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Abstract

Signal transduction, or how cells interpret and react to external events, is a fundamental aspect of 

cellular function. Traditional study of signal transduction pathways involves mapping cellular 

signaling pathways at the population level. However, population averaged readouts do not 

adequately illuminate the complex dynamics and heterogeneous responses found at the single-cell 

level. Recent technological advances to observe cellular response, computationally model 

signaling pathways, and experimentally manipulate cells now enables studying signal transduction 

at the single-cell level. These studies will enable deeper insights into the dynamic nature of 

signaling networks.

Graphical abstract

Introduction

Defining cellular signaling pathways is important to understand many biological processes 

including tissue development, immune response, cancer development, cellular growth and 

migration, and more. Traditional biological approaches to study cellular signal transduction 
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include bulk assays to measure cellular response at the population level. Although these 

studies have been useful in mapping signaling pathways and making qualitative predictions, 

population averaging can often mask the spatial and temporal dynamics important in 

physiological processes. Furthermore, population averaging results in information loss 

regarding biological variability that often has important physiological implications.

Over the last few years, technological advancements in measuring, manipulating, and 

modeling signaling activities at single-cell resolution has enabled researchers to go beyond 

the limitations of population-averaged bulk assays. These new studies often reveal that 

previous knowledge about signaling dynamics at the population level may not be the 

complete picture. For example, earlier studies of the p53 signaling pathway provided support 

for damped oscillations to stimulus [1]. However, single-cell studies revealed that there are 

no damped oscillations in the individual cell. Instead, differences in pulse cycle between 

cells created a population average behavior showing damped oscillations [2]. More recent 

work on this pathway elucidates the complex dynamic patterns of p53 activities that cells 

use to encode and transmit information [3]. Analysis based solely on population level 

readouts completely masked these insights. Similarly, single-cell studies of the NF-κB 

pathway show complex digital activation patterns in individual cells that are hidden by 

population level studies [4,5]. Single-cell studies have uncovered the importance of temporal 

dynamics in information transmission through cellular signaling networks [6]. Furthermore, 

single-cell information exposes the complexity of cellular response distribution. The 

implications of cellular heterogeneity is a key area of research important to understanding 

fundamental issues such as variability of drug response at the cellular and organism level 

[7].

The ability to fully comprehend signal transduction at the single-cell level requires 

advancements in how we observe cells, model cellular behavior, and manipulate biological 

systems. However, single-cell studies continue to utilize the same overarching approach as 

traditional population level studies (Figure 1). Observing cells at the single-cell level is now 

possible using better fluorescent biosensors and single-cell analysis techniques. 

Additionally, the development of complex computational algorithms can dissect the 

dynamics and distribution of single-cell behavior found in the complicated and rich datasets 

produced by single-cell measurements. Computational models confirm intricacies in cellular 

network behavior that are difficult to elucidate through observation alone. Additionally, 

predictions made using computational models facilitate directed experiments. Although the 

specific techniques to manipulate biological systems is different, the overarching theme of 

changing the internal and external environment of cells remains the same between single-

cell and bulk-level assays. In the following review we will discuss the specific methods and 

developments used to observe, model, and manipulate biological systems to study dynamic 

signal transduction at the single-cell level.
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Observe: Dynamical measurements of signaling activities at single-cell 

resolution

Fluorescent biosensors and computational image analysis have enabled evaluating the 

distribution of the cellular response across a population in real-time. Traditional biological 

techniques such as western blots only provide a population average level readout (Figure 2). 

As a result, this type of analysis lacks both temporal and spatial resolution. In contrast, 

fluorescent biosensors can capture dynamic cellular events in living cells at subcellular 

resolution. Increased cellular, spatial, and temporal resolution has contributed to rich 

datasets that require image analysis algorithms to fully capture the complexity of the data. 

Furthermore, meaningful interpretations of single-cell datasets require advanced statistical 

methods such as dimensionality reduction and information theory to quantify and properly 

interpret the distribution of cellular behavior.

Sampling Cellular Signaling Networks-Expanding the Palette of Fluorescent Biosensors

Reliable dynamic biosensors are crucial for live single-cell analysis of signal transduction. 

Fluorescent biosensors function by coupling one or more fluorescent proteins to an activity 

sensing domain. Biosensors have been developed for a number of different signaling 

molecules by designing the sensing domain for a specific signaling molecule [8]. The 

intricate process of designing sensing domains compatible with fluorescent proteins to 

properly report signaling molecule activity has been reviewed elsewhere and will not be 

addressed here [8–11]. Rather, here we will discuss advancements in biosensor development 

that have led to an enriched variety of fluorescent proteins with optimized molecular 

properties and improved modular design of fluorescent reporters.

Increasing the variety of optimized fluorescent proteins enables multiplex imaging to expand 

the number of potential biological readouts. Significant efforts have been made to optimize 

fluorescent proteins to enhance brightness and contrast, increase photostability, and expand 

the range of available colors, where color is defined as the unique excitation and emission 

spectra of a protein. For example, cyan, green, and red fluorescent proteins have improved in 

all three areas with the development of mTurquoise2, mClover3, and mRuby3, respectively 

[12,13]. Improving fluorescent proteins also enables expanding the range of available colors 

for a specific molecule. Increasing the variety of colors for a specific molecule allows 

researchers to select a fluorescent protein color that does not interfere with the spectra of 

other fluorescent proteins in a given experiment. Researchers now have a much wider range 

of fluorescent proteins and can choose them based on the needs of the experiment rather 

than resorting to what is available [10,14].

The development of fluorescent biosensors to report dynamic cellular activity has evolved 

rapidly over the past 15 years. Kinase activity is of particular interest due to the large 

number of biological processes regulated by protein phosphorylation such as cell growth, 

cell cycle, and immune response [15]. The ability to monitor kinase activity using 

genetically encoded FRET biosensors presented a modular design adaptable to different 

proteins with increased dynamic range [16]. Zhang et al. first developed a genetically 

encoded protein kinase A (PKA) activity reporter (AKAR) in 2001 using a generalizable 
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FRET backbone [17]. The development of AKAR2 enabled measurement of reversible PKA 

activity by increasing cellular phosphatase sensitivity [18]. By taking advantage of better 

fluorescent proteins, such as those discussed above, further improvements were made in 

AKAR dynamic range with AKAR3 and AKAR4, with each iteration brighter than the last 

[19,20]. AKAR also expanded beyond the commonly used CFP/YFP FRET pair with 

GFP/RFP AKAR2 and CFP/RFP AKAR3 variants [21,22]. Using improved fluorescent 

proteins not only increased the dynamic range of the sensors, but also enabled co-imaging 

with other FRET pairs to increase the number of biological readouts per experiment [22]. In 

addition to improvements in design and color range, AKARs were also modified to localize 

to different areas of the cell to measure PKA dynamics in specific locations such as the 

plasma membrane (AKAR4-Kras) and sarcoplasmic reticulum (SR-AKAR3) [23,24].

The advent and improvements made to AKARs also triggered the development of a 

multitude of FRET kinase reporters. Perhaps the most intuitive adaptation was to other 

protein kinases with activity reporters for protein kinase B, protein kinase C, and protein 

kinase D [25–27]. Other kinase reporters also followed the AKAR design such as the c-Jun 

N-terminal kinase (JNK) activity reporter JNKAR1 and the extracellular signal-regulated 

kinase (ERK) activity reporter EKAR [28,29]. To make the AKAR design more 

generalizable and improve the dynamic range, Komatsu et al developed an intramolecular 

FRET biosensor with an optimized backbone using a longer linker to make the fluorescent 

protein pair completely “distance-dependent” as opposed to “orientation-dependent” [30]. 

