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Abstract

Once considered exclusively the cell's powerhouse, mitochondria are now recognized to perform 

multiple essential cellular functions beyond energy production, impacting most areas of cell 

biology and medicine. Since the emergence of molecular biology and the discovery of pathogenic 

mitochondrial DNA defects in the 1980's, research advances have revealed a number of common 

human diseases which share an underlying pathogenesis involving mitochondrial dysfunction. 

Mitochondria undergo function-defining dynamic shape changes, communicate with each other, 

regulate gene expression within the nucleus, modulate synaptic transmission within the brain, 

release molecules that contribute to oncogenic transformation and trigger inflammatory responses 

systemically, and influence the regulation of complex physiological systems. Novel 

“mitopathogenic” mechanisms are thus being uncovered across a number of medical disciplines 

including genetics, oncology, neurology, immunology, and critical care medicine. Increasing 

knowledge of the bioenergetic aspects of human disease has provided new opportunities for 

diagnosis, therapy, prevention, and in connecting various domains of medicine. In this article, we 

overview specific aspects of mitochondrial biology that have contributed to – and likely will 

continue to enhance the progress of modern medicine.
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Introduction

Mitochondrial research is on the rise across the medical sciences. As evidence, the number 

of mitochondria-related medical publications has outgrown those related to other organelles, 

including the endoplasmic reticulum, Golgi apparatus, and the nucleus. In particular, the 

nucleus where the autosomal genes are housed has experienced a steady decline in the “post-

genomic era” since completing the sequencing of the human genome in 2001 (Figure 1). 

Reflecting the fact that mitochondria have received increasing attention in recent decades, 

biomedical scientists across disciplines frequently appear to ‘fortuitously’ encounter 

mitochondria at one point or another through the natural development of their research 

program. Likewise, recent discoveries of unsuspected pathophysiological mechanisms 

involving this organelle abound across medical disciplines (Wallace, 2013). Is this a fad 

doomed to fade sooner or later? We argue that this growing attention for mitochondrial 

biology, and its increasing relevance to modern medicine (McBride, 2015; Pagliarini and 

Rutter, 2013), is attributable to the convergence of key signaling pathways and biological 

processes onto the mitochondrion.

As life evolved from unicellular organisms over the last 1.2-1.5 billion years, mitochondria 

played a permissive role in the evolution of multicellular organisms (Lane and Martin, 2010; 

Wallace, 2010), even though the exact timing of endosymbiosis is under debate (Pittis and 

Gabaldon, 2016). Most likely as a result of this evolutionary connection to the basic cellular 

circuitry (Chandel, 2015), mitochondria are intimately linked to a number of basic cellular 

and physiological functions (Nunnari and Suomalainen, 2012). The present article focuses 

on classical and emerging aspects of mitochondrial biology and their relevance to specific 

areas of medicine, including inherited genetic disorders, neurology, oncology, immunology, 

endocrinology, and critical care medicine. Cases are outlined where considering emerging 

facets of mitochondrial biology has yielded new opportunities for diagnosis and/or therapy. 

We also discuss evidence that mitochondria exert systemic effects upon various organ 

systems, and the potential of bioenergetics research to the bridging enterprise with other 

medical theories.

In relation to disease, the emerging bioenergetic paradigm posits that mitochondrial defects 

contribute, often independently from energy production, to the development of age- and 

stress-related diseases by altering complex cellular and physiological functions.

Mitochondrial genetics and disease

Mitochondria contain their own genetic material – the mitochondrial DNA (mtDNA), which 

encodes essential molecular elements required for electron transport by the respiratory chain 

where oxygen is consumed (Mitchell and Moyle, 1967). Driving this process justifies the 

existence of the cardiorespiratory systems (i.e., the lungs, heart, and vascular system), which 
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transport oxygen and nutrients down to the cellular level. Ingested substrates initiate electron 

flow across the respiratory chain where breathed oxygen acts as the terminal electron 

acceptor. The cardio-pulmonary system thus provides the oxidizing agent (oxygen) and the 

gastrointestinal system provides the reducing agents (food substrates). This molecular 

sequence of events generates the electrochemical transmembrane potential across the inner 

mitochondrial membrane ultimately harnessed for adenosine triphosphate (ATP) synthesis, 

which fuels most life-sustaining cellular reactions (Nicholls and Fergusson, 2013).

Three decades have passed since the discovery of mtDNA is uniquely inherited from the 

maternal side (Giles et al., 1980). In the 1980's, it was discovered that mtDNA point 

mutations (Wallace et al., 1988) and deletions (i.e., the loss of a mtDNA segment encoding 

one or more mtDNA genes) (Holt et al., 1988) could cause human disease; a breakthrough 

for molecular medicine. Since, it has been established that inherited and acquired mtDNA 

defects, in addition to mutations in autosomal mitochondrial genes in the nucleus, are at the 

origin of heterogeneous and previously intractable pediatric and adult diseases. These are 

estimated to affect approximately 1:4,300 individuals (Gorman et al., 2015b). Genetic 

mitochondrial disorders principally remained the domain of the neurologist, but a now 

growing list of > 300 monogenic autosomal defects at the origin of an even broader range of 

clinically complex diseases have pushed mitochondriopathies into the realm of other medical 

specialties including endocrinology, oncology, cardiology, immunology, gastroenterology, 

and others (Koopman et al., 2012; Turnbull and Rustin, 2015). However, the origin of 

pleiotropic and multisystemic symptoms in mitochondrial disorders are, as yet, still poorly 

understood.

Even milder mtDNA sequence variants, or single nucleotide polymorphisms (SNPs) can 

confer disease risk. MtDNA SNPs have historically segregated as groups—called 

haplogroups—during human evolution and migration. Mitochondrial haplogroups have been 

found to be important in normal physiological adaptation as well as in modulating risk of 

developing disease across organ systems (Anglin et al., 2012; Hudson et al., 2014; Wallace, 

2015). Specific selected examples are provided in Table 1.

