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Ferulic acid impairs osteoclast fusion and exacerbates
survival of mature osteoclasts
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Abstract Elevated bone loss induced by osteoclasts

is a critical and most commonly observed pathological

complication during osteolytic diseases such as osteo-

porosis. Hence, attenuation of osteoclast formation or

function is a classical therapeutic approach to regulate

bone loss. In this study, we found that ferulic acid

(FA), a natural compound potently inhibited osteoclast

formation in human CD14? peripheral blood mono-

cytes ex vivo with an IC50 of 39 lM.Moreover, due to

impaired differentiation of osteoclast progenitors,

actin ring formation and bone resorption activity were

also perturbed. Investigation of underlying molecular

mechanisms revealed that FA inhibited the RANKL-

induced expression of dendritic cell-specific trans-

membrane protein (DC-STAMP), a critical regulator

of osteoclast fusion. In addition, expression of matrix

metalloproteinase-9 (MMP-9) and cathepsin K, the

key osteoclast specific lysosomal proteases involved

in bone matrix resorption were severely aggravated by

FA. A significant reduction in mature osteoclast

numbers was detected in the presence of FA accom-

panied by increased caspase-3 activity and DNA-

fragmentation, a characteristic hallmark of apoptosis.

Collectively, these results suggested that FA inhibited

osteoclast fusion by suppressing the expression of DC-

STAMP and induced apoptosis in mature osteoclasts

by the caspase-3 pathway.
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Introduction

Osteoclasts, multinucleated cells of the mono-

cyte/macrophage lineage are the sole cells present in

the human body responsible for bone resorption

(Cappariello et al. 2014). These cells play an indis-

pensable role in bone remodeling in an orchestrated

fashion that work in tandem with their counterpart, the

osteoblasts (specialized bone cells involved in matrix

mineralization). However, during certain pathological

conditions (such as osteoporosis, periodontitis,

rheumatoid arthritis, bone metastases) and ageing the

fine coupling between bone formation and resorption

is disturbed causing an unseemingly higher magnitude

of osteoclastogenesis and activity (Edwards and

Weivoda 2012). Hence current antiresorptive

approaches involve targeting osteoclast formation,

function and survival which include bisphosphonates,

hormone replacement therapy and calcitonin (Chaplin

and Byrne 2010).

Receptor activator of nuclear factor kappa B ligand

(RANKL), a member of the tumor necrosis factor

family, is the key regulator of osteoclast differentia-

tion and function (Wada et al. 2006). Binding of

RANKL to its receptor RANK on osteoclast precursor

cells induces the activation of multiple intracellular

signaling pathways involving MAP kinases and NF-

kB that are necessary for osteoclast differentiation

(Wada et al. 2006). When stimulated with RANKL,

osteoclast precursor cells express high levels of

osteoclast-associated genes such as DC-STAMP,

required for osteoclast fusion; and tartrate-resistant

acid phosphatase (TRAP) and metalloproteinase-9

(MMP-9), the two key lysosomal proteases that aid

osteoclasts in bone matrix resorption (Cappariello

et al. 2014; Sundaram et al. 2007; Yagi et al. 2005).

Ferulic acid (3-methoxy-4-hydroxycinnamic acid)

(FA) is a hydroxycinnamic acid found in the cell walls

of monocotyledon plants (Klepacka and Fornal 2006).

A Chinese herbal medicine, Ligusticum chuanxiong

hort contains FA as one of the active ingredients and

has been reported to possess a wide range of pharma-

cological properties (Ran et al. 2011). It is clinically

used to treat angina pectoris and hypertensive diseases

in China. FA has also been shown to possess

antioxidant (Srinivasan et al. 2007) and anticancer

(Dodurga et al. 2015; Fahrioglu et al. 2016) properties.

Interestingly, FA has been implicated in a reaction

with endogenous copper that leads to DNA damage,

and ultimately cell death, in cancer cells (Sarwar et al.

2015). From a nutritional point of view, FA has been

shown to reduce insulin resistance and blood pressure

in a rat model for metabolic syndrome (Senaphan et al.

2015). Recent reports suggest that various phyto-

chemicals possessing antioxidant and anti-inflamma-

tory properties such as FA have bone protective effects

and suppress bone resorption, resulting in greater bone

strength (Shen et al. 2012). Hence we examined the

effects of FA on osteoclastogenesis.

In this study, we investigated the effects of FA on

osteoclast differentiation in human CD14? mono-

cytes and its cytotoxicity against osteoclast-like cells

differentiated from murine RAW264.7 macrophages.