The increased length of the backbone, termed the Eevee (EV) backbone, makes the FRET 

backbone adaptable to kinases and GTPases. Removing the need to optimize each sensor per 

biological readout makes biosensor development simpler and faster. This backbone was 

adapted to make FRET biosensors for PKA (AKAREV), ERK (EKAREV), JNK (JNKEV), 

among many others [30]. FRET kinase biosensors continue to be used to measure single-cell 

dynamics to solve complex problems while still improving in design. For example, the 

EKAREV sensor was used to quantitatively measure ERK dynamics during proliferation and 

was again improved in design to increase the signal-to-noise ratio [31,32].

A deeper understanding of signaling networks requires measuring multiple dynamic 

biological outputs simultaneously. Although FRET biosensors present advantages over 

single-protein reporters such as an increased dynamic range, the use of two fluorescent 

proteins makes measuring multiple biological outputs during a single assay challenging. 

Regot et al developed a kinase activity reporter that measures the phosphorylation of kinases 

using reporter translocation rather than fluorescent strength as an activation indicator [33]. 

Here, rather than comparing the ratio between two fluorescent proteins, the fluorescent ratio 

between the nucleus and cytoplasm measures the level of kinase activation in a cell. 

Additionally, using a few simple design principles, KTRs can be adapted for a variety of 

kinases.

Live single-cell fluorescent imaging provides quantifiable dynamic spatio-temporal data not 

available with population level analysis techniques (Figure 2). The use of fluorescent 

biosensors now enables better subcellular resolution in addition to spatial and temporal 

dynamics of a specific protein, gene, or second messenger of interest. Despite extensive 

advancements made in fluorescent proteins and biosensors, experiments remain limited in 
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the number of biological readouts during a single experiment in comparison to assays such 

as western blots that have a plentiful selection of detection antibodies (Figure 2). This is in 

part due to limitations set by the number of fluorescent proteins able to be used in a single 

read-out. Although each fluorescent protein color has a unique excitation and emission 

spectra, overlap between spectra makes using multiple proteins in a single experiment 

challenging. Practically, experiments remain limited to a maximum of 3–4 fluorescent 

proteins depending on the specific microscope configuration. Furthermore, biosensor 

development requires specific expertise in protein kinetics and structure, constraining the 

variety of available sensors for specific biological readouts. Continuing developments to 

improve fluorescent protein properties as well as improved modular designs will open new 

avenues for improved live-cell multiplex imaging.

Sampling the Cellular Signaling State: Acquiring Cellular Signaling State Distributions

Measuring the signaling state, or the level of activation of a specific molecule in a signal 

transduction pathway, at the single-cell level based on fluorescent biosensors as described 

above requires quantifying the fluorescent levels at single-cell resolution. Typically, flow 

cytometry or fluorescence microscopy approaches are utilized to measure cellular signaling 

states. Although fluorescent microscopy approaches enable live-cell imaging to fully capture 

signaling state dynamics, measuring multiple readouts simultaneously remains limited, as 

discussed above. On the other hand, flow cytometry methods are only able to measure 

cellular signaling states at a single time point, but are capable of measuring multiple 

readouts simultaneously. Specifically, maturation of fluorescent flow cytometry 

methodology has made previously highly challenging and demanding experiments, such as 

the simultaneous measurement of >10 color channels, more commonplace. In addition, 

developments in readout technology substantially increases the multiplexing capacity. For 

example, mass cytometry combines time-of-flight mass spectroscopy with the readout of a 

flow cytometer. Specifically, single-cells are captured and the concentration of isotopically 

pure rare metals conjugated to antibodies [34] and nucleic acid probes [35] are measured. 

Mass cytometry pushes the boundaries of multiplex measurements and can now concurrently 

measure >40 channels in a single-cell. The wealth of information produced by mass 

cytometry methods has already made important contributions to understanding the 

distribution of single-cell responses [36–38].

Unlike cytometry, advances in fluorescent microscopy are not focused towards measuring 

throughput or increasing multiplexing capacity. Rather, recent developments focus on 

increasing resolution by utilizing super-resolution approaches. Therefore, hardware used for 

high-content imaging systems has not significantly changed in recent years. Instead, 

improvements in software allow better measurements. Developing better analysis software is 

important since interpreting and quantifying microscopy images is a non-trivial process. 

Existing microscopes effectively allow image acquisition at rates of a few images per 

second. Therefore, a standard multi-well overnight acquisition can generate >100,000 

images. Manual analysis of these large datasets is practically impossible. Moving from 

manual to automated image analysis to properly and efficiently identify cells, track cells, and 

measure changes in biosensor state over time requires computer vision and sophisticated 

algorithms (Figure 3). The majority of computational image analysis approaches for high-
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content screening (HCS) follow a similar workflow [39]. In the first step, called 

segmentation, cells are identified in the image and distinguished from each other and from 

regions without cells (Figure 3). Subcellular structures and organelles can also be segmented 

and associated with their parent cell. In live-cell time-lapse microscopy, tracking cells over 

the entire sequence of acquisitions is a critical step to obtain a cellular response time-series 

at single-cell resolution. Additionally, quantifying the phenotypic states of cells, i.e. cellular 

shape, size, microenvironment, etc, is necessary to better understand heterogeneity between 

single-cells [40–45]. A large number of cellular segmentation and tracking algorithms have 

been developed and are available in commercial and open source software packages [46–49].

Sampling Cellular State Space: Challenges in Quantifying the Distribution of Cellular 
Behavior

While catchy, the phrase “single-cell analysis” is misleading to a degree. Single-cell analysis 

does not aim to understand the behavior of a particular individual cell. Rather, single-cell 

analysis aims to understand population behavior by analyzing single-cell distributions. New 

statistical tools enable the analysis of complex cellular state distributions which enable 

deeper insights into underlying biology.

Single-cell statistical analysis methods are needed to interpret increasingly complex 

biological data. Many single-cell datasets not only characterize biological responses at a 

single-cell resolution, each cellular response is measured at a multivariate level resulting in 

highly complex datasets. Increasing data complexity makes gaining even an initial intuition 

of raw data prior to analysis difficult. For example, a typical mass cytometry dataset 

generates a data matrix of ten thousand rows and thirty-eight columns. Understanding and 

properly interpreting such a large dataset is non-trivial. To address this complexity a large 

array of statistical analysis methods have been developed to simplify complex data in a 

manner that attempts to capture the relationships between cells. This technique, often called 

dimensionality reduction, is used in the initial stages of data analysis to identify natural 

groupings between data types(e.g. types of genes). Groupings with similar relationships 

provide a simplified representation of complex high-dimensional data. A challenge with 

dimensionality reduction is that the interpretation of the simplified representation is often 

not obvious. Proper interpretation of the simplified data requires understanding what 

assumptions were made to simplify the dataset. Techniques like principal component 

analysis identify a less complex and lower dimensional representation of the data that 

preserves most of the variance. On the other hand, techniques like isomap, t-SNE and its 

variants such as viSNE preserve local relationships between neighboring cells [50–52]. In 

the case of the mass cytometry dataset mentioned above, t-SNE transforms the data matrix 

from ten thousand by thirty-eight into a simplified matrix of ten thousand by two. This 

simplification maintains single-cell information while combining information from several 

distinct readouts (e.g. columns) into two quantities that can be plotted against each other in a 

standard scatter plot.

The suitability of dimensionality reduction methods continues to expand as single-cell 

datasets become richer and more complex. However, it is important to note that such 

methods are a visual aid to initially interpret intricate data and does not provide quantitative 
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information. Quantitative analysis of single-cell data that does not depend on an initial 

simplified interpretation requires computational tools that provide meaningful statistics 

summarizing single-cell response distributions. Fortunately, a large array of existing data 

analysis methods combined with freshly developed quantification methods is able to 

accomplish these tasks. One example of the adoption of such methods is the growing usage 

of information theory in the analysis of variability in signal transduction. Information theory 

has powerful techniques to measure relationships between random variables [53]. New 

developments and tools in information theory enable better insights into complex and highly 

variable cellular responses [6,37,54].