Single mtDNA SNPs may also influence pathophysiology. For example, the 

“nonpathogenic” mtDNA variant m.16,189T>C confers risk for diabetes (Poulton et al., 

2002), but possibly only in those with high BMI (i.e., in the presence of metabolic stress) 

(Liou et al., 2007) indicating mtDNA gene × environment interaction. mtDNA haplogroups 

may also influence the penetrance of autosomal genetic defects, such as ANT1-associated 

cardiomyopathy that progresses more rapidly in the context of certain mtDNA haplogroup 

than others (Strauss et al., 2013). These effects may be explained biochemically by the fact 

that the same mutation can cause varying degree of enzymatic deficiency depending upon 

the mtDNA haplogroup on which it is present (Ji et al., 2012). The genetic context of a 

mutation matters. These effects may arise from modest but functionally relevant differences 

in respiratory chain protein content and mtDNA copy number between haplogroups 

(Gomez-Duran et al., 2010; Kenney et al., 2014).

Next generation sequencing technologies affording greater sensitivity to detect low levels of 

mtDNA heteroplasmy have also revealed that pathogenic mtDNA mutations are common in 
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the general population (Samuels et al., 2013; Ye et al., 2014). Their accumulation may be 

tissue specific (Burgstaller et al., 2014; Maeda et al., 2016; Samuels et al., 2013; Sharpley et 

al., 2012), suggesting that non-genetic factors across tissues may apply selective pressure 

influencing the segregation of certain mtDNA mutations (Picard and Hirano, 2016). Even in 

inherited pathogenic mutations such as the m.3243A>G mutation, heteroplasmy levels vary 

widely between tissues. A recent study of 24 postmortem tissues of monozygotic twins with 

the m.3243A>G mutation showed that heteroplasmy levels varied between 5 to 99%, but 

were highly similar in matched tissues from both brothers (Maeda et al., 2016). Both genetic 

and non-genetic, possibly epigenetic, processes must therefore interact to influence mtDNA 

heteroplasmy and mitochondrial disease progression.

Improved diagnostics through advances in mtDNA and whole-exome sequencing has 

enabled the identification of a growing number of pathogenic mitochondrial mutations 

(Taylor et al., 2014). However, except for few defined disorders where nutritional 

interventions can offer partial symptomatic relief, clinicians mostly face a lack of 

consistently effective treatments (Parikh et al., 2015). The long-recognized fact that 

oxidative stress within mitochondria is a hallmark of mitochondrial dysfunction has 

stimulated the development of mitochondria-targeted antioxidant therapies. Subsequent to 

showing promise in pre-clinical studies and safety in phase 1 clinical trials in humans, phase 

2 trials are now ongoing for mitochondria-targeted antioxidant molecules including MitoQ 

(ubiquinone mesylate, NCT02597023), the peptide SS-31 (d-Arg-2′,6′-dimethyltyrosine-

Lys-Phe-NH2, NCT02245620), and other compounds. Other druggable mitochondrial 

components, particularly energy exchange systems and the pro-apoptotic function of the 

permeability transition pore (PTP), constitute new potential targets for mitochondrial 

medicine (Wang et al., 2016).

Recently, efforts have also been expanded to prevent the transmission of mitochondrial 

diseases. In the UK, a recently approved resolution aiming to legalize the clinical use of 

mitochondrial replacement therapy (MRT) could soon enable women with mutated mtDNA 

to have children with normal mitochondria (Gorman et al., 2015a). Two related procedures 

are currently being pursued – maternal spindle transfer (Tachibana et al., 2010), and 

pronuclear transfer (Craven et al., 2010). Both techniques combine the nuclear genetic 

material of the two parents with the mitochondrial genome of a donor woman with healthy 

mitochondria, representing a breakthrough in the prevention of genetic diseases. Preclinical 

studies have now established the feasibility and minimized carryover of mutant mtDNA in 

the procedure (Hyslop et al., 2016).

Nevertheless, this preventative approach is not without creating debate due to potential long-

term effects of the mixture of two different mitochondrial genomes within cells, a state 

termed heteroplasmy (Burgstaller et al., 2015; Reinhardt et al., 2013). In the U.S., where the 

procedure also remains controversial (Cohen et al., 2015), the Federal Drug Administration 

(FDA) recently mandated the Institute of Medicine (IOM) to establish a committee on 

“Ethical and Social Policy Considerations of Novel Techniques for Prevention of Maternal 

Transmission of Mitochondrial DNA Diseases” (Institute of Medicine, 2016). Significant 

steps for medicine are thus being taken towards the prevention of mitochondrial diseases, 

simultaneously raising new ethical and scientific challenges (Falk et al., 2016).
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Genetic mitochondrial diseases: From ATP to genetic reprogramming

Because of the historical tenet of mitochondria as the cell's powerhouse, mitochondrial 

disease pathogenesis and patient symptomatology has naturally been attributed to an ATP 

production defect. But independent of energy production capacity, mitochondria produce 

signals that affect a number of cellular processes. Notably, mitochondrial signals alter the 

expression of several thousands of genes linked to diverse cellular functions (Elstner and 

Turnbull, 2012; Zhang et al., 2013). Thus, pathogenic mutations impairing mitochondrial 

functions may result in broad transcriptional reprogramming within the cell nucleus.

Mitochondrial reprogramming of the nuclear genome is rendered particularly complex 

because 100's to 1,000's of copies of mtDNA exist within each cell, such that normal and 

mutated mtDNA genomes can coexist in a state of heteroplasmy within the same person, and 

within single cells (Figure 2) (Taylor and Turnbull, 2005). Inherited differences in the 

proportion of mutant and normal mtDNA molecules, or increasing mutation load over time, 

may account for some of the variance in disease progression, where higher ratios of mutant/

normal mtDNA cause more severe pathology in affected organs (Grady et al., 2014; Wallace 

and Chalkia, 2013). However, clinical and phenotypic variability exists among patients 

affected with the same mtDNA defect at similar heteroplasmy levels (Grady et al., 2014; 

Parikh et al., 2015), suggesting that other factors impact the complexity and progression of 

mitochondrial diseases.