Methods

Reagents

Dulbecco’sModifiedEagleMedium(DMEM),a-MEM

and heat-inactivated fetal bovine serum (FBS) were

obtained from GIBCO (Grand Island, NY, USA) and

Amersham (Little Chalfont, UK), respectively. Antibi-

otic–antimycotic solution containing 100 U/ml, peni-

cillin, 100 lg/ml streptomycin, and 0.25 lg/ml

fungizone was supplied by Highveld Biological (Jo-

hannesburg, South Africa). Phalloidin-Atto-488, and all

other chemicals of research grade were obtained from

Sigma-Aldrich Inc. (St Louis, MO, USA). Human

RANKLwas supplied by Insight Biotechnology (Wem-

bley, Middlesex, UK). Mouse RANKL and human

M-CSF were acquired from R&D Systems (Min-

neapolis, MN, USA). All components for the magnetic

separation of CD14? monocytes were supplied by

Miltenyi Biotec (San Diego, CA, USA). Alamar blue

reagent, was provided by Life Technologies (Carlsbad,

CA, USA). Osteoassay surface multiwell plates were

acquired from Corning Inc. (New York, NY, USA).

Stock solution

A 1 M stock solution of FA was prepared in DMSO

(vehicle) and frozen as aliquots at-80 �C until further

use. Stock solutions were freshly diluted to working

concentrations in complete culture medium before

experiments. The final DMSO concentration in the

culture medium did not exceed 0.1 % (v/v).
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Cell culture

RAW264.7 murine macrophages (#TIB-71) were

purchased from American Type Culture Collection

(ATCC, Rockville, MD, USA) and maintained in

DMEMwith 10 % FBS. Cells were incubated at 37 �C
in a humidified atmosphere with 5 % CO2.

Isolation of human CD14? monocytes and cell

culture

All procedures and experimental protocols were

approved by the Human Research Ethics Committee

of the Faculty of Health Sciences, University of

Pretoria (Protocol approval number: S154/2012) and

in accordance with the 1964 Helsinki declaration and

its later amendments. Eligible participants were asked

to provide an additional written informed consent for

enrolment. Human CD14? monocytes were isolated

from peripheral blood (40–60 ml) of healthy male

donors (aged 18–35) as described elsewhere using

CD14 magnetic beads as per manufacturer’s instruc-

tions (Miltenyi Biotec) (Kasonga et al. 2015). Cells

were cultured in a-MEM supplemented with 10 %

FBS and incubated at 37 �C in a humidified atmo-

sphere with 7 % CO2.

Alamar blue assay

Cells (5 9 103) were seeded in 96-well plates and

allowed to adhere for 12 h followed by exposure to

increasing concentrations of FA (10-3–10-6 M) in

tenfold dilutions for 48 h. Alamar blue assay was

conducted as per manufacturer’s instructions (Life

Technologies, Carlsbad, CA, USA). Absorbance was

measured at 570 nm with 600 nm as reference wave-

length on a microplate reader (BioTek Instruments

Inc., Winooski, VT, USA).

RANKL-induced osteoclast differentiation

and TRAP staining

CD14? monocytes (5 9 104) were differentiated in

the presence of M-CSF (25 ng/ml) and RANKL

(30 ng/ml) in 96 well plates for 14 days as described

previously (Kasonga et al. 2015). RAW264.7 macro-

phages (5 9 103) were differentiated into osteoclasts in

96well plates in the presence of RANKL (15 ng/ml) for

5 days as described previously (Deepak et al. 2015).

Cells were stimulated with RANKL or in combination

with increasing concentrations of FA (10-3–10-6 M) in

tenfold dilutions. Cell culture media and factors were

replaced every third day.

Osteoclast specific TRAP staining was performed

using a leucocyte acid-phosphatase kit as per the

manufacturer’s directions (Sigma Aldrich, St Louis,

MO, USA). TRAP? cells with three or more nuclei

were scored as osteoclasts. Photomicrographs were

taken with a Zeiss Axiocam MRc5 camera attached to

a Zeiss Axiovert 40 CFL microscope (Carl Zeiss AG,

Oberkochen, Germany).

Actin ring formation assay

RAW264.7 murine macrophages were differentiated

into osteoclasts in the presence of RANKL (15 ng/ml)

or in combination with FA (10-3 M). Actin rings of

osteoclasts were detected by staining actin filaments

with Atto-conjugated phalloidin as previously

described (Boeyens et al. 2014).