Computational Modeling: Confirm & Predict

The American psychologist Kurt Lewin famously said “There is nothing as practical as a 

good theory.” [55]. Traditionally, biological sciences have not been as receptive to 

mathematical modeling as other disciplines such as engineering, physics, and chemistry. A 

major contributing factor is the difficulty of integrating biological data with mathematical 

models. Even with a physiologically sound mathematical model, it is difficult to measure or 

estimate kinetic parameters that produce useful predictions. Despite these challenges, there 

have been significant advancements in modeling several major signal transduction pathways.

Pioneering works in several important canonical signaling pathways such as calcium, NF-kB 

and MAPK utilized mathematical modeling to gain biological insights not available using 

experiments alone. Calcium signaling pathways regulate a multitude of biological process 

such as transcription, cell motility, and muscle contraction through diverse cellular response 

patterns [56]. Various mathematical models have been proposed to explain the oscillatory 

behavior of cellular calcium response. For example, models proposed by De Young & 

Keizer and Dupont & Erneux rely on the biochemical properties of IP3 channels to explain 

calcium induced calcium release [57,58]. Other models consider ryanodine receptor and 

voltage-gated channels to explain this phenomenon [59,60]. In addition to models describing 

cellular calcium oscillations, there are numerous models describing calcium spikes in non-

excitable cells by incorporating surface receptor signaling and receptor desensitization 

parameters [61,62]. The NF-κB pathway provides an additional important example of the 

utility of mathematical modeling. Initial work by Hoffmann et al. provided a comprehensive 

mathematical model of the IκB-NF-κB signaling module [63]. Hoffmann et al successfully 

accounted for the population level temporal behavior of NF-κB in the EMSA data using 

their model. A classic study by Huang & Ferrell on the MAPK pathway predicted that the 

MAPK signaling cascade would produce a steep dose response curve, allowing cells to 

switch from one state to another [64]. This prediction was subsequently supported by 

experiments.

Cellular heterogeneity measurements, as indicated by single-cell datasets, motivate the use 

of mathematical models to uncover the underlying causes of cellular heterogeneity based on 

the mechanistic details of the signaling pathway. Albeck et al. and Spencer et al. utilized 

computational modeling to explain the heterogeneous apoptosis behavior in the TRAIL 

pathway [65–67]. By changing the rate parameters downstream of the TRAIL receptor or the 

protein concentration levels in the mathematical model, heterogeneity in timing delays to 
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apoptosis can be accounted for in the simulated data. In another study concerning the 

TRAIL pathway, Eissing et al. used a properly reduced model to perform a bistability 

analysis to deduce the diverging behaviors in the TRAIL pathway [68]. Nelson et al. used 

computational modeling in conjunction with single-cell NF-κB measurements to 

demonstrate how varying transcriptional activity of IκBα can alter the NF-κB oscillation 

frequency [69]. Lee et al. parameterized a dynamic model of NF-κB induced transcription 

using a combination of single-cell nuclear NF-κB measurements and transcript numbers in 

the same single-cells [70]. From their model they were able to determine how cells can 

detect a fold-change in NF-κB levels as opposed to absolute concentrations to induce 

transcription. Nonlinear systems analysis techniques, such as bifurcation analysis, were 

employed by Koenigsberger et al. to model calcium oscillations to study the mechanisms for 

smooth muscle cells to synchronize their oscillations [71].

Mathematical modeling is a useful tool to gain useful biological insights at the single-cell 

level. Feedback properties of signaling pathways can also be exploited to study the 

underlying causes of cell-to-cell variability. Birtwistle et al. observed bimodal behavior in 

the MAPK/ERK cascade which produces two populations of ppERK output in response to 

EGF stimulation [72]. By inspecting the negative feedback loop structure in the 

mathematical model of the pathway and performing computational simulations, they 

deduced that the heterogeneity in RasGTP levels coupled with varying ERK activation 

threshold levels eventually produced bimodal behavior in the cell population. Ferrell et al. 

studied the progesterone stimulation of the MAPK pathway leading to oocyte maturation 

[73]. While the population average data conveyed a graded response, single-cell data 

revealed an all-or-none response. Analysis of the mathematical model of the pathway 

showed that bistability and positive feedback within the pathway provided the switch for cell 

fate decision making in the cell. Using single-cell microfluidic perturbations in combination 

with data-driven clustering of dynamic ERK profiles, Ryu et al were able to construct an 

updated MAPK model to determine differences in cellular fate decision making [74]. 

Ultimately they were able to use their mathematical model to determine how cellular fate 

decisions can be rewired with different growth factors. Feinerman et al. studied T-cell 

receptor signaling using both single-cell data and mathematical modeling [75]. They 

investigated how variation in signaling proteins changes cellular responsiveness. 

Interestingly, the co-receptor and negative feedback loop of SHP-1 together regulate the 

activation threshold and the switch behavior of the cell’s responsiveness to regulate the 

diversity of cellular phenotypes. A number of other models based on single-cell datasets 

have been developed for a variety of signaling systems [76,77].

In addition to moving from population level to single-cell level analysis, there has also been 

an increasing focus on adapting modeling approaches to account for biological noise and 

model parameter uncertainty. Elowitz et al. succinctly described intrinsic biological noise, 

the stochastic thermal fluctuation internal to the system, and extrinsic biological noise, the 

fluctuation external to the system of interest and is deterministic within the same cell but 

different among cells [78]. Others in the biological modeling community such as Janes & 

Lauffenburger and Gutenkunst et al. have indicated that the structure of a model is more 

important than the individual kinetic parameters when making predictions because multiple 

sets of kinetic parameters can fit a model equally well [79,80]. This implies that assigning 
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distributions of parameter values to the model will increase single-cell model predictability 

(Figure 4). Tay et al. described the level of NF-κB and TNFR-1 using lognormal parameter 

distributions in order to account for extrinsic noise between cells [4]. Cheng et al. applied 

probabilistic based mathematical modeling to the TRIF pathway [81]. They modeled four 

key parameters in the areas of TLR4 synthesis, MyD88 activation, TRIF activation, and 

endosome maturation as probability distributions rather than as fixed values. The simulated 

signaling pathways generated similar heterogeneous behaviors as found in the experimental 

data. Eydgahi et al. used Bayesian and Monte Carlo methods and calibrated a mathematical 

model of apoptosis single-cell data to obtain probability distributions for all kinetic 

parameters in the model [82]. This approach allowed for discrimination between competing 

mathematical models of apoptosis.

Overall, the methods discussed above made specific assumptions regarding the shapes of the 

distributions of certain kinetic parameters. A possible alternative approach is to fit the 

individual cell trajectories to the mathematical model using Bayesian sampling methods 

such that each cellular trajectory will have a set of parameter distributions. A potential 

advantage of using direct Bayesian sampling is that it assumes little concerning the form of 

parametric distributions that could potentially have complex structure not initially assumed 

by researchers.

Manipulate: Biological Insights through Internal and External Manipulation

Experimentally investigating a cellular signaling system involves either changing the outside 

or the inside of a cell. The outside is perturbed by changing the cellular environment by 

either adding or removing a specific factor. Similarly, the inside of a cell can be changed by 

over expressing or removing specific genes of interest. Although the concept behind 

experimental manipulation does not change with single-cell techniques, the specific 

techniques used to manipulate cells has evolved.

Microfluidics: Environmental Changes at a Micro Scale

The application of microfluidics to biological research has powerful implications for single-

cell signal transduction measurements. Microfluidics enables the researcher to manipulate 

fluids with a high level of control at the submilliliter scale. This high level of control permits 

spatial and temporal manipulation of the cellular environment. The ability to customize a 

microfluidic chip to the specific needs of an experiment removes previous limitations set by 

currently available tissue culture technology. The complexity of a microfluidic chip depends 

on the specific biological question. Complexity ranges from very simple to extremely 

complicated depending on the biological phenomena in question (Figure 5). The increased 

usage of microfluidic devices in biological research over the past two decades has been 

extensively reviewed elsewhere [83–86]. Here we discuss the spatial and temporal benefits 

of microfluidics devices that range from very simple to highly complex.