Two recent studies investigated the dose-response consequence of increasing heteroplasmy 

for the most common human mtDNA mutation m.3243A>G tRNALeu(UUR) (Chae et al., 

2013; Picard et al., 2014b). This mutation affects mitochondrial protein synthesis and causes 

respiratory chain dysfunction (Sasarman et al., 2008). One study examined the full spectrum 

of heteroplasmy from 0% (only normal mtDNA) to 100% (all mutant mtDNA) in syngenic 

cytoplasmic hybrid (cybrid) cells lines derived from a single clone. Although these cells 

share the same nuclear material, they vary in their levels of mtDNA heteroplasmy. 

Strikingly, whole-transcriptome analysis by RNA-sequencing revealed that mitochondria 

have the ability to regulate the expression of the majority (>66%) of genes within the human 

genome, including the epigenetic/chromatin remodeling machinery (Picard et al., 2014b). 

Analysis of nuclear responses across the full spectrum of mtDNA heteroplasmy indicated 

that depending upon the mutation load – but not ATP levels – contrasting genetic programs 

were turned on while others were shut down (Picard et al., 2014b). This bi-phasic pattern of 

nuclear reprogramming is in contrast with the expectation that increasing mitochondrial 

dysfunction would cause a linear dose-response shift in the transcriptome.

In addition, different mtDNA haplogroups that confer disease risk have also been associated 

with different gene expression profiles in stem cells (Kelly et al., 2013) and cytoplasmic 

hybrid cells (Kenney et al., 2014). This demonstrates that both pathogenic defects such as 

the m.3243A>G point mutation, as well as evolutionary defined and combinations of 

mtDNA single nucleotide polymorphisms (i.e., haplogroups) generate signals that modulate 

the expression of nuclear genes.

Signals that convey information between mitochondria and the nucleus include reactive 

oxygen species (ROS) (Reczek and Chandel, 2015; Shadel and Horvath, 2015) and reactive 
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metabolic intermediates derived from mitochondrial metabolism (Gut and Verdin, 2013; 

Wallace and Fan, 2010). These metabolites constitute the required substrates and co-factors 

for chromatin remodeling via post-translational modifications, including AcCoA and NAD+ 

for acetylation/deacetylation reactions by histone acetylase/deacetylases, s-

adenosylmethionine and α-ketoglutarate for methylation/demethylation by DNA 

methyltransferases/demethylases, and others (Gut and Verdin, 2013). The resulting 

epigenetic marks impact nuclear gene expression via changing the epigenetic landscape 

responsible for silencing and activating specific genes across genome (Bird, 2007).

Not surprisingly, mitochondria-nuclear crosstalk must also interact with cell- and tissue-

specific features (Hamalainen et al., 2013), which are themselves epigenetically determined 

(Meissner et al., 2008). Mito-nuclear crosstalk and the link with the epigenome provides a 

potential explanation for tissue-specific affections in mitochondrial diseases. As a clinical 

entity, mitochondrial disorders exemplify the notion that a specific genetic defect can yield 

pleiotropic clinical manifestations, and that mitochondrial signals beyond energetics 

contributes to these pathogenic mechanisms. Further research is required to elucidate the 

underlying mechanisms, and the particular vulnerability of specific organs to mitochondrial 

dysfunction, such as the brain.

Mitochondrial dynamics, quality control and the brain

Mitochondria do not sit idle within the cell cytoplasm as suggested by the traditional static 

bean-like textbook picture. Visualizing live cells under the microscope reveals mitochondria 

undergoing constant dynamic processes of fusion and fission with each other, leading to 

shape changes and molecular exchange within seconds to minutes (Archer, 2013; Twig et al., 

2010). Supplemental Video 1 shows mitochondrial dynamics in a cultured human myoblast, 

where the mitochondrial network undergoes extensive remodeling. Although this process is 

slowed in mature differentiated cells in vivo, mitochondrial fusion occurs and enables the 

exchange of molecular content between organelles (Mishra et al., 2015).

Mitochondrial morphology transitions are regulated via multiple inputs including 

fluctuations in the metabolic state, in which substrate oversupply promotes network 

fragmentation (Molina et al., 2009; Yu et al., 2008), and metabolic undersupply promotes 

elongation (Gomes et al., 2011; Rambold et al., 2011). In fact, mitochondrial fission, fusion, 

transport, and degradation are collectively regulated by energy metabolism and respiratory 

chain function (Mishra and Chan, 2016), the conserved energy sensing intracellular 

signaling pathways AMP-activated protein kinase (AMPK) signaling (Toyama et al., 2016), 

adrenergic signaling (Chang and Blackstone, 2007; Wikstrom et al., 2014), among others 

(Mishra and Chan, 2016). Because mitochondrial morphology appears to regulate various 

aspects of mitochondrial function such as oxygen consumption, ROS production, and 

susceptibility to apoptotic signaling (Picard et al., 2013), changes in mitochondrial shape 

impact both cell energetics (Benard and Rossignol, 2008) and other cellular functions 

ranging from differentiation to death (Kasahara and Scorrano, 2014).

Although long-believed to behave as independent organelles, new evidence is changing this 

solitary view of mitochondria. Not unlike their “social” bacterial ancestors mitochondria 

undergo a form of quorum sensing (Picard and Burelle, 2012). Specialized inter-
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mitochondrial junctions also exist between adjacent mitochondria where cristae ultratructure 

becomes coordinated between neighboring organelles, indicating the exchange of 

information (Picard et al., 2015b). This may account for rapid information exchange 

between organelles reported to occur in the absence of organelle fusion (Santo-Domingo et 

al., 2013), and possibly other forms of communication. The transfer of whole mitochondria 

from one cell to another – ‘intercellular mitochondrial transfer’ – has also been described 

(Rogers and Bhattacharya, 2013), and may have significant functions for stem cell behavior 

and functional interactions between cancer and stromal cells (Ahmad et al., 2014; Tan et al., 

2015). Immune-to-endothelial cell mitochondrial transfer (Islam et al., 2012), and 

mitochondrial transplantation (Masuzawa et al., 2013), may also confer protection against 

injury. The discovery of mechanisms enabling the communication of bioenergetic states 

within and across cells is thus blurring the boundaries previously imagined to separate 

mitochondria as independent energy-producing powerhouses.

