Symmetry and

anisometry constraints can be imposed on the particle shape, similar to

DAMMIN. In equivalent conditions, DAMMIF is 25–40 times faster than

DAMMIN on a single CPU. The possibility to utilize multiple CPUs is added to

DAMMIF. The application is available in binary form for major platforms.

1. Introduction

Small-angle scattering (SAS) of X-rays and neutrons is a fundamental

tool in the study of the nanostructure of matter, including disordered

systems and solutions (Feigin & Svergun, 1987). In a scattering

experiment, the specimen (e.g. particles of nanometre-scale size

floating in solution or embedded in a bulk matrix) is exposed to

X-rays or neutrons, and the scattered intensity I is recorded. For

disordered systems, the random positions and orientations of parti-

cles lead to an isotropic intensity distribution IðsÞ, which depends on

the modulus of momentum transfer s (s ¼ 4� sin �=�, where 2� is the

angle between the incident and scattered radiation, and � is the

wavelength). If the system contains identical non-interacting parti-

cles, for example for monodisperse dilute solutions of purified

biological macromolecules, IðsÞ is proportional to the scattering from

a single particle averaged over all orientations. This allows one to

obtain information about the overall shape and internal structure of

particles at a resolution of 1–2 nm (Feigin & Svergun, 1987; Svergun

& Koch, 2003).

Recent progress in instrumentation and development of data

analysis methods (Svergun & Koch, 2003; Petoukhov et al., 2007) has

significantly enhanced the resolution and reliability of the models

provided by SAS. A number of novel approaches have been proposed

to analyse the scattering data from monodisperse systems in terms of

three-dimensional models [see Petoukhov et al. (2007) for a review];

these advances have significantly increased the popularity of SAS in

the study of biopolymers in solution. Among these methods, ab-initio

shape determination techniques are especially important: first, they

do not require a-priori information about the particle, and second,

they are applicable also for moderately polydisperse (nonbiological)

systems, allowing one to retrieve the overall averaged shape over the

ensemble (Shtykova et al., 2003, 2007).

The aim of ab-initio analysis of SAS data is to recover the three-

dimensional structure from the one-dimensional scattering pattern,

and unique reconstruction is only possible in the trivial case of a

spherical particle. In shape determination, one represents the particle

by homogeneous models to constrain the solution and reduce the

ambiguity of the reconstruction. This simplification usually is justified

in the analysis of the low-angle scattering patterns from single-

component particles. In all ab-initio methods, particle shape is

represented in real space by a parametric model, and the parameters

of the model are altered so as to minimize the difference between the

computed scattering of the model and the experimental data. A

number of methods and alternative programs exist, which differ

primarily in the way the shape is represented. In the first general ab-

initio approach (Stuhrmann, 1970), an angular envelope function was

implemented in the program Sasha (Svergun et al., 1996), which was

limited to globular particles without significant internal cavities. More

detailed models are obtained by representing the particle by finite

volume elements, thus allowing internal cavities to be accounted for.

Using beads to model the scattering object, which was first proposed

by Chacon et al. (1998) and implemented in the program

DALAI_GA, a search volume is filled by densely packed small

spheres (also referred to as dummy atoms), which are assigned either

to the particle or to the solvent. Starting from a random assignment, a

Monte Carlo search, for example a genetic algorithm in DALAI_GA

or simulated annealing (SA) in DAMMIN (Svergun, 1999), is

employed to find a model that fits the data. A similar approach was

implemented in the Give’n’Take procedure of SAXS3D (Walther et

al., 2000), which runs on a grid of unlimited size. Heller et al. (2002)

developed a program SASMODEL, representing the particle by a

collection of interconnected ellipsoids.

Ab-initio methods have been proven to reliably reconstruct the

low-resolution shape in numerous tests and practical studies, and they

now belong to routine tools in SAS data analysis. Since little or no

information has to be specified by the user in most cases, these

methods are currently being incorporated into high-throughput

automated data analysis pipelines (Petoukhov et al., 2007). The

extensive use of the shape determination programs, including large

scale studies, makes the speed of reconstruction a rather important

issue. The Monte Carlo-based algorithms usually require millions of

random models to be screened and are thus time consuming. More-

over, given that different shapes are obtained starting from different

initial random models, often ten or more ab-initio runs need to be

performed and averaged to assess the uniqueness of the solution and

to reveal the most persistent shape features (Volkov & Svergun,

2003). Presently, most shape determination programs require hours

of CPU time for a single run on a typical Windows or Linux PC;

clearly this time needs to be reduced to the order of minutes or

less.
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This paper describes a new implementation of DAMMIN

(Svergun, 1999), one of the most popular shape determination

programs publicly available. The program, called DAMMIF (where

‘F’ denotes fast), has been completely rewritten in object-oriented

code and the algorithm has been optimized for speed and efficiency.