Temporal modulation allows researchers to control the duration and frequency of changes to 

the cellular environment. Environmental changes include modifications to growth media 

conditions or stimulating cells via a perturbation of interest. No longer are researchers 

limited to population level bolus additions of stimulus at a single time point. In the Suel lab, 
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media conditions are manipulated to determine the specific growth mechanisms of biofilms 

[87,88]. Here, Prindle et al. use an unconventionally large microfluidic design to observe the 

growth of a biofilm [87]. Although there are only two ports allowing media to flow in and 

out of the cell chamber, they were still able to add and remove specific components of the 

media to determine factors necessary to biofilm growth. Another simple design by Herson et 

al measures the signaling pathway response over varying input frequencies [89]. In order to 

ensure rapid media changes with distinct period times, Herson et al employ a “Y” design 

where each arm of the Y is connected to a different media solution. The simplicity of these 

designs enables easier manufacture and implementation of the design. However, they are 

limited in throughput and can only change between two different inputs. On the other end of 

the spectrum, the Tay lab uses a complex microfluidic design that is able to precisely vary 

the duration and dose of the stimulus at a high throughput level to determine how cellular 

outputs are influenced by dynamic inputs [90–92]. However, the complicated design requires 

higher technical expertise.

In addition to temporal stimulation, microfluidic device designs also allow for spatial 

modulation. Spatial modulation is important in cases where gradient information is 

important such as in wound healing or chemotaxis. Spatial perturbations are possible using 

microfluidic devices due to the low Reynold’s number characteristic of microfluidics 

devices. This property ensures that any gradient formation and mixing is due to diffusion 

rather than convection within the device. Handly et al. take advantage of this property to 

study paracrine communication of the initial wound response using a simple two-layer 

microfluidic design [93]. On the bottom is a cell chamber and the top an air layer. The 

ceiling of the cell chamber contains a pillar such that when air pressure is increased in the air 

layer the pillar lowers down onto the cells to mechanically wound the cells. The lack of 

convection within the device ensures that any molecules released into the extracellular 

environment move between cells according to diffusive principles rather than flow through 

the device. Chen et al. employ a more complicated design to study the migration of 

heterogeneous tumor cells at the single-cell level [94]. Their device design involves 

capturing single cells in narrow capillaries and applying a gradient across the capillary to 

mimic concentration gradients of chemokines that induce tumor cell migration. The 

formation of this gradient directly takes advantage of even-mixing facilitated by diffusion in 

microfluidic devices. The geometry of these capillaries also imitates the shape of blood and 

lymphatic capillaries to provide a more physiologically relevant study of tumor cell 

migration. Again, although each device design probes a spatially relevant biological 

question, the degree of device complexity is determined by the specific needs of the 

experiment.

Optogenetics- Intracellular Manipulation through Extracellular Stimulus

Advancements in optogenetics have opened up the possibility to expand spatio-temporal 

stimuli to intracellular signaling states. Traditional cellular manipulation involves perturbing 

the entire population of cells through genetic or pharmacological manipulations. However, 

these types of irreversible population level changes do not allow for selective spatial 

activation and dynamic temporal inputs which are important in testing hypotheses related to 

cellular communication. Optogenetic approaches use light to perturb genetically 
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manipulated cells and can do so in a spatial and temporal manner to investigate cellular 

signal transduction (Figure 6).

Although initial applications of optogenetics focused on neurobiology, the ability to regulate 

intracellular signaling pathways in a spatio-temporal manner using photoactivatable proteins 

has made optogenetics a functional tool to study signal transduction. The application of 

light-activated proteins varies from conformational changes to uncaging. However, the basic 

ability to perturb an intracellular signaling pathway with high spatio-temporal resolution 

remains the same. Toettcher et al. developed optogenetic tools able to activate isolated 

signaling nodes within the cell to determine how different temporal inputs regulate 

downstream responses [95]. Using a photoactivatable Ras protein, they measure how the 

dose and frequency of Ras activation determines downstream ERK response. The kinetics of 

the Raf/MEK/ERK pathway were also investigated using optogenetics by Zhang et al [96]. 

Using temporal activation patterns they were able to induce PC12 cell differentiation 

similarly to NGF stimulation.

Optogenetics also enables precise spatial manipulation of cells, either at the subcellular or 

multicellular level. This type of stimulation is important when examining specific proteins 

required for cellular behavior or determining how gradient formation determines cellular 

response. Wu et al. utilize a photoactivatable Rac to produce cell protrusions and ruffling at 

specific subcellular locations to control the direction of cellular motility [97]. The Gautam 

group developed an optogenetic method to spatially manipulate GPCRs at a subcellular level 

to create gradients of GPCR activation within the cell [98,99]. By forming gradients of 

GPCR activation within cells they were able to control the movement of the immune cell. At 

the multicellular level, optogenetics enables experiments where only a specific portion of 

cells are stimulated to determine how the surrounding cells respond to the stimulated cells. 

Wang et al. demonstrate this principle by activating Rac using light in a single cell within a 

cluster of border cells in Drosophila [100]. Although only a single cell was activated, 

communication between cells caused the other cells within the cluster to move according to 

the activation level of the initial cell. The ability to precisely localize activation in a group of 

cells has exciting potential in the realm of cellular signaling. These types of experiments are 

useful when considering gradient formation across a tissue during embryonic development, 

wound healing, in addition to cellular migration.

Combining the spatiotemporal control of optogenetics with the genome editing abilities of 

CRISPR-Cas-9 has exciting potential in the study of signal transduction at the single-cell 

level. At the fundamental level, genome editing using CRISPR-Cas9 is effective in 

population level studies. However, advancements in light-inducible CRISPR-Cas9 systems 

[101–103] enables researchers to make specific edits to the genome with high 

spatiotemporal control. Combining optogenetics with CRISPR-Cas9 enables temporal 

activation of specific genes to study biological outputs as well as activation of specific genes 

in localized regions. The development of more optogenetic systems that utilize CRISPR-

Cas9 will provide an exciting set of tools in the study of single-cell signal transduction.
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Combining Single-Cell Manipulation Methods for Effective Study of Signal Transduction

Using microfluidics, optogenetics, and CRISPR-Cas9 allows for controlled manipulation of 

both the intra- and extracellular environment. Although advances are being made to combine 

these technologies, such as with the photo-inducible CRISPR-Cas9 systems mentioned 

above [101–103], studies that fully integrate all three technologies is difficult. A 

combination of these three approaches has powerful abilities in controlling the spatial and 

temporal manipulation of cellular environment and function. As these technologies mature 

and become commercially available it will increase the adaptation of systems biology 

approaches to study signal transduction. For example, user friendly microfluidic designs or 

commercially available microfluidic-like devices expand single-cell study beyond traditional 

cell culture tools. Additionally, increasing usage of CRISPR-Cas9 and optogenetic 

technologies will expand the available selection of target genes and signaling systems.

Outlooks

Approaches to study signal transduction networks at the single-cell level are in a renaissance 

period. The ability to observe, manipulate, and model biological systems using constantly 

advancing single-cell techniques drives new discoveries and enables deeper insights into the 

inner working of cells. As cellular dynamics and heterogeneity are key aspects to 

understanding signaling pathways, the adoption of single-cell approaches is critical for 

future progress. One of the key challenges that limits the adoption of these approaches is 

technical. Single-cell studies require tools from engineering, biology, and computer science. 

Unfortunately, these three disciplines are not well integrated in traditional curriculum. 