Likewise, as the proteins enabling dynamic processes of mitochondrial fusion and fission 

were discovered, new opportunities arose to understand disease (Chan, 2012). Multiple 

clinical conditions primarily affecting the neuromuscular systems involve defects in 

mitochondrial dynamics (Archer, 2013; Friedman and Nunnari, 2014). Fusion/fission 

dynamics in concert with mitochondrial biogenesis also enable the selective removal of 

dysfunctional mitochondria as part of intracellular quality control – or autophagy (from the 

greek “self-eating”); the “life cycle” of mitochondria (Twig et al., 2008). In the brain where 

synaptic mitochondria are often positioned several hundred microns and centimeters away 

from the cell body, neurons may outsource mitophagy by shedding damaged mitochondria 

followed by uptake and degradation by adjacent astrocytes (Davis et al., 2014).

Whereas disrupting this mitochondrial life cycle and quality control processes may lead to 

disease, targeting it may have clinical therapeutic applications. In diabetes for example, 

pharmacologically preventing excessive glucose- and lipid-induced mitochondrial fission 

may confer protection against insulin resistance (Jheng et al., 2012). In muscular dystrophy, 

pharmacological activation of autophagy may preserve mitochondrial function and attenuate 

myofiber degeneration (Grumati et al., 2010). Likewise in mouse models of mitochondrial 

disease, overexpression of the core component of the mitochondrial fusion machinery OPA1 

(optic atrophy 1) partially restores skeletal muscle function (Civiletto et al., 2015). 

Overexpression of OPA1 also partially alleviates ischemic damage in heart and brain 

(Varanita et al., 2015), with potential therapeutic implications for a number of acute and 

chronic medical conditions such as retinopathy, diabetic angiopathy, stroke, myocardial 

infarction, and others where ischemic insult likely contributes to tissue damage through 

mitochondria-dependent mechanisms (Chouchani et al., 2014).

Among the organ systems affected by mitochondrial dysfunction, the brain and the nervous 

system are particularly harmed by alterations of both mitochondrial shape and function 

(McFarland et al., 2011). Notably, electron microscopic studies position abnormal 

mitochondrial shape as an emerging disease biomarker and potential cause of 

neurodegenerative disorders (Burte et al., 2015), along with oxidative stress and 

inflammation (Lin and Beal, 2006). In non-human primates, abnormal donut-shaped (i.e., 

toroid) mitochondria in brain presynaptic terminals are associated with loss of synaptic 
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structure and function, and are correlated to age-related memory decline in the living animal 

(Hara et al., 2014), thus linking abnormal organelle shape to a higher-level cognitive 

function. These findings could be explained by the fact that the presence or absence of 

mitochondria in presynaptic boutons directly modulate synaptic neurotransmitter release 

(Sun et al., 2013). MtDNA heteroplasmy also impact memory formation in mice (Sharpley 

et al., 2012).

Clinically, a neurobiological subtype of autism spectrum disorder and other neurological 

disorders in humans involve mitochondrial dysfunction (Goh et al., 2014), although the 

cause-effect relationship in these cases remains to be established. Potential mechanisms 

involve the production of abnormal mitochondrial signals that may contribute intracellularly 

to cytoplasmic protein aggregates, epigenetic anomalies and gene expression dysregulation 

in the cell nucleus, as well as systemic neuroendocrine and metabolic effects that feedback 

on the brain (Picard and McManus, 2016). Notably, mitochondria-targeted antioxidant 

treatment has successfully prevented early pathological changes in preclinical studies of 

Alzheimers’ disease (McManus et al., 2011), suggesting that abnormal mitochondrial shape 

and function may precede and directly contribute to neurodegenerative processes, rather than 

being a secondary consequence.

Interrelated aspects of mitochondrial dynamics, quality control, and their non-energetic 

functions thus bear functional consequences on multiple organ systems including the heart, 

skeletal muscles, liver, kidneys, and the brain in particular. Our growing understanding of 

the role of the processes responsible for maintaining optimal mitochondrial functions, and 

their failure in disease, may eventually translate into opportunities for prevention and 

treatment of age-related diseases affecting the brain and other physiological processes.

The bioenergetics of immunity

Immune processes and inflammation are conserved biological functions linked to diseases 

that span multiple areas of medicine. In mammalian cells, mitochondria contribute to 

immune processes in four major ways.

First, systemic inflammatory cellular responses involve mitochondrial signaling. Following 

mitochondrial damage due to oxidative stress or other insult, the bacteria-like circular 

mtDNA can leak out into the cytoplasm through mechanisms that remain to be established. 

As a result, the NLRP3 inflammasome can be triggered by mtDNA outside the mitochondria 

(Lu et al., 2014). In neutrophils, mitochondrial damage may also lead to extrusion of 

mtDNA nucleiods, which when oxidized, can trigger interferon production and contribute to 

autoimmune processes in lupus (Caielli et al., 2016).

Second, mitochondria act as an immune signaling platform to orchestrate the anti-viral 

response intracellularly. This involves the recruitment and aggregation of MAVS 

(mitochondria antiviral signaling) proteins at the mitochondrial surface to engage innate 

antiviral signaling in a mitochondrial membrane potential-dependent manner (Koshiba et al., 

2011; Seth et al., 2005). Mitochondrial ROS can also potentiate toll-like receptors (TLRs) 

signaling involved in macrophage bactericidal activity (West et al., 2011), thus priming the 

anti-viral machinery for action. In the cytoplasm, the mtDNA also engages the DNA sensor 
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cGAS and activates downstream signaling components culminating in transcriptional 

regulation that modulate resistance to viral infection (West et al., 2015). The role of 

mitochondria in anti-viral cellular signaling could contribute to explain why mtDNA 

sequence variants (i.e., haplogroups) across individuals infected with HIV/AIDS clinically 

impact disease progression and mortality (Hendrickson et al., 2008).

Third, the mtDNA can also leak into the systemic circulation where it is recognized by 

TLR9 and may ultimately lead to tissue lesions and degenerative cardiovascular and 

neurological conditions (Mathew et al., 2012; Oka et al., 2012; Zhang et al., 2010). 