The algorithm was further improved in an attempt to avoid artifacts

caused by the limited search volume. This was achieved by replacing

the closed with an unlimited and growing search volume . A version of

DAMMIF optimized to make use of multiple CPUs is also available.

Furthermore, the implementation of DAMMIF, like DAMMIN,

features options to account for symmetry and anisometry in the

modelling if the relevant information is available.

2. DAMMIN algorithm

In this section, we outline the major features of DAMMIN that are

important for an understanding of the DAMMIF algorithm. The

reader is referred to the original publication (Svergun, 1999) for

further details.

In the original version of DAMMIN, a search volume (usually a

sphere with radius R equal to half the maximum particle size Dmax) is

filled with densely packed small spheres of radius r0 � R. Each

sphere may belong either to the particle (index = 1) or to the solvent

(index = 0). The shape of this dummy atom model (DAM) is

described by a binary configuration vector X of length

M ’ ðR=r0Þ
3
� 1. The scattering intensity from the configuration X

is calculated as

IðsÞ ¼ 2�2
P1

l¼0

Pl

m¼�l

AlmðsÞ
�� ��2; ð1Þ

where the partial scattering amplitudes are

AlmðsÞ ¼ il
ð2=�Þ1=2 va

PM
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jl srj
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ðrj; !jÞ ¼ rj are their polar coordinates, va ¼ ð4� r3
0=3Þ=0:74 is the

displaced volume per dummy atom, Ylmð!jÞ are the corresponding

spherical harmonics and jlðsrjÞ denote spherical Bessel functions. The

function f ðXÞ to be minimized has the form

f ðXÞ ¼ R2
ðI;XÞ þ

P

k

�kPkðXÞ; ð3Þ

where the first term on the right-hand side is the discrepancy between

the experimental and calculated data, and the second term

summarizes penalties as listed in Table 1 weighted by appropriate

factors.

The result after running the application is a compact inter-

connected DAM that fits the experimental data. If information about

the particle symmetry is available, it is taken into account as a hard

constraint by changing all the symmetrical dummy atoms simulta-

neously. A-priori information about the particle anisometry can also

be taken into account.

The spherical harmonics expansion using equations (1) and (2) is

computationally superior to the standard Debye (1915) formula,

which is usually employed to compute the scattering from bead

models. Moreover, only a single dummy atom is changed at each

move and hence only a single summand in equation (2) must be

updated to recalculate the partial amplitudes. This accelerates

DAMMIN significantly, but still, as millions of function evaluations

are required, a typical refinement takes about 2–3 CPU hours on an

average PC for a DAM containing a few thousands spheres.

3. DAMMIF implementation

Similar to DAMMIN, DAMMIF uses the scattering pattern

processed by the program GNOM (Svergun, 1992); DAMMIF also

follows the general algorithm of DAMMIN.

The program was, however, completely rewritten with the main

aim of speeding up the operation. Major algorithmic changes in

DAMMIF are described in the following sections.

3.1. Bead selection

A very important constraint for low-resolution ab-initio modelling

is that in the final model all beads representing the particle must be

interconnected to form a single body. Implementation of this condi-

tion is different between DAMMIN and DAMMIF. Fig. 1 shows

examples of the cross sections through the initial and final bead

models (top and bottom row, respectively) of DAMMIN (left) and

DAMMIF (right). The beads are colour coded as belonging to the

particle (red) and solvent (turquoise, blue, green) phases. Turquoise

and green beads differ from blue ones only in that the former are

relevant for the bead-selection algorithm described in the next

paragraph and the latter for the unlimited search volume as described

in the next section.