However, this is changing with increasing numbers of undergraduate and graduate programs 

emphasizing the importance of quantitative training.

Here we outlined recent advances pivotal towards progress in understanding the dynamic 

nature of signaling networks at a single-cell resolution. In parallel, other single-cell 

technologies that can probe the internal state of the cells have made tremendous progress. 

Omics technologies, including both “molecular profiling” and “molecular perturbations” 

[104] provide rich datasets useful with many benefits over currently available microscopy 

methods. Omics technologies have the ability to examine thousands of genes, proteins, and 

post-translational modifications at one time whereas microscope technologies are limited in 

the number of nodes within a network they are able to monitor concurrently. We anticipate 

that integrating single-cell approaches within signal transduction, such as measuring 

dynamic single-cell signaling responses, with OMICs single-cell approaches, such as 

RNAseq, will play a major role in future work concerning signaling networks.

Signal transduction studies at the single-cell level provide information about the dynamic 

nature of biological signaling networks. Although these approaches follow the same 

scientific methodology of hypothesis, experiment, analysis, and conclusion, the specific 

approaches to decipher the intricacies of single-cell variability differ. Advancements in these 

technologies have come a long way to make answers to biological questions at the single-

cell level possible. Future advancements of single-cell approaches and integration with other 

technologies shows promise for exciting developments in understanding biological network 

dynamics.

Handly et al. Page 12

J Mol Biol. Author manuscript; available in PMC 2017 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

The work was supported by NIH grants GM111404 and EY024960.

References

1. Lev Bar-Or R, Maya R, Segel LA, Alon U, Levine AJ, Oren M. Generation of oscillations by the 
p53-Mdm2 feedback loop: a theoretical and experimental study. Proc Natl Acad Sci U S A. 2000; 
97:11250–11255. DOI: 10.1073/pnas.210171597 [PubMed: 11016968] 

2. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U. Dynamics of 
the p53-Mdm2 feedback loop in individual cells. Nat Genet. 2004; 36:147–50. DOI: 10.1038/
ng1293 [PubMed: 14730303] 

3. Purvis JE, Lahav G. Encoding and decoding cellular information through signaling dynamics. Cell. 
2013; 152:945–56. DOI: 10.1016/j.cell.2013.02.005 [PubMed: 23452846] 

4. Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, Covert MW. Single-cell NF-kappaB dynamics 
reveal digital activation and analogue information processing. Nature. 2010; 466:267–71. DOI: 
10.1038/nature09145 [PubMed: 20581820] 

5. Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A. Information transduction capacity of 
noisy biochemical signaling networks. Science. 2011; 334:354–8. DOI: 10.1126/science.1204553 
[PubMed: 21921160] 

6. Selimkhanov J, Taylor B, Yao J, Pilko A, Albeck J, Hoffmann A, Tsimring L, Wollman R. Systems 
biology. Accurate information transmission through dynamic biochemical signaling networks. 
Science. 2014; 346:1370–3. DOI: 10.1126/science.1254933 [PubMed: 25504722] 

7. Cohen AA, Geva-Zatorsky N, Eden E, Frenkel-Morgenstern M, Issaeva I, Sigal A, Milo R, Cohen-
Saidon C, Liron Y, Kam Z, Cohen L, Danon T, Perzov N, Alon U. Dynamic proteomics of 
individual cancer cells in response to a drug. Science. 2008; 322:1511–6. DOI: 10.1126/science.
1160165 [PubMed: 19023046] 

8. Zhang J, Ni Q, Newman RH. Fluorescent Protein-Based Biosensors. 2014; 1071:1–16. DOI: 
10.1007/978-1-62703-622-1

9. Sample V, Mehta S, Zhang J. Genetically encoded molecular probes to visualize and perturb 
signaling dynamics in living biological systems. J Cell Sci. 2014; 127:1151–60. DOI: 10.1242/jcs.
099994 [PubMed: 24634506] 

10. Dean KM, Palmer AE. Advances in fluorescence labeling strategies for dynamic cellular imaging. 
Nat Chem Biol. 2014; 10:512–23. DOI: 10.1038/nchembio.1556 [PubMed: 24937069] 

11. Lemke EA, Schultz C. Principles for designing fluorescent sensors and reporters. Nat Chem Biol. 
2011; 7:480–483. DOI: 10.1038/nchembio.620 [PubMed: 21769088] 

12. Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren 
L, Gadella TW Jr, Royant A. Structure-guided evolution of cyan fluorescent proteins towards a 
quantum yield of 93%. Nat Commun. 2012; 3:751.doi: 10.1038/ncomms1738 [PubMed: 
22434194] 

13. Bajar BT, Wang ES, Lam AJ, Kim BB, Jacobs CL, Howe ES, Davidson MW, Lin MZ, Chu J. 
Improving brightness and photostability of green and red fluorescent proteins for live cell imaging 
and FRET reporting. Sci Rep. 2016; 6:20889.doi: 10.1038/srep20889 [PubMed: 26879144] 

14. Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods. 2005; 
2:905–909. DOI: 10.1038/nmeth819 [PubMed: 16299475] 

15. Ubersax JA, Ferrell JE Jr. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell 
Biol. 2007; 8:530–541. DOI: 10.1038/nrm2203 [PubMed: 17585314] 

16. Ting AY, Kain KH, Klemke RL, Tsien RY. Genetically encoded fluorescent reporters of protein 
tyrosine kinase activities in living cells. Proc Natl Acad Sci U S A. 2001; 98:15003–15008. DOI: 
10.1073/pnas.211564598 [PubMed: 11752449] 

17. Zhang J, Ma Y, Taylor SS, Tsien RY. Genetically encoded reporters of protein kinase A activity 
reveal impact of substrate tethering. Proc Natl Acad Sci U S A. 2001; 98:14997–15002. DOI: 
10.1073/pnas.211566798 [PubMed: 11752448] 

Handly et al. Page 13

J Mol Biol. Author manuscript; available in PMC 2017 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM, Tsien RY. Insulin disrupts beta-adrenergic signalling 
to protein kinase A in adipocytes. Nature. 2005; 437:569–573. nature04140 [pii]\r. DOI: 10.1038/
nature04140 [PubMed: 16177793] 

19. Allen MD, Zhang J. Subcellular dynamics of protein kinase A activity visualized by FRET-based 
reporters. Biochem Biophys Res Commun. 2006; 348:716–721. DOI: 10.1016/j.bbrc.2006.07.136 
[PubMed: 16895723] 

20. Depry C, Allen MD, Zhang J. Visualization of PKA activity in plasma membrane microdomains. 
Mol Biosyst. 2011; 7:52–58. DOI: 10.1039/c0mb00079e [PubMed: 20838685] 

21. Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, 
Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ. Improving FRET dynamic range with bright 
green and red fluorescent proteins. Nat Methods. 2012; 9:1005–12. DOI: 10.1038/nmeth.2171 
[PubMed: 22961245] 

22. Aye-Han NN, Allen MD, Ni Q, Zhang J. Parallel tracking of cAMP and PKA signaling dynamics 
in living cells with FRET-based fluorescent biosensors. Mol Biosyst. 2012; 8:1435–40. DOI: 
10.1039/c2mb05514g [PubMed: 22362165] 

23. Herbst KJ, Allen MD, Zhang J. Luminescent kinase activity biosensors based on a versatile 
bimolecular switch. J Am Chem Soc. 2011; 133:5676–5679. DOI: 10.1021/ja1117396 [PubMed: 
21438554] 

24. Liu XYS, Zhang J. FRET-based direct detection of dynamic protein kinase A activity on the 
sarcoplasmic reticulum in cardiomyocytes. Biochem Biophys Res Commun. 2011; 404:581–586. 
DOI: 10.1016/j.bbrc.2010.11.116 [PubMed: 21130738] 