Circulating “cell-free” mtDNA (ccf-mtDNA) and other mitochondria-derived damage-

associated proteins (DAMPs) and pathogen-associated molecular proteins (PAMPs) that are 

free-floating in the blood thus represent putative biomarkers of prodromal stages of disease 

either produced by or involving mitochondrial stress (Picard et al., 2014a). Studies also 

indicate that ccf-mtDNA increase with aging, representing a potential contributor to 

“inflammaging” (Pinti et al., 2014). Importantly for our understanding of the role of 

mitochondria in human health is the emerging notion that mitochondria-derived factors can 

trigger inflammatory and pathologic processes known to underlie many of the most common 

age-related chronic diseases. But whether mitochondria act as primary drivers of 

inflammation in various conditions remains to be established.

Finally, mitochondrial energetics and adaptive immunity are connected via regulating 

immune cell type differentiation into pro- and anti-inflammatory phenotypes. The 

acquisition of specific effector functions in monocyte/macrophages, lymphocytes and 

dendritic cells cannot proceed without specific metabolic and mitochondrial reprogramming 

(Pearce et al., 2013). Differentiation of macrophages (M0) into distinct pro- (M1) and anti-

inflammatory (M2) phenotypes involves specific bioenergetic signatures (see Figure 2). 

Recent findings also suggest that in professional antigen-presenting cells such as 

macrophages and dendritic cells, inflammatory stress can lead to the production of small 

mitochondrial-derived vesicles (MDVs), which deliver mitochondrial antigen at the cell 

surface for presentation on MHC class-1 molecules (Matheoud et al., 2016). This 

mechanism, which may promote activation of autoimmune processes, is potently repressed 

by PINK1/PARKIN-dependent mitophagy (Matheoud et al., 2016), illustrating the 

importance of proper mitochondrial quality control for the maintenance of normal immunity. 

Thus, mitochondrial dysfunction in immune cells could contribute to an increased 

susceptibility to infection and autoimmune disorders in patients with mitochondrial 

disorders (Walker et al., 2014a; Walker et al., 2014b), and opens the possibility to modulate 

both innate and adaptive immune responses by targeting mitochondrial function (Weinberg 

et al., 2015). Mitochondrial modulation of various immune processes further illustrates the 

organelle's broad physiological effects beyond energy production.

Non-energetic mitochondrial functions and systemic diseases

Beyond their “energetic” role in ATP synthesis, mitochondria engage in intracellular 

signaling that reprogram nuclear gene expression as describe above, and are found at the 

nexus of multiple cellular metabolic pathways leading to disease when disrupted. Through 

bioenergetic processes, enzymatic reactions within mitochondria re-route carbohydrates, 
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amino-acids and lipids into cellular pathways destined either to macromolecule biosynthesis 

(e.g., heme and steroid hormones), de-novo lipid or nucleotide synthesis for DNA 

replication, and cellular antioxidant defenses, among others (Nicholls and Fergusson, 2013). 

As a result, defects in specific mitochondrial enzymes cause the accumulation of 

intermediary metabolites, several of which are the substrates for enzymatic reactions that 

regulate gene expression (Gut and Verdin, 2013). In addition, mitochondrial metabolic 

intermediates including fumarate, succinate and D–2-hydroxyglutarate can also act as ‘onco-

metabolites’ that can induce or promote carcinogenic transformation (Yang et al., 2013) 

(Figure 2). Mitochondrial metabolites may also reach the systemic circulation, acting 

peripherally upon other cells via G-protein coupled receptors (GPCRs). For instance, 

succinate is a metabolic intermediate of the Krebs cycle that can trigger a “pseuso-hypoxic 

state” by stabilizing the hypoxia-responsive element HIF-1a, with downstream Nf-kB 

activation (Tannahill et al., 2013). Selected examples of recently discovered “non-energetic” 

syndromes and diseases caused by defects in mitochondrial genes are listed in Table 2.

Beyond the confine of cells, mtDNA defects also dysregulate complex physiological 

processes at the organ and systems level. The growth of blood vessels for oxygen delivery 

(i.e., angiogenesis) is selectively promoted around skeletal muscle fibers with defective 

mitochondria (Taivassalo et al., 2012), indicating that information about mitochondrial 

defects in the affected muscle cells influence the behavior of surrounding capillary cells. 

Systemically, mtDNA mutations have been found to cause abnormal autonomic nervous 

system regulation of heart rate (Bates et al., 2013; Taivassalo et al., 2003), and to exaggerate 

catecholamine release during exercise in humans (Jeppesen et al., 2013). Mitochondrial 

functions also modulate neuroendocrine (cortisol, catecholamines), hippocampal gene 

expression, and downstream metabolic responses to psychological stress in mice with 

different mitochondrial defects (Picard et al., 2015c), demonstrating that mitochondrial 

disorders impact multiple levels of functioning from organelle to organism (Figure 3). These 

systemic mitochondrial effects may contribute to the multisystemic deterioration associated 

with chronic or repeated stressors (Picard et al., 2014a), and thus shape the organism's 

resilience and vulnerability in the face of various stressors (Morava and Kozicz, 2013; 

Picard et al., 2014a). Evidence so far indicates that mitochondria modulate responses to 

psychosocial stress, increased energy demand during exercise, as well as critical life-

threatening medical conditions that activate multiple stress systems, as discussed below.

Mitochondria in critical care medicine

Within the realm of critical care medicine, severe pathological states often overwhelm the 

body's stress response systems. Recent research has defined certain principles of 

mitochondrial bioenergetics, notably related to how mitochondria respond to stressors – 

bioenergetically, morphologically, and genetically – and the downstream the impact of 

resulting mitochondrial signals on key aspects of cellular function such as gene expression. 

This section outlines some of these principles of bioenergetics that enhance our grasp of 

resilience/vulnerability and of its cellular determinants, which are beginning to inform 

medical practice in the intensive case unit (ICU).
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One such principle is that metabolic “oversupply” leads to mitochondrial toxicity (Picard 

and Turnbull, 2013). Metabolic oversupply is the excess supply of energy substrates, mainly 

glucose and lipids, relative to cellular demand. In the critically ill adult patient who naturally 

exhibits low energy requirements due to bedrest and physical inactivity, early-onset 

intravenous feeding (i.e., parenteral nutrition) promotes metabolic oversupply and is 

consequently associated with greater morbidity than later-onset feeding (Casaer et al., 2011). 