For each annealing step, DAMMIN and DAMMIF select a bead

completely at random. DAMMIN updates the simulated scattering,
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Figure 1
Cross sections of dummy atom models of DAMMIN (left) and DAMMIF (right).
The top row shows initial models (randomized and proto-particle) and the bottom
row the final models by the two programs. The different colours indicate particle
(red) and solvent (turquoise, blue and green) states of the dummy atoms. In
DAMMIF, only red and turquoise beads are subject to phase changes; DAMMIN
generally allows phase transitions anywhere in the search volume. Green solvent
beads indicate the current, extensible, border of DAMMIF’s mapped area (all
visible beads).

Table 1
Penalties as implemented by DAMMIN and DAMMIF by function and type.

Explicit penalties are configurable and may be disabled; implicit penalties are enforced
and may not be disabled.

Function DAMMIN DAMMIF

Peripheral penalty
(gradually decreasing)

Keeps the particle beads close
to the origin at high temperatures

Explicit –

Disconnectivity penalty Ensures that the model is inter-
connected

Explicit Implicit

Looseness penalty Ensures that the model is compact Explicit Explicit
Anisometry penalty

(with symmetries only)
Specifies whether the model should

be oblate or prolate
Explicit Explicit

Centre/Rg penalty Keeps the centre of mass of the
model close to the origin

– Explicit



computes the fit and penalizes possible disconnectivity of the particle

beads before deciding whether to accept or reject the change. There,

the disconnectivity is defined by the length of the longest graph

(ensemble of beads, where each pair can be connected by moving

through the beads touching each other in the grid), which is a CPU-

intense operation. DAMMIF tests connectivity first and rejects

disconnected models before launching into the time consuming

process of updating the scattering amplitudes. The latter are

computed if and only if a particle bead (red) or an adjacent bead

(turquoise) is selected (Fig. 1); otherwise the step is cancelled and

execution is resumed with the next step. A summary of the set of rules

used to decide about the connectivity of models is given in Table 2.

3.2. Unlimited search volume

In DAMMIN, the search volume is configurable at runtime but

fixed throughout the search procedure. The search volume is filled

with densely packed dummy atoms before SA begins. Limiting the

volume may be a useful feature for shape reconstruction (in parti-

cular, nonspherical search volumes can be employed to account for

additional information about the shape, if available). However, in

some cases, especially for very anisometric particles, a restricted

search volume may lead to artifacts. Indeed, the bead representing

the particle is obviously prevented from protruding outside the

border of the search volume. If, during the reconstruction, the

particle is formed close to the border, the search space becomes

anisotropic, possibly leading to unwanted border effects like artificial

bending. To avoid such effects, the algorithm of DAMMIF was

modified, allowing for the search in a variable volume which is

extended as necessary during the SA procedure. In the following, we

shall mostly refer to this unlimited DAMMIF, but a bounded-volume

version is also available on request.

Unlike DAMMIN, which fully randomizes the closed search

volume on start-up (Fig. 1, top left panel), DAMMIF starts from an

isometric object with the radius of gyration (Rg) matching the

experimentally obtained one (Fig. 1, top right panel). This proto-

particle (red) is constructed by adding successive layers of beads until

the desired Rg is reached. The polyhedral appearance of the starting

model as shown in Fig. 1 is subject to the hexagonal packing of beads

– it should be noted that the shape of the initial model has practically

no influence on the reconstruction. The starting shape is then covered

by a single layer of solvent beads, shown in green. The green colour

implies that, if such a bead is selected for phase transition, potentially

missing neighbours are added to the search volume. To accomplish

this, the coordinates of the neighbours are computed and looked up

in the list of available beads. If a neighbour is missing, its coordinates

are added as a new bead of solvent phase to the said list. To avoid

runtime penalties due to linear searches on ever-growing lists, beads

are stored in multidimensional binary search trees (Bentley, 1975),

which are also known as kd-trees. Furthermore, amplitudes of newly

created dummy atoms are lazily evaluated, i.e. they are not computed

until they contribute to the particle scattering for the first time.

Although lazily computed, once available partial amplitudes are

stored in a cache for later re-use.

Adding neighbours as described ensures that beads in the particle

phase (index = 1) are always surrounded by beads in the solvent

phase (index = 0). Thus, the algorithm may traverse a potential, but

not yet mapped, search volume. This was not possible in DAMMIN,

where the closed search volume may have blocked the annealing

algorithm from potentially better results.