Bone resorption pit formation assay

RAW264.7 murine macrophages were seeded onto

osteoassay plates and treated with RANKL alone

(15 ng/ml) or in combination with FA (10-3 M) for

7 days. The bone resorption activity of osteoclasts was

assessed using the osteoassay plates as per manufac-

turer’s instructions (Corning Inc). Resorption pits

were observed under a light microscope and quantified

by ImageJ software.

qRT-PCR

RAW264.7 cells were differentiated into osteoclasts

with RANKL (15 ng/ml) or in the presence or absence

of FA (10-3 M) for 5 days. Total RNA was isolated

with TRI-reagent (Sigma) and 1 lg of the RNA was

reverse transcribed into cDNA with MuMLV reverse

transcriptase (New England Biolabs, Hitchin, UK)

according to the manufacturer’s instructions. Resul-

tant cDNA template was further utilized for conduct-

ing the qRT-PCR assay with gene specific primers for

CTSK, DC-STAMP, MMP-9 and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) (primer details

available on request). GAPDH served as a loading

control. Data were analyzed using the 2-DDCT method.
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Mature-osteoclast survival assay

Osteoclasts were generated by RANKL (15 ng/ml)

treatment for 5 days from RAW264.7 macrophages.

Mature osteoclasts were exposed to FA (10-3 M) for

24 and 48 h, respectively. At the end of treatment,

cells were stained for TRAP and images were acquired

using a Zeiss Axiovert 40 CFL microscope (Carl Zeiss

AG). Multi-nucleated osteoclasts with three or more

nuclei were counted.

LDH assay

Mature osteoclasts derived from RANKL (15 ng/ml)-

treated RAW264.7 macrophages were exposed to FA

(10-3 M) for 24 and 48 h, respectively. LDH activity

from culture supernatants were analyzed as described

earlier (Chan et al. 2013).

Caspase-3 assay

Mature osteoclasts generated from RAW264.7 murine

macrophages (15 ng/ml) were treated with FA

(10-3 M) for 24 and 48 h, respectively. Caspase-3

assay was performed as described earlier (He et al.

2014).

Hoechst DNA-fragmentation assay

Hoechst staining by fluorescence microscopy was

performed to monitor changes in nuclear-DNA occur-

ring due to apoptosis. Mature osteoclasts obtained

after RANKL (15 ng/ml)-treatment from RAW264.7

macrophages after 4 days were exposed to FA

(10-3 M) for 24 h. Cells were incubated in Hoechst

dye solution (5 lg/ml) for 5 min. Images were cap-

tured using a fluorescence microscope (Carl Zeiss AG,

Oberkochen, Germany). Percentage of apoptotic cells

was calculated by ImageJ software.

Statistical analysis

Data are representative of three independent experi-

ments unless otherwise stated and are represented as

mean ± standard deviation (SD). Statistical analysis

was performed by one-way analysis of variance

(ANOVA) followed by Bonferroni post hoc multiple

comparison test using Graph Pad Prism Software

(GraphPad Software Inc., CA). P\ 0.05 was regarded

as statistically significant.

Results

Effects of FA on cell viability

Cytotoxicity of FA (Fig. 1a) on human CD14? mono-

cytes was examined by alamar blue assay. The

viability of CD14? monocytes was not affected by

treatment with FA (10-3–10-6 M) (Fig. 1b). Addi-

tionally, no cytotoxic effects were observed in murine

RAW264.7 macrophages exposed to FA at similar

concentrations (Supplementary Fig. 1). These data

indicated that FA does not affect the viability of the

osteoclast progenitors. Hence concentrations within

this range were chosen to perform downstream

experiments.

FA inhibits osteoclast differentiation

RANKL-treatment significantly (P\ 0.05) induced

the differentiation of preosteoclasts into TRAP-posi-

tive multinucleated osteoclasts (Fig. 1c). However,

compared to RANKL-alone treatment, monocytes

stimulated with FA showed a drastic and significant

dose-dependent decrease in osteoclast formation

(Fig. 1c). Moreover, FA at 39 lM potently reduced

the RANKL-triggered osteoclastogenesis by half

(IC50 = 39 lM) (Fig. 1d).