More food is not better, and may even be damaging. The detrimental effect of metabolic 

oversupply is thought to result from mitochondrial substrate overload (Fisher-Wellman and 

Neufer, 2012), which entails excessive reduction of the respiratory chain and consequent 

ROS production (Anderson et al., 2009), mitochondrial fission and oxidative stress 

culminating in mtDNA damage, and possibly cellular aging indexed by telomere shortening 

(Picard and Turnbull, 2013).

In patients receiving ventilatory support, hyperglycemia (excess circulating glucose levels) is 

associated with longer length of hospitalization, prolonged weaning time, and increased 

mortality (Bilotta and Rosa, 2012; Van den Berghe et al., 2006). As in other instances of 

bioenergetic disturbance, ventilator-induced diaphragmatic dysfunction (VIDD), which 

involves metabolic stress and mitochondrial fragmentation in muscle fibers (Picard et al., 

2015a), is exacerbated by systemic metabolic oversupply (Picard et al., 2012b), and 

associated with mtDNA damage with consequent mitochondrial respiratory chain 

dysfunction (Picard et al., 2012b). In patients with sepsis, a life-threatening clinical 

syndrome following infection or injury, mitochondrial function is also acutely impaired 

(Weiss et al., 2014). In this context, molecular induction of mitochondrial biogenesis, which 

increases or preserves mitochondrial content and function, strongly predicts survival in 

critically ill patients (Carre et al., 2010), consistent with the notion that mitochondrial 

functional capacity contributes to shaping adaptive capacity in the face of acute stressors 

(Picard et al., 2014a). mtDNA haplogroups also predict survival in septic patients (Baudouin 

et al., 2005), illustrating the clinical significance of both biochemical and genetic aspects of 

mitochondrial biology in critical care medicine. Understanding the interplay between the 

metabolic state and mitochondria will help design optimal treatment strategies that will aim 

to preserve mitochondrial functions, prevent the accumulation of damage, and secondarily 

enhance clinical outcomes.

In the context of treatment and prevention, it is illuminating to understand that mitochondria 

mediate the effects of metabolic stress and determine resilience to septic conditions. This 

suggests that targeting mitochondrial functions, pharmacologically or through other means, 

may yield measurable clinical outcomes (Wang et al., 2016). Preserving normal cellular 

bioenergetics through optimal glycemic control reduces incidence of critical illness 

polyneuropathy (CIP)/myopathy (CIM), which otherwise compromises weaning from 

mechanical ventilation and hospital discharge (Hermans et al., 2009). Optimal glycemic 

control with intensive insulin therapy also preserves mitochondrial integrity and decreases 

co-morbidity in bedridden individuals (Van den Berghe et al., 2006), underscoring the 

deleterious effect of metabolic oversupply on mitochondria, and the downstream systemic 

outcomes.
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In preclinical studies, the genetic overexpression of the antioxidant enzyme Prx3 

(peroxiredoxin 3) prevents VIDD in mice (Picard et al., 2012b). Administration of the 

mitochondrial-targeted antioxidant SS-31 has shown promise pre-clinically in preventing the 

mitochondrial dysfunction in the mechanically-ventilated diaphragm, and thus mitigating the 

ensuing reduction in muscle mass and contractility (Powers et al., 2011). These data position 

mitochondria-derived oxidative stress as an early mediator of the effect of metabolic 

oversupply on skeletal muscle function, and possibly in other tissues. Based on our rapidly 

evolving understanding of mitochondrial bioenergetics, morphology, and genetics in critical 

care illness, clinical strategies aimed at reducing “mitochondrial overload”, mitigating 

excessive mitochondrial oxidative stress, and mitochondrial apoptotic signaling should thus 

represent suitable avenues to optimize recovery and reduce mortality in the ICU.

Disease prevention, the health benefits of physical activity, and mitochondria

Advances in mitochondrial biology may also inform strategies, such as exercise, to prevent 

and treat non-communicable diseases that burden modern medicine. Aerobic exercise is 

among the few therapies capable of improving medical conditions refractory to conventional 

treatments, such as major depressive disorder (Rethorst et al., 2013), and remission from 

type 2 diabetes (Gregg et al., 2012). Exercise has also been shown to affect the brain, 

possibly reverse age-related atrophy of the hippocampus along with increasing relational 

memory (Erickson et al., 2011). How so? Vigorous exercise increases whole-body oxygen 

consumption 5 to 20-fold above resting levels in humans (Weibel and Hoppeler, 2005), 

reflecting accelerated mitochondrial energy conversion. At the cellular level, increased 

energy demand engages adaptive intracellular signaling pathways to increase mitochondrial 

content and optimize their function via mitochondrial biogenesis, inducing the expression of 

genes that buffer against inflammation systemically (Handschin and Spiegelman, 2008), and 

may, therefore, counteract deleterious pro-aging mitochondrial signaling (Safdar et al., 

2011).

Specifically for the brain, social interactions and other forms of mental stimulation that 

increase neuronal activity confer protection against neurodegeneration and age-related 

cognitive decline (Anguera et al., 2013). It is well established that repeated contraction of 

muscle fibers triggers mitochondrial biogenesis in working muscles (Cartee et al., 2016). 

Likewise, neuronal activity may produce similar effects in neurons and glia. Exercise 

stimulates mitochondrial biogenesis in the brain (Steiner et al., 2011). Moreover, neuronal 

activity triggered by either exercise or mental stimulation, entails energy-dependent cellular 

processes and enzymatic reactions (ion transport, neurotransmitter release and reuptake, 

gene expression, protein synthesis, etc.) that increase energy flow within brain mitochondria, 

enhancing cellular oxygen consumption (Huchzermeyer et al., 2013).