3.3. Penalties

Penalties impose a set of rules on the dummy atom model to

modify its likelihood of being accepted by the SA selection rule

[equation (3), right-hand sum]. Hence, penalties are used to guide the

annealing process. In general terms, the bead-selection algorithm

presented above implements an implicit penalty. Owing to the

improved rejection of disconnected models (Fig. 1 and Table 2), the

likelihood of accepting a disconnected model constantly equals zero.

Table 1 summarizes the different sets of penalties implemented in

DAMMIN and DAMMIF. In DAMMIF, the peripheral penalty was

dropped as there is no more outer boundary to limit particle growth.

Furthermore, the disconnectivity penalty became implied as a result

of improved rejection of unwanted disconnected models. Instead,

centre and Rg penalties were introduced. The role of the centre

penalty is to keep the particle within the already mapped space, to

prevent needless extension (and thus calculation) of the search

volume, and the Rg penalty ensures a model of appropriate size.

Looseness and anisometry penalties are implemented by both

applications.

3.4. Parallelization

In DAMMIN, the SA algorithm is implemented as follows (Fig. 2,

left-hand side):
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Table 2
Set of rules used by DAMMIF to keep graphs, i.e. lists of interconnected beads in
the particle phase.

Following these rules, early rejection can be based on the number of graphs before and
after the proposed change. In particular, if the change leads to two or more graphs in a
model without symmetry, the model becomes disconnected.

Case 1: bead x of solvent phase was selected to switch to particle.

x has . . . neighbours in particle phase, then . . .

0 create a new graph, add x
1 add x to the graph the neighbour belongs to
� 2 merge all graphs the neighbours belong to, add x

Case 2: bead x of particle phase was selected to switch to solvent.

x has . . . neighbours in particle phase, then . . .

0 find and remove the graph built by x
1 find the graph x belongs to, remove x
� 2 find the graph x belongs to, split into two or more graphs if x is an

articulation point, remove x

Figure 2
SA algorithm as implemented in DAMMIN (left) and DAMMIF (right). An initial
starting model X is refined to yield the best possible fit to the experimental data. In
DAMMIN, only one neighbouring model X 0 is taken into account at a time. If
multiple cores or CPUs are available, it is possible to prefetch multiple models in
parallel, here shown as X 0, X 00, X 000 . Each prefetched model is then examined and
either accepted or rejected, according to the rules of SA.



(i) Start from a random configuration X0 at a high temperature T0

[e.g. T0 ¼ f ðX0Þ].

(ii) Flip the index of a randomly selected dummy atom to obtain

configuration X 0 and compute � ¼ f ðX 0Þ � f ðXÞ.

(iii) If �< 0, move to X 0; if �> 0, move to X 0 with probability

expð��=TÞ. Repeat step (ii) from X 0 (if accepted) or from X .

(iv) Hold T constant for 100M reconfigurations or 10M successful

reconfigurations, whichever comes first, then cool the system

ðT 0 ¼ 0:9TÞ. Continue cooling until no improvement in f ðXÞ is

observed.

It can easily be seen that the longer the algorithm proceeds, the less

likely a successful reconfiguration becomes. As multi-core and multi-

CPU systems are becoming more readily available, DAMMIF also

makes use of these resources. To further speed up ab-initio modelling,

DAMMIF employs OpenMP, a framework for shared memory

parallelization (Dagum & Menon, 1998). To exploit the properties of

SA as described above, a simple prefetch and branch prediction

scheme was implemented (Fig. 2, right-hand side). Instead of a single

neighbouring model X 0 as in DAMMIN, DAMMIF computes

multiple models X 0, X 00; . . . ;X ðnÞ in parallel (prefetch). Of these it is

likely that most, if not all, will be rejected in later temperature steps.

Hence, computing many neighbouring models ahead of time corre-

sponds to a negative branch prediction.

4. Quality of reconstruction and practical aspects

Extensive tests on simulated and experimental data showed that the

models provided by DAMMIF are comparable to those of DAMMIN

and the quality of reconstruction is compatible with that presented by

Svergun (1999) and Volkov & Svergun (2003). For highly anisometric

particles, the models provided by DAMMIF may be more accurate

thanks to the absence of border effects. A comparison of model

reconstructions by DAMMIN and DAMMIF of a cylindrical particle

with radius 10 Å and height 200 Å is illustrated in Fig. 3.