FA inhibits actin ring formation and resorption pit

formation

FA blocked the differentiation of CD14? progenitors

into osteoclasts. Actin ring formation and bone

resorptive activity are one of the hallmarks of

differentiated and functional osteoclasts. Hence,

effects of FA on these unique osteoclast characteristics

were further investigated on murine RAW264.7

macrophages. Cells treated with RANKL showed a

remarkable and overt actin ring formation (Fig. 2a). In

contrast, cells co-treated with FA failed to fuse into

osteoclasts leading to dampened actin ring formation

(Fig. 2a). Owing to inhibited differentiation, resorp-

tion pit formation by FA-treated cells was severely

perturbed (\5 fold) as compared to cells treated with

RANKL alone (Fig. 2b).
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FA suppresses osteoclast fusion

by downregulating DC-STAMP expression

To elucidate the mode of action by which FA inhibits

osteoclast differentiation, we investigated the effects

of FA on RANKL-induced DC-STAMP expression in

osteoclast progenitors. RANKL-treatment signifi-

cantly (P\ 0.001) upregulated ([10 fold) the expres-

sion of DC-STAMP, a key osteoclast fusion protein

(Fig. 3). On the other hand, co-treatment with FA led

to a drastic and significant downregulation in DC-

STAMP expression. Furthermore, expression levels of

CTSK (\3 fold) and MMP-9 (\10 fold), the two

osteoclast specific lysosomal proteases were also

diminished in FA treated cells (Fig. 3).

FA reduces mature osteoclast numbers

Treatment of osteoclast progenitors with RANKL led

to differentiation of these cells into giant multinucle-

ated osteoclasts. These cells retained TRAP? activity

as seen in Fig. 4a. However co-treatment with FA led

Fig. 1 Effects of FA on cell

viability and osteoclast

differentiation. a Molecular

structure of FA. b Cell

viability of FA-treated

human CD14? monocytes.

Cells were treated with

indicated concentrations of

FA for 48 h and cell

viability was measured by

alamar blue assay.

c CD14? monocytes were

treated with RANKL in the

presence or absence of FA

and differentiated into

osteoclasts as mentioned in

methods and TRAP staining

for osteoclasts was

performed. d Graph

representing inhibition of

osteoclast formation by FA.

Relative IC50 was calculated

by nonlinear regression log

(FA concentration) versus

response–variable slope.

Data are expressed as

mean ± SD and are

representative of three

independent experiments
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to a time-dependent decrease in mature osteoclast

numbers as seen after 24 and 48 h of FA treatment

(Fig. 4a, b).

FA induces apoptosis in mature osteoclasts

Since, a remarkable reduction in mature osteoclast

numbers were observed when co-treated with FA, we

asked whether FA influences the viability of mature

osteoclasts. We performed the LDH assay for necrosis,

caspase-3 assay and Hoechst-DNA fragmentation assay

for studying apoptosis. Mature osteoclasts co-treated

with RANKL and FA did not release significant LDH at

24 or 48 h after exposure when compared to vehicle

alone or RANKL, indicating FA did not trigger necrosis

in mature osteoclasts (Fig. 5a). On the other hand,

mature osteoclasts co-treated with FA along with

RANKL showed a time-dependent increase in

Fig. 2 Effects of FA on

actin ring formation and

bone resorption.

a RAW264.7 macrophages

were treated with RANKL

in the presence or absence of

FA as mentioned in methods

for 5 days. Differentiated

osteoclasts were stained

with phalloidin for actin ring

formation and Hoechst was

used as a nuclear stain (scale

bars 100 lm). b RAW264.7

macrophages were seeded

on osteoassay multi-well

plates and assayed for

resorption pit formation

with RANKL in the

presence or absence of FA

for 7 days (scale bars

100 lm). Resorption

percentages are indicated in

the figures. Results are

representative of three

independent experiments
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caspase-3 activity (P\ 0.05) representing initiation of

apoptosis in these cells (Fig. 5b). Furthermore, these

cells displayed fragmented DNA representing another

hallmark of apoptosis (Fig. 5c, d).

Discussion

Osteoclasts are the sole bone resorbing cells in the body

and thereby play an important role in bone homeostasis

(Cappariello et al. 2014; Charles and Aliprantis 2014).

Osteoporosis, a disease specifically affecting bonemineral

density involves higher rates of resorption as compared to

mineralization (Feng and McDonald 2011). Hence,

targeting osteoclasts to improve bone density is a fruitful

therapeutic approach for the treatment of osteolytic

diseases (Broadhead et al. 2011). In this study, we found

thatFAarrestsosteoclast fusionatearly stagesofosteoclast

differentiation and negatively affects the survival of

mature osteoclasts at later stages.

Fig. 3 Effects of FA on osteoclast specific gene expression.

RAW264.7 macrophages were treated with RANKL in the

presence or absence of FA as mentioned in methods for 5 days.

qRT-PCR was performed to analyze the expression of DC-

STAMP, CTSK andMMP-9. Data are expressed as mean ± SD

and are representative of three independent experiments.