Interestingly, impaired mitochondrial biogenesis is a feature of neurodegenerative conditions 

including Alzheimer's disease (AD) (Qin et al., 2009). It has been estimated that 20.3 - 

21.8% the proportion of cases in developed countries that could be prevented by physical 

activity alone (Norton et al., 2014). In other words, physical inactivity (i.e., sedentary 

behavior) is a major risk factor for AD. This might be explained by the fact that physical 

inactivity promotes metabolic stress that predisposes to disease, possibly via disruption of 
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normal mitochondrial dynamics and the accumulation of mtDNA damage (Picard and 

Turnbull, 2013). Based on these and other data, a leading hypothesis proposes that the 

protective effects of exercise against AD and other neurodegenerative diseases arise from 

increased mitochondrial content, quality, and function (Mattson, 2012).

Bridging medical disciplines

Our increasing understanding of mitochondrial structures and functions coupled with a 

general fascination for mitochondrial energetics across medical sciences has caused 

mitochondrial biology to take roots in various conventional and non-conventional areas of 

medicine. Conventional medical disciplines (e.g., neurology, oncology, cardiology, etc) are 

based on established diagnostic categories, which mitochondrial research extend and deepen 

by adding insight into the molecular aspects of pathogenesis. As a result, mitochondrial 

biology provides mechanistic insights into well-defined medical problems such as 

mitochondrial disease, cancer, immune disorders, AD, and critical care illness (see sections 

above). Conversely, non-conventional or “integrative” medical disciplines are based on 

systems of knowledge that differ substantially from that of Western biomedicine, most of 

which are rooted in Eastern philosophy. These include but are not limited to Qi Gong, Tai 

Chi, biofield therapy, homeopathy, osteopathy, and acupuncture (NIH National Center for 

Complimentary and Integrative Health, 2016).

Recently, these complimentary care approaches have been applied to increasing numbers in 

the U.S. medical system (e.g., 70% of cancer patients) (Horrigan, 2012), yet knowledge of 

their underlying mechanisms remains poor. Within the U.S. health care system where >$30 

Billion is spent annually on integrative medicine, following increasing public demand and 

partial supportive evidence (NIH National Center for Complimentary and Integrative Health, 

2016), several medical institutions have developed and are currently offering programs of 

training, research, and health care involving complimentary care approaches and integrative 

medicine.

The theoretical foundation for integrative medicine practices largely derives from traditional 

Eastern philosophy where biological processes are conceptualized not in molecular terms, 

but in terms of ‘vital energy’, ‘biofield’, and the flow of ‘Qi’ between organ systems. In this 

framework, ‘dissonance’ in energetic states is assumed to underlie or drive 

pathophysiological states or disease (Amri and Abu-Asad, 2011; Hammerschlag et al., 

2015). Whether conditions such as “excess heat” or “deficient lung Qi” from traditional 

Chinese medicine have measurable bioenergetic correlates remains unknown. It would be 

valuable to evaluate the molecular and bioenergetic aspects of “energetically” defined 

disease states, as well as pathological cellular and organ disturbances. This kind of 

systematic comparison could possibly lead to discoveries and promote dialogue among 

researchers and practitioners with a common interest to assess usefulness and safety of 

integrative medicine therapies.

It has been proposed that principles of mitochondrial biology may serve to create a common 

basis to logically connect existing concepts in non-conventional approaches with the major 

tenets of biomedicine (Amri and Abu-Asad, 2011; Pokorny et al., 2013; Wallace, 2008). 

This proposition is based on two main arguments. The first is that non-conventional medical 
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approaches have made observations based on “energy flow” that have lead to complex 

therapeutic systems supporting the same concepts as those that promote mitochondrial 

function outlined above. This includes the deleterious effects of excess food intake, the 

positive effects of physical activity and “conditioning of the body”, and body-mind practices 

that reduce stress arousal systems. The second argument relies on the semantic similarities 

between related concepts, such as “heat”. Heat is used in traditional Chinese medicine to 

define one's physical and mental state. For example, excess “heat” would define someone 

with physical and mental hyperactivity, flushed face, rapid heart rate, and increased core 

body temperature. In Western biomedicine, heat is a physical-chemical concept confined to 

body temperature. Biologically, bodily heat or temperature is derived in large part from 

energy dissipation secondary to uncoupled mitochondrial respiration driven by electron leak 

across inner mitochondrial membrane (Nedergaard et al., 2001). Based on these notions and 

with the goal to overcome differences in language and terminology across these domains, 

emerging roles and functions of mitochondrial could eventually enable the formulation of 

testable scientific hypotheses reaching across conventional Western and non-conventional 

Eastern theoretical models.

This integration between the Western anatomical/molecular and Eastern bioenergetic 

perspectives in medicine should be facilitated the development and application of 

noninvasive and minimally invasive technologies to measure mitochondrial (dys)function 

(Goh et al., 2014; Minh Tdo et al., 2012; Roede et al., 2012; Wallace et al., 1988; Zand et 

al., 2013). Mitochondria are not all created equal but are functionally specialized, both in 

their composition (Pagliarini et al., 2008) and functions (Picard et al., 2012a). This ensures 

that mitochondria are functionally matched to the demand of the cell types they reside in. In 

some disease states mitochondria can exhibit qualitative physiological differences in 

multiple facets of their functions despite normal energy production capacity (e.g., (Picard et 

al., 2008)). Thus, it will be important in the context of integrative medicine to measure and 

integrate functional measures in addition to energy production capacity, and investigate both 

quantitative and qualitative aspects of mitochondria functions to better grasp complex 

mitochondrial phenotypes.

Conclusions

Medicine progresses via discoveries of pathophysiological mechanisms for diseases that 

undermine patients’ health. A mechanistic understanding of disease not only yields new 

diagnostic opportunities, but also enables the development of targeted therapeutic and 

preventative strategies. For mitochondrial medicine, discoveries that mtDNA defects are at 

the origin of certain human diseases contributed novel diagnostic information for rare 

inherited monogenic metabolic disorders. This initiated a profound and still ongoing shift in 

focus away from the anatomical aspects of disease towards the underlying energetic 

determinants (Wallace, 2013). More recently, a growing body of research has continued to 

uncover aspects of mitochondrial biology beyond energy production, including 

transcriptional remodeling within the nucleus, mitochondrial dynamics and quality control, 

inter-mitochondrial communication, the inter-cellular transfer of mitochondria, 

mitochondrial regulation of inflammatory processes and immune function, mitochondrial 
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regulation of brain functions, and modulation of systemic physiological processes across 

organ systems, among others.