Of course, DAMMIF, similar to DAMMIN and other shape

determination programs, is not applicable to heterogeneous systems

like mixtures or unfolded proteins. For the analysis of higher-reso-

lution data from small (less than 30 kDa) proteins, where the

contribution from the internal structure is essential, other programs

like GASBOR (Svergun et al., 2001) may be more appropriate for ab-

initio analysis than the shape determination algorithms.

The R factor RðI;XÞ [see equation (3)] of the obtained DAMMIF

model, which is provided to the user in the log file and in the PDB-

type file (Protein Data Bank; Berman et al., 2000) containing the final

solution, permits one to rapidly assess the quality of the recon-

struction. Usually, R factors exceeding 0:1 indicate poor fits and

therefore point to incorrect assumptions about the object under

study. It is further extremely important to analyse the uniqueness of

the reconstruction, similar to DAMMIN, by comparing and averaging

multiple individual runs, e.g. using the program DAMAVER (Volkov

& Svergun, 2003). The improved speed of DAMMIF allows the user

to perform these analyses in a much shorter time.

5. Conclusions

Here we present DAMMIF, an advanced implementation of the

popular ab-initio modelling program DAMMIN (Svergun, 1999).

Table 3 summarizes the differences between these two implementa-

tions: most notable is a reduction of the average runtime by a factor

of 25–40, depending amongst other factors on the number of dummy
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Figure 3
Reconstruction of a cylindrical particle with radius 10 Å and height 200 Å (bottom centre) from its simulated scattering pattern presented on the left-hand side [relative
intensity I versus inverse ångströms; the distance distribution function p(r) computed by GNOM is displayed in the insert]. The starting (top row) and final (bottom row)
models from DAMMIN and DAMMIF are displayed in the middle and right panels, respectively. DAMMIN ran in a slow mode inside the spherical search volume (packing
radius r0 ¼ 5:3 Å, CPU time used 246 min). For DAMMIF, the value of r0 was 3.0 Å and the run on the same single processor took 8 min.



atoms in the search model. Furthermore, a pre-defined search volume

that limits mapping of possible solutions was replaced by an unlim-

ited, adapting search space.

Additional constraints such as particle symmetry and anisometry

are available in DAMMIF as they are in DAMMIN (i.e. as a hard

constraint) – except for some higher symmetries listed in Table 3

where DAMMIN itself is very fast. As an additional option,

DAMMIF is able to output pseudo-chains in PDB-format files to

make them more suitable for submission to the PDB.

In the present implementation of DAMMIF, most of the reduction

in runtime is due to algorithmic improvements, such as differences in

bead selection, and not due to parallelization (Fig. 2). Because

DAMMIF extensively employs look-up tables and thus uses more

RAM, the memory-transfer overhead significantly reduces the gain

from the use of multiple CPUs. This will be investigated and, if

possible, improvements will be added to later versions of the appli-

cation.

Further work is also in progress to implement the prefetch strategy

(Fig. 2), to parallelize other CPU-intensive programs from the

ATSAS package (Konarev et al., 2006) that employ SA for model

building in small-angle scattering.

5.1. Availability

DAMMIF is available in binary format for major platforms

(Windows, Linux, MacOSX) from the ATSAS web page (http://

www.embl-hamburg.de/ExternalInfo/Research/Sax/software.html).

This work was supported by EU FP6 Design study SAXIER, grant

No. RIDS 011934. The authors would also like to thank Adam Round

for many fruitful discussions.
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Table 3
Summary of differences between implementations of DAMMIN and DAMMIF.

DAMMIN DAMMIF

Expected runtime, fast mode† 15 min 30 s
Expected runtime, slow mode† 24 h 1 h
Memory usage, slow mode† 10 MB 100 MB
Search volume Closed Unlimited
Particle symmetry constraints Yes Yes‡
Particle anisometry constraints Yes Yes
Model chaining No Yes§
Parallelization No Yes
Platforms Windows, Linux Windows, Linux
Implementation language Fortran 77 Fortran 95

† The CPU wall clock times for a run on a typical PC without symmetry restrictions are
given. Fast and slow mode: packing radius corresponds to ca 2000 and ca 10 000 dummy
atoms, respectively, in a sphere with radius Dmax=2. ‡ Same as in DAMMIN, but the
space groups P23 and P432 and icosahedral symmetry are not implemented. § Op-
Optionally, sorts the dummy atoms in the output file to form pseudo-chains.
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