25. Violin JD, Zhang J, Tsien RY, Newton AC. A genetically encoded fluorescent reporter reveals 
oscillatory phosphorylation by protein kinase C. J Cell Biol. 2003; 161:899–909. DOI: 10.1083/
jcb.200302125 [PubMed: 12782683] 

26. Kunkel MT, Ni Q, Tsien RY, Zhang J, Newton AC. Spatio-temporal Dynamics of Protein Kinase 
B/Akt Signaling Revealed by a Genetically Encoded Fluorescent Reporter. J Biol Chem. 2005; 
280:5581–5587. DOI: 10.1074/jbc.M411534200 [PubMed: 15583002] 

27. Kunkel MT, Toker A, Tsien RY, Newton AC. Calcium-dependent Regulation of Protein Kinase D 
Revelaed by a Genetically Encoded Kinase Activity Reporter. J Biol Chem. 2007; 282:6733–6742. 
DOI: 10.1074/jbc.M608086200 [PubMed: 17189263] 

28. Fosbrink M, Aye-Han NN, Cheong R, Levchenko A, Zhang J. Visualization of JNK activity 
dynamics with a genetically encoded fluorescent biosensor. Proc Natl Acad Sci U S A. 2010; 
107:5459–64. DOI: 10.1073/pnas.0909671107 [PubMed: 20212108] 

29. Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, Svoboda K. A genetically 
encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci U S A. 2008; 105:19264–9. DOI: 
10.1073/pnas.0804598105 [PubMed: 19033456] 

30. Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, Matsuda M. Development of 
an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell. 2011; 
22:4647–56. DOI: 10.1091/mbc.E11-01-0072 [PubMed: 21976697] 

31. Albeck JG, Mills GB, Brugge JS. Frequency-Modulated Pulses of ERK Activity Transmit 
Quantitative Proliferation Signals. Mol Cell. 2013; 49:249–61. DOI: 10.1016/j.molcel.2012.11.002 
[PubMed: 23219535] 

32. Sparta B, Pargett M, Minguet M, Distor K, Bell G, Albeck JG. Receptor level mechanisms are 
required for epidermal growth factor (EGF)-stimulated extracellular signal-regulated kinase (ERK) 
activity pulses. J Biol Chem. 2015; 290:24784–24792. DOI: 10.1074/jbc.M115.662247 [PubMed: 
26304118] 

33. Regot S, Hughey JJ, Bajar BT, Carrasco S, Covert MW. High-sensitivity measurements of multiple 
kinase activities in live single cells. Cell. 2014; 157:1724–34. DOI: 10.1016/j.cell.2014.04.039 
[PubMed: 24949979] 

34. Spitzer MH, Nolan GP. Mass Cytometry: Single Cells, Many Features. Cell. 2016; 165:780–791. 
DOI: 10.1016/j.cell.2016.04.019 [PubMed: 27153492] 

35. Frei AP, Bava FA, Zunder ER, Hsieh WE, Chen Y, Nolan GP, Gherardini PF. Highly multiplexed 
simultaneous detection of RNAs and proteins in single cells. 2016; 13doi: 10.1038/nmeth.3742

Handly et al. Page 14

J Mol Biol. Author manuscript; available in PMC 2017 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



36. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED, Tadmor MD, Litvin O, Fienberg HG, 
Jager A, Zunder ER, Finck R, Gedman AL, Radtke I, Downing JR, Pe’er D, Nolan GP. Data-
Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. 
Cell. 2015; 162:184–197. DOI: 10.1016/j.cell.2015.05.047 [PubMed: 26095251] 

37. Krishnaswamy S, Spitzer MH, Mingueneau M, Bendall SC, Litvin O, Stone E, Pe’er D, Nolan GP. 
Conditional density-based analysis of T cell signaling in single-cell data. Science. 2014; doi: 
10.1126/science.1250689

38. Mingueneau M, Krishnaswamy S, Spitzer MH, Bendall SC, Stone EL, Hedrick SM, Pe’er D, 
Mathis D, Nolan GP, Benoist C. Single-cell mass cytometry of TCR signaling: amplification of 
small initial differences results in low ERK activation in NOD mice. Proc Natl Acad Sci U S A. 
2014; 111:16466–71. DOI: 10.1073/pnas.1419337111 [PubMed: 25362052] 

39. Wollman R, Stuurman N. High throughput microscopy: from raw images to discoveries. J Cell Sci. 
2007; 120:3715–22. DOI: 10.1242/jcs.013623 [PubMed: 17959627] 

40. Sero JE, Sailem HZ, Ardy RC, Almuttaqi H, Zhang T, Bakal C. Cell shape and the 
microenvironment regulate nuclear translocation of NF- j B in breast epithelial and tumor cells. 
2015

41. Snijder B, Sacher R, Rämö P, Damm EM, Liberali P, Pelkmans L. Population context determines 
cell-to-cell variability in endocytosis and virus infection. Nature. 2009; 461:520–3. DOI: 10.1038/
nature08282 [PubMed: 19710653] 

42. Steininger RJ, Rajaram S, Girard L, Minna JD, Wu LF, Altschuler SJ. On comparing heterogeneity 
across biomarkers. Cytom Part A. 2015; 87:558–567. DOI: 10.1002/cyto.a.22599

43. Singh DK, Ku CJ, Wichaidit C, Steininger RJ, Wu LF, Altschuler SJ. Patterns of basal signaling 
heterogeneity can distinguish cellular populations with different drug sensitivities. Mol Syst Biol. 
2010; 6:1–10. DOI: 10.1038/msb.2010.22

44. Loo LH, Wu LF, Altschuler SJ. Image-based multivariate profiling of drug responses from single 
cells. Nat Methods. 2007; 4:445–453. DOI: 10.1038/nmeth1032 [PubMed: 17401369] 

45. Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ. Multidimensional drug 
profiling by automated microscopy. Science. 2004; 306:1194–8. DOI: 10.1126/science.1100709 
[PubMed: 15539606] 

46. Dima AA, Elliott JT, Filliben JJ, Halter M, Peskin A, Bernal J, Kociolek M, Brady MC, Tang HC, 
Plant AL. Comparison of segmentation algorithms for fluorescence microscopy images of cells. 
Cytom Part A. 2011; 79 A:545–559. DOI: 10.1002/cyto.a.21079

47. Wittenberg T. Review of free software tools for image analysis of fluorescence cell micrographs. 
2014; 257:39–53. DOI: 10.1111/jmi.12184

48. Chenouard N, Smal I, de Chaumont F, Maška M, Sbalzarini IF, Gong Y, Cardinale J, Carthel C, 
Coraluppi S, Winter M, Cohen AR, Godinez WJ, Rohr K, Kalaidzidis Y, Liang L, Duncan J, Shen 
H, Xu Y, Magnusson KEG, Jaldén J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C, Waharte 
F, Tinevez J-Y, Shorte SL, Willemse J, Celler K, van Wezel GP, Dan H-W, Tsai Y-S, Ortiz de 
Solórzano C, Olivo-Marin J-C, Meijering E. Objective comparison of particle tracking methods. 
Nat Methods. 2014; 11:281–289. DOI: 10.1038/nmeth.2808 [PubMed: 24441936] 

49. Pavie B, Rajaram S, Ouyang A, Altschuler JM, Steininger RJ, Wu LF, Altschuler SJ. Rapid 
analysis and exploration of fluorescence microscopy images. J Vis Exp. 2014; 2014doi: 
10.3791/51280

50. Balasubramanian M, Schwartz EL. The isomap algorithm and topological stability. Science. 2002; 
295:7.doi: 10.1126/science.295.5552.7a [PubMed: 11778013] 

51. Van Der Maaten L, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 2008; 9:2579–
2605. DOI: 10.1007/s10479-011-0841-3

52. Amir ED, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, 
Krishnaswamy S, Nolan GP, Pe’er D. viSNE enables visualization of high dimensional single-cell 
data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013; 31:545–52. DOI: 
10.1038/nbt.2594 [PubMed: 23685480] 