From these findings have arisen new insights into the biological mechanisms underlying 

critical care illness, metabolic disease, and the health effects of physical activity and 

inactivity. Together, this growth of knowledge around the role of mitochondria in various 

cellular functions has engendered renewed excitement and momentum for mitochondrial 

research across the medical sciences, as evidences from the rise of publications in medical 

sciences related to mitochondria. These and other discoveries are expanding the relevance of 

mitochondria across medical disciplines, possibly representing an opportunity to bridge the 

divide that separates psychosocial and biological sciences (Picard, 2011), as well as concepts 

from Eastern and Western medicine.

Mitochondrial functions respond to a number of genetic, metabolic, neuroendocrine signals 

by undergoing functional and morphological changes, and in turn generate signals that 

influence a large number of cellular functions contributing to disease complexity. This 

places mitochondria in a privileged position, as a “portal” at the intersection of the cell and 

its environment. Because they contain numerous potentially drugable components (Andreux 

et al., 2013; Wang et al., 2016), mitochondria provide an unusual number of opportunities, 

and challenges, to translate arising discoveries into therapeutic interventions (Hersh, 2014). 

With the tolls of molecular biology and the “omics” within reach (McBride, 2015), and a 

growing recognition of bioenergetics aspects of modern chronic diseases, the rise of 

mitochondria in medicine appears likely to continue. With it should come further insights 

into disease pathogenesis, as well as new strategies to intervene on a number of medical 

conditions through targeted behavioral, pharmacological, and other interventions rooted in 

the principles of mitochondrial bioenergetics.
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Figure 1. 
Normalized proportions of published Medline-indexed medical articles from 1980 to 

January 1 2016, related to various cellular components: mitochondria, nucleus, endoplasmic 

reticulum (ER), and Golgi apparatus. Note the increase in mitochondria-related publications 

following the invention of polymerase chain reaction (PCR) in 1985, the discovery of the 

first pathogenic mtDNA mutation/deletion in the 1988, and steady rise since the year 2000. 

In comparison, the number of publications about the cell nucleus has steadily decreased in 

the ‘post-genomic era’ following the completion of the human genome project in 2001, 

which demonstrated that the long searched genetic origin of common chronic diseases is 

likely not encoded in nuclear genes. Data for this figure was extracted from Medline/

PubMed by searching the term “medicine” in combination with either “nucleus”, 

“mitochondri*”, “endoplasmic reticulum”, or “Golgi”.
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Figure 2. 
Multifaceted mitochondrial pathogenesis. (A) Somatic tissues contain 100-1000's of 

mitochondrial DNA (mtDNA) molecules each, such that a mixture of normal and mutated 

copies can coexist in a state of heteroplasmy. (B) The mitochondrial genome, containing 37 

genes essential to respiratory chain assembly and function. (C) MtDNA heteroplasmy for 

the most common pathogenic MELAS-causing m.3243A>G mutation of the tRNALeu(UUR) 

gene causes genome-wide transcriptional reprogramming; data adapted from (Picard et al., 

2014b). (D) Mitochondrial signals promoting cancer initiation and progression. (E) 

Abnormal mitochondrial function and positioning alters multiple components of the nervous 

system. (F) Metabolic programming of immune cell differentiation and proliferation into 

anti- and pro-inflammatory phenotypes, driven by the balance of oxidative phosphorylation 

(OXPHOS) vs. glycolysis and mitochondrial reactive oxygen species (mtROS).
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Figure 3. 
Multi-level organization of mitochondrial molecular composition, structures, functions, and 

signaling roles within the cell. These nested facets of mitochondrial functions are depicted 

hierarchically in a Maslow-type pyramidal fashion with the most basic determinants at the 

bottom and more complex and emergent elements above. These facets of mitochondria (first 

level) are regarded as determinants of higher-level physiological functions (second level), 

which in turn influence systems-level functions (third level) that contribute to clinical 

outcomes and mortality. Figure adapted from (Juster et al., 2011).
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Table 1

Selected physiological conditions and common chronic diseases associated with mtDNA haplogroups

Condition/Disease References

Longevity (De Benedictis et al., 1999; Feng et al., 2011; Rose et al., 2001; Tanaka et al., 1998)

Athletic performance (Eynon et al., 2011; Maruszak et al., 2014; Scott et al., 2009)

Adaptation to high altitude (Ji et al., 2012)

Diabetes (Crispim et al., 2006; Fuku et al., 2007)

Neurodegenerative disorders (Alzheimer and 
Parkinson)

(Ghezzi et al., 2005; Liou et al., 2016; van der Walt et al., 2004; van der Walt et al., 2003)

Psychiatric disorders Rollins et al., 2009 Sequeira et al., 2012

Macular degeneration (Jones et al., 2007; Udar et al., 2009)

AIDS progression Hendrickson et al., 2008

Cancer (Booker et al., 2006; Darvishi et al., 2007; Fang et al., 2010)
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Table 2

Selected examples of diseases and syndromes associated with defects in mitochondrial functions not directly 

involving energy production.

Disease/Syndrome Mitochondrial defect (gene) References

Early-onset proximal muscle weakness 
accompanied by learning difficulties

Calcium uptake (MICU1) (Logan et al., 2014)

Early-onset fatigue and lethargy Calcium uptake (MICU1) (Lewis-Smith et al., 2016)

Deafness Intramitochondrial methylation (TFB1M) (Bykhovskaya et al., 2004; 
Raimundo et al., 2012)

Adrenocortical cell loss and hypocortisolemia Redox regulation, intra-mitochondrial antioxidant 
systems (NNT)

(Meimaridou et al., 2012)

Multi-system neurological disease Mitochondrial fusion and cristae organization 
(OPA1, MFN2)

(Burte et al., 2015; Yu-Wai-Man et 
al., 2010)

MICU1: mitochondrial calcium uptake 1, a regulator of the mitochondrial calcium uniporter (MCU)

NNT: nicotinamide nucleotide transhydrogenase

TFB1M: mitochondrial transcription factor B1

OPA1: optic atrophy 1

MFN2: mitofusin 2
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