(**P\ 0.01, ***P\ 0.001 vs RANKL)

Fig. 4 Effects of FA on

mature osteoclast numbers.

a Mature osteoclasts

generated from RAW264.7

macrophages were treated

with FA for 24 and 48 h

respectively and

TRAP? stained osteoclasts

were photographed.

b TRAP? stained

osteoclasts containing[3

nuclei were counted and

represented in a graphical

format (scale bars 200 lm).

Data are expressed as

mean ± SD and are

representative of three

independent experiments.

(***P\ 0.001 vs RANKL)
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Ferulic acid is a natural compound which has been

shown to possess various pharmacological properties

(Kumar and Pruthi 2014). Here, we evaluated the

potency of FA on osteoclast formation. FA remarkably

inhibited TRAP? multinucleated osteoclast forma-

tion in human CD14? monocytes without cytotoxic-

ity. Cytoskeletal rearrangement is a prerequisite for

the attachment of osteoclasts onto bone surfaces

thereby leading to polarization of cytoplasmic struc-

tures and formation of actin rings and the ruffled

border to resorb mineralized bone (Nakamura et al.

2012). Osteoclasts solubilize and digest bone matrix

by secretion of enzymes and protons through ruffled

border (Stenbeck 2002). Rapid cytoskeletal reorgani-

zation occurs during osteoclastogenesis and paves a

way for the formation of the specialized membranes

Fig. 5 Effects of FA on

osteoclast survival. Mature

osteoclasts generated from

RAW264.7 macrophages

were treated with FA for 24

and 48 h, respectively, and

a LDH assay for necrosis,

b caspase-3 assay for

apoptosis was performed.

c Mature osteoclasts were

further exposed to FA for

24 h, apoptosis indicated by

nuclear fragmentation was

assessed by Hoechst assay

(scale bars 50 lm).

d Percentage of cells with

fragmented DNA from three

different experiments were

calculated by ImageJ

software and plotted in a

graphical format. Data are

expressed as mean ± SD

and are representative of

three independent

experiments. (**P\ 0.01,

***P\ 0.001 vs RANKL,

ns: non-significant)
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(Stenbeck 2002). In this study, we found that FA

disrupted actin ring formation in differentiating

osteoclasts. More importantly owing to reduced dif-

ferentiation, osteoclastic bone resorption was strongly

inhibited by FA.

Osteoclast progenitors fuse with each other to form

multinucleated giant osteoclasts (Miyamoto 2011).

DC-STAMP has been reported to be a key regulator of

osteoclast cell–cell fusion (Miyamoto 2011; Yagi et al.

2005). We witnessed a significantly down-regulated

expression of DC-STAMP in about threefold in FA-

treated cells. Moreover, FA inhibited the RANKL-

induced up-regulation of MMP-9 and cathepsin K,

both of which are highly expressed in osteoclastic cells

and play a crucial role in skeletal remodeling (Costa

et al. 2011; Sundaram et al. 2007). Accumulating lines

of evidence suggest that CTSK activity is vital for the

initial actin ring formation and activation of osteo-

clasts (Wilson et al. 2009). Concomitantly, our results

suggest that FA potently diminished the RANKL-

induced CTSK mRNA expression and inhibited

osteoclast differentiation leading to disrupted actin

ring formation. Collectively, these data illustrate that

FA modulates osteoclastogenesis and bone resorption

by regulating actin ring formation and by downregu-

lating the expression of enzymes involved in bone

matrix resorption and osteoclast fusion.

Apoptosis plays an important role in the regulation

of osteoclast-mediated bone resorption (Xing and

Boyce 2005). A novel treatment strategy for osteolytic

disorders could be achieved by regulation of osteoclast

apoptosis (Akiyama et al. 2008; Broadhead et al.

2011). Apoptosis and necrosis are two major forms of

cell death observed in normal and disease pathologies

(Chan et al. 2013). While necrotic cell death is closely

associated with inflammatory diseases, apoptotic cell

death is a process that involves programmed cell death

(Chan et al. 2013). Apoptosis is characterized by

caspase activation whereas necrosis involves leakage

of LDH enzyme from plasma membrane of affected

cells (Chan et al. 2013; He et al. 2014). In the present

study, we found that FA decreased cell survival in

differentiated osteoclasts which was accompanied by

caspase-3 activation and DNA-fragmentation. These

findings suggest that FA induces apoptosis in mature

osteoclasts.

In conclusion, we found that FA inhibits osteoclas-

togenesis by suppressing fusion of osteoclast progen-

itors that involves downregulated expression of DC-

STAMP and induces apoptosis of mature osteoclasts

via caspase-3 activation. Future studies involving FA

or its analogs could be carried out to explore its

potential as an anti-osteoclastogenic agent.
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