53. Brennan MD, Cheong R, Levchenko A. Systems biology. How information theory handles cell 
signaling and uncertainty. Science. 2012; 338:334–5. DOI: 10.1126/science.1227946 [PubMed: 
23087235] 

Handly et al. Page 15

J Mol Biol. Author manuscript; available in PMC 2017 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



54. Levchenko A, Nemenman I. Cellular noise and information transmission. Curr Opin Biotechnol. 
2014; 28:156–164. DOI: 10.1016/j.copbio.2014.05.002 [PubMed: 24922112] 

55. Tolman, CW. Problems of Theoretical Psychology. Captus University Publications; 1995. 

56. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev 
Mol Cell Biol. 2000; 1:11–21. DOI: 10.1038/35036035 [PubMed: 11413485] 

57. De Young GW, Keizer J. A single-pool inositol 1,4,5-triphosphate-receptor-based model for 
agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A. 1992; 89:9895–
9. DOI: 10.1073/pnas.89.20.9895 [PubMed: 1329108] 

58. Dupont G, Erneux C. Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-
phosphatase activities on Ca2+ oscillations. Cell Calcium. 1997; 22:321–331. DOI: 10.1016/
S0143-4160(97)90017-8 [PubMed: 9448939] 

59. Keizer J, Levine L. Ryanodine Receptor Adaptation and Ca2+-lnduced Ca2+ Release- Dependent 
Ca2+ Oscillations. Biophys J. 1996; 71:3477–3487. DOI: 10.1016/S0006-3495(96)79543-7 
[PubMed: 8968617] 

60. Fioretti B, Franciolini F, Catacuzzeno L. A model of intracellular Ca 2+ oscillations based on the 
activity of the intermediate-conductance Ca 2+-activated K + channels. Biophys Chem. 2005; 
113:17–23. DOI: 10.1016/j.bpc.2004.07.037 [PubMed: 15617807] 

61. Maurya MR, Subramaniam S. A kinetic model for calcium dynamics in RAW 264.7 cells: 1. 
Mechanisms, parameters, and subpopulational variability. Biophys J. 2007; 93:709–28. DOI: 
10.1529/biophysj.106.097469 [PubMed: 17483174] 

62. Lemon G, Gibson WG, Bennett MR. Metabotropic receptor activation, desensitization and 
sequestration—I: modelling calcium and inositol 1,4,5-trisphosphate dynamics following receptor 
activation. J Theor Biol. 2003; 223:93–111. DOI: 10.1016/S0022-5193(03)00079-1 [PubMed: 
12782119] 

63. Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IkappaB-NF-kappaB signaling module: 
temporal control and selective gene activation. Science. 2002; 298:1241–5. DOI: 10.1126/science.
1071914 [PubMed: 12424381] 

64. Huang CY, Ferrell JE. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl 
Acad Sci U S A. 1996; 93:10078–83. [PubMed: 8816754] 

65. Albeck JG, Burke JM, Spencer SL, Lauffenburger Da, Sorger PK. Modeling a snap-action, 
variable-delay switch controlling extrinsic cell death. PLoS Biol. 2008; 6:2831–2852. DOI: 
10.1371/journal.pbio.0060299 [PubMed: 19053173] 

66. Albeck JG, Burke JM, Aldridge BB, Zhang M, Lauffenburger DA, Sorger PK. Quantitative 
Analysis of Pathways Controlling Extrinsic Apoptosis in Single Cells. Mol Cell. 2008; 30:11–25. 
DOI: 10.1016/j.molcel.2008.02.012 [PubMed: 18406323] 

67. Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK. Non-genetic origins of cell-to-cell 
variability in TRAIL-induced apoptosis. Nature. 2009; 459:428–32. DOI: 10.1038/nature08012 
[PubMed: 19363473] 

68. Eissing T, Conzelmann H, Gilles ED, Allgower F, Bullinger E, Scheurich P. Bistability analyses of 
a caspase activation model for receptor-induced apoptosis. J Biol Chem. 2004; 279:36892–36897. 
DOI: 10.1074/jbc.M404893200 [PubMed: 15208304] 

69. Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, 
Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, 
Broomhead D, Kell DB, White MR. Oscillations in NF-kappaB signaling control the dynamics of 
gene expression. Science. 2004; 306:704–8. DOI: 10.1126/science.1099962 [PubMed: 15499023] 

70. Lee RE, Walker SR, Savery K, Frank Da, Gaudet S. Fold change of nuclear NF-κB determines 
TNF-induced transcription in single cells. Mol Cell. 2014; 53:867–79. DOI: 10.1016/j.molcel.
2014.01.026 [PubMed: 24530305] 

71. Koenigsberger M, Sauser R, Lamboley M, Bény JL, Meister JJ. Ca2+ dynamics in a population of 
smooth muscle cells: modeling the recruitment and synchronization. Biophys J. 2004; 87:92–104. 
DOI: 10.1529/biophysj.103.037853 [PubMed: 15240448] 

72. Birtwistle MR, Rauch J, Kiyatkin A, Aksamitiene E, Dobrzyński M, Hoek JB, Kolch W, 
Ogunnaike BA, Kholodenko BN. Emergence of bimodal cell population responses from the 

Handly et al. Page 16

J Mol Biol. Author manuscript; available in PMC 2017 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interplay between analog single-cell signaling and protein expression noise. BMC Syst Biol. 2012; 
6:109.doi: 10.1186/1752-0509-6-109 [PubMed: 22920937] 

73. Ferrell JE, Machleder EM. The biochemical basis of an all-or-none cell fate switch in Xenopus 
oocytes. Science. 1998; 280:895–898. DOI: 10.1126/science.280.5365.895 [PubMed: 9572732] 

74. Ryu H, Chung M, Dobrzyński M, Fey D, Blum Y, Lee SS, Peter M, Kholodenko BN, Jeon NL, 
Pertz O. Frequency modulation of ERK activation dynamics rewires cell fate. Mol Syst Biol. 2015; 
11:838.doi: 10.15252/msb.20156458 [PubMed: 26613961] 

75. Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G. Variability and robustness in T 
cell activation from regulated hterogeneity in protein levels. Science (80- ). 2008; 321:1081–1084.

76. Wang CC, Cirit M, Haugh JM. PI3K-dependent cross-talk interactions converge with Ras as 
quantifiable inputs integrated by Erk. Mol Syst Biol. 2009; 5:246.doi: 10.1038/msb.2009.4 
[PubMed: 19225459] 

77. Ahmed S, Grant KG, Edwards LE, Rahman A, Cirit M, Goshe MB, Haugh JM. Data-driven 
modeling reconciles kinetics of ERK phosphorylation, localization, and activity states. Mol Syst 
Biol. 2014; 10:718.doi: 10.1002/msb.134708 [PubMed: 24489118] 

78. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science 
(80- ). 2002; 297:1183–6. DOI: 10.1126/science.1070919

79. Janes KA, Lauffenburger DA. Models of signalling networks - what cell biologists can gain from 
them and give to them. J Cell Sci. 2013; 126:1913–21. DOI: 10.1242/jcs.112045 [PubMed: 
23720376] 

80. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP. Universally sloppy 
parameter sensitivities in systems biology models. PLoS Comput Biol. 2007; 3:1871–78. DOI: 
10.1371/journal.pcbi.0030189 [PubMed: 17922568] 

81. Cheng Z, Taylor B, Ourthiague DR, Hoffmann A. Distinct single-cell signaling characteristics are 
conferred by the MyD88 and TRIF pathways during TLR4 activation. Sci Signal. 2015; 8:1–13. 
DOI: 10.1126/scisignal.aaa5208

82. Eydgahi H, Chen WW, Muhlich JL, Vitkup D, Tsitsiklis JN, Sorger PK. Properties of cell death 
models calibrated and compared using Bayesian approaches. Mol Syst Biol. 2013; 9:644.doi: 
10.1038/msb.2012.69 [PubMed: 23385484] 

83. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical 
research. Nature. 2014; 507:181–9. DOI: 10.1038/nature13118 [PubMed: 24622198] 

84. Liu Y, Lu H. Microfluidics in systems biology—hype or truly useful? Curr Opin Biotechnol. 2016; 
39:215–220. DOI: 10.1016/j.copbio.2016.04.020 [PubMed: 27267565] 

85. Yawata Y, Nguyen J, Stocker R, Rusconi R. Microfluidic studies of biofilm formation in dynamic 
environments. J Bacteriol. 2016; doi: 10.1128/JB.00118-16

86. Bennett MR, Hasty J. Microfluidic devices for measuring gene network dynamics in single cells. 
Nat Rev Genet. 2009; 10:628–638. DOI: 10.1038/nrg2625 [PubMed: 19668248] 

87. Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Suel GM, Süel GM. Ion channels enable 
electrical communication in bacterial communities. Nature. 2015; 527:59–63. DOI: 10.1038/
nature15709 [PubMed: 26503040] 

88. Liu J, Prindle A, Humphries J, Gabalda-sagarra M, Asally M, Lee DD. Metabolic co-dependence 
gives rise to collective oscillations within biofilms. Nature. 2015; 523:550–554. DOI: 10.1038/
nature14660 [PubMed: 26200335] 

89. Hersen P, McClean MN, Mahadevan L, Ramanathan S. Signal processing by the HOG MAP kinase 
pathway. Proc Natl Acad Sci U S A. 2008; 105:7165–70. DOI: 10.1073/pnas.0710770105 
[PubMed: 18480263] 

90. Kellogg RA, Tian C, Lipniacki T, Quake SR, Tay S. Digital signaling decouples activation 
probability and population heterogeneity. Elife. 2015; 4:1–26. DOI: 10.7554/eLife.08931

91. Kellogg RA, Gómez-Sjöberg R, Leyrat AA, Tay ST. High-throughput microfluidic single-cell 
analysis pipeline for studies of signaling dynamics. Nat Protoc. 2014; 9:1713–1726. DOI: 10.1038/
nprot.2014.120 [PubMed: 24967621] 

92. Kellogg RA, Tay S. Noise Facilitates Transcriptional Control under Dynamic Inputs. Cell. 2015; 
160:381–392. DOI: 10.1016/j.cell.2015.01.013 [PubMed: 25635454] 

Handly et al. Page 17

J Mol Biol. Author manuscript; available in PMC 2017 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



93. Naomi Handly L, Pilko A, Wollman R. Paracrine communication maximizes cellular response 
fidelity in wound signaling. Elife. 2015; 4:1–18. DOI: 10.7554/eLife.09652

94. Chen YC, Allen SG, Ingram PN, Buckanovich R, Merajver SD, Yoon E. Single-cell Migration 
Chip for Chemotaxis-based Microfluidic Selection of Heterogeneous Cell Populations. Sci Rep. 
2015; 5:9980.doi: 10.1038/srep09980 [PubMed: 25984707] 

95. Toettcher JE, Weiner OD, Lim WA. Using optogenetics to interrogate the dynamic control of signal 
transmission by the ras/erk module. Cell. 2013; 155:1422–34. DOI: 10.1016/j.cell.2013.11.004 
[PubMed: 24315106] 

96. Zhang K, Duan L, Ong Q, Lin Z, Varman PM, Sung K, Cui B. Light-mediated kinetic control 
reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth. PLoS 
One. 2014; 9:e92917.doi: 10.1371/journal.pone.0092917 [PubMed: 24667437] 

97. Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM. A genetically encoded 
photoactivatable Rac controls the motility of living cells. Nature. 2009; 461:104–108. DOI: 
10.1038/nature08241 [PubMed: 19693014] 

98. Karunarathne WK, Giri L, Kalyanaraman V, Gautam N. Optically triggering spatiotemporally 
confined GPCR activity in a cell and programming neurite initiation and extension. Proc Natl 
Acad Sci U S A. 2013; 110:E1565–74. DOI: 10.1073/pnas.1220697110 [PubMed: 23479634] 

99. O’Neill PR, Gautam N. Subcellular optogenetic inhibition of G proteins generates signaling 
gradients and cell migration. Mol Biol Cell. 2014; 25:2305–14. DOI: 10.1091/mbc.E14-04-0870 
[PubMed: 24920824] 

100. Wang X, He L, Wu YI, Hahn KM, Montell DJ. Light-mediated activation reveals a key role for 
Rac in collective guidance of cell movement in vivo. Nat Cell Biol. 2010; 12:591–597. DOI: 
10.1038/ncb2061 [PubMed: 20473296] 

101. Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous 
gene activation. Nat Chem Biol. 2015; 11:198–200. DOI: 10.1038/nchembio.1753 [PubMed: 
25664691] 

102. Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G, Tschaharganeh DF, 
Socci ND, Lowe SW. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 
2015; 33:390–394. DOI: 10.1038/nbt.3155 [PubMed: 25690852] 

103. Kawano F, Suzuki H, Furuya A, Sato M. Engineered pairs of distinct photoswitches for 
optogenetic control of cellular proteins. Nat Commun. 2015; 6:6256.doi: 10.1038/ncomms7256 
[PubMed: 25708714] 

104. Yao Z, Petschnigg J, Ketteler R, Stagljar I. Application guide for omics approaches to cell 
signaling. Nat Chem Biol. 2015; 11:387–397. DOI: 10.1038/nchembio.1809 [PubMed: 
25978996] 

Handly et al. Page 18

J Mol Biol. Author manuscript; available in PMC 2017 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Studying Signal Transduction at the Single-Cell Level
Advancements in observing single-cells, computational modeling, and techniques to 

manipulate cells in a spatio-temporal manner enable insights into signal transduction at the 

single-cell level.
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Figure 2. Bulk Assays vs Single-Cell Assays to Study Response Dynamics
Bulk-level assays, such as Western blots, provide population level response with limited 

temporal resolution (T1–T4, left). Fluorescent microscopy using biosensors shows the 

distribution of the population response at the single-cell level (right).
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Figure 3. Cellular Segmentation Analysis
Cellular segmentation separates cells from each other and the background of the image. A 

raw image of the cells (here an image of nuclei stained with Hoeschst is shown) undergoes a 

sequential process to eventually create a label for each cell. A series of images showing the 

response can be mapped to this cell label to create a cell response time series.
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Figure 4. Population vs Single-Cell Computational Model Parameterization
Although a network model between population and single-cell level models remains the 

same, differences in parameter selection and distribution elicit different response outputs. 

Population level parameters have a single value per parameter whereas single-cell level 

parameters consist of a range of values. Population level parameters provide a single 

response output that represents that entire population of cells whereas single-cell level 

parameters show the distribution of responses within the population.
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Figure 5. Complexity of Microfluidic Chip Design Depends on Desired Experimental Output
Simple microfluidic designs (left) do not equate to less information in comparison to 

complicated designs (right). Rather, the complication level of each design depends on the 

required information from the experiment whether it be spatio-temporal dynamics of wound 

response (left) or cellular response to dynamic, temporal inputs (right, image courtesy of 

Savas Tay at the Institute for Molecular Engineering at the University of Chicago).
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Figure 6. Optogenetics enables controlled spatial and temporal inputs
A. Genetically manipulated cells are perturbed by light to elicit a response. B. Cells can be 

manipulated with light both temporally and spatially using optogenetics. Dynamic light 

inputs can generate varying cellular response outputs (temporal). Optogenetic control of 

specific signaling molecules, such as the GTPase Rac, enables precise spatial control over 

which area of the cell is activated (spatial).
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