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Key points

� Physiologically relevant rodent models of non-alcoholic steatohepatitis (NASH) that resemble
the human condition are limited.

� Exercise training and energy restriction are first-line recommendations for the treatment of
NASH.

� Hyperphagic Otsuka Long–Evans Tokushima fatty rats fed a western diet high in fat, sucrose
and cholesterol for 24 weeks developed a severe NASH with fibrosis phenotype.

� Moderate intensity exercise training and modest energy restriction provided some
improvement in the histological features of NASH that coincided with alterations in markers
of hepatic stellate cell activation and extracellular matrix remodelling.

� The present study highlights the importance of lifestyle modification, including exercise
training and energy restriction, in the regulation of advanced liver disease.

Abstract The incidence of non-alcoholic steatohepatitis (NASH) is rising but the efficacy of
lifestyle modifications to improve NASH-related outcomes remain unclear. We hypothesized that
a western diet (WD) would induce NASH in the Otsuka Long–Evans Tokushima Fatty (OLETF)
rat and that lifestyle modification would improve this condition. Eight-week-old Long–Evans
Tokushima Otsuka (L) and OLETF (O) rats consumed a control diet (10% kcal fat, 3.5% sucrose)
or a WD (45% kcal fat, 17% sucrose, 1% cholesterol) for 24 weeks. At 20 weeks of age, additional
WD-fed OLETFs were randomized to sedentary (O-SED), food restriction (O-FR; �25% kcal
reduction vs. O-SED) or exercise training (O-EX; treadmill running 20 m min–1 with a 15% incline,
60 min day–1, 5 days week–1) conditions for 12 weeks. WD induced a NASH phenotype in OLETFs
characterized by hepatic fibrosis (collagen 1α1 mRNA and hydroxyproline content), as well as
elevated inflammation and non-alcoholic fatty liver disease activity scores, and hepatic stellate
cell activation (α-smooth muscle actin) compared to Long–Evans Tokushima Otsuka rats. FR and
EX modestly improved NASH-related fibrosis markers (FR: hydroxyproline content, P < 0.01;
EX: collagen 1α1 mRNA, P < 0.05; both: fibrosis score, P < 0.01) and inflammation (both:
inflammation score; FR: interleukin-1β and tumor necrosis factor α) vs. O-SED. FR reduced
hepatic stellate cell activation markers (transforming growth factor-β protein and α-smooth
muscle actin mRNA), whereas EX increased the hepatic stellate cell senescence marker CCN1
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(P < 0.01 vs. O-SED). Additionally, both FR and EX normalized extracellular matrix remodelling
markers to levels similar to L-WD (P > 0.05). Although neither EX nor FR led to complete
resolution of the WD-induced NASH phenotype, both independently benefitted liver fibrosis via
altered hepatic stellate cell activation and extracellular matrix remodelling.
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Introduction

Over 60% of the adult population in the USA is considered
overweight or obese (Flegal et al. 2012) and this is
accompanied by the growing incidence of non-alcoholic
fatty liver disease (NAFLD). NAFLD is a progressive liver
disease ranging from simple steatosis (triglyceride storage
�5% by weight), non-alcoholic steatohepatitis (NASH),
fibrosis and cirrhosis in the absence of excess alcohol
consumption (< 20 g day–1) (Rector et al. 2008b). NAFLD
affects �30% of adults in the USA, with �20% of obese
individuals developing hepatic inflammation, fibrosis
and/or cirrhosis (Younossi et al. 2002). Habitual physical
inactivity is also associated with NAFLD (Perseghin et al.
2007) and currently >90% of US adults do not meet
physical activity recommendations (Troiano et al. 2008).
Therefore, it is important to determine whether lifestyle
modifications such as exercise training can effectively treat
NASH.

Currently, appropriate animal models to assess
mechanisms by which lifestyle modifications may improve
NASH are lacking. Methionine choline deficient diets
(Ota et al. 2007; Vetelainen et al. 2007; Staels et al.
2013) or carbon tetrachloride (Baeck et al. 2012; Staels
et al. 2013) induce fibrosis, although these models do
not mimic the pathology observed in humans because
they cause weight loss (Ota et al. 2007; Vetelainen et al.
2007), lack insulin resistance (Vetelainen et al. 2007) or
promote fibrosis without hepatic steatosis (Baeck et al.
2012; Staels et al. 2013). Diet-induced obesity models are
more physiologically relevant to human NASH, although
most rodents do not develop significant liver fibrosis on
a high-fat diet alone (Kohli et al. 2010; Ishimoto et al.
2013; Savard et al. 2013). Dietary modifications in which
fructose, sucrose and/or cholesterol are added to high-fat
diets appear to induce NASH in rodents (Kohli et al. 2010;
Ishimoto et al. 2013; Savard et al. 2013; Mells et al. 2015)

but may be limited by the duration of feeding. In the
present study, we utilized non-hyperphagic Long–Evans
Tokushima Otsuka (LETO) rats and hyperphagic Otsuka
Long-Evans Tokushima Fatty (OLETF) rats to determine
whether they could serve as physiologically relevant rodent
models of NASH when they were fed a western diet (WD)
high in fat, sucrose and cholesterol.

Lifestyle modifications that induce weight loss (exercise
training, reduced energy intake) are recommended for
individuals with NAFLD (Caldwell & Lazo, 2009) and have
been shown to improve simple steatosis (Larson-Meyer
et al. 2008; Johnson et al. 2009; Elias et al. 2010; Lee et al.
2012; Linden et al. 2014; Linden et al. 2015); however, the
effect of exercise training on NASH is not well understood.
Exercise training has been shown to attenuate cardiac
fibrosis (Emter & Baines, 2010; Kwak et al. 2011) and alter
matrix metalloproteinase (MMP; proteins associated with
extracellular matrix remodelling) content/activity within
skeletal muscle (Rullman et al. 2009; Scheede-Bergdahl
et al. 2014). To our knowledge, no studies have assessed
the effects of exercise training on hepatic MMPs in a model
of NASH.

The OLETF rat is a commonly studied model of
type 2 diabetes, in which animals are bred for null
expression of the cholecystokinin-1 receptor (Moran &
Bi, 2006). Hyperphagic OLETF rats develop NAFLD on a
standard chow diet and, by 32–40 weeks of age, develop
hepatocellular inflammation and mild hepatic perivenular
fibrosis that is not observed in non-hyperphagic LETO
control rats (Rector et al. 2011; Linden et al. 2015). These
conditions can be prevented when OLETF rats are allowed
to voluntary exercise on running wheels (Rector et al.
2008a; Rector et al. 2011; Linden et al. 2015). Yet, it remains
unclear whether treatment with treadmill exercise training
following the consumption of a diet high in fat, sucrose
and cholesterol can attenuate NASH, including fibrosis.
The present study aimed to: (i) determine whether feeding
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LETO and OLETF rats a WD high in fat, sucrose and
cholesterol can serve as a relevant model to human NASH
and (ii) to test the hypothesis that aerobic exercise training
can attenuate NASH, including fibrosis, in OLETF rats.

Methods

Animal protocol

The animal protocol was approved by the Institutional
Animal Care and Use Committee at the University of
Missouri and complied with the National Institutes of
Health’s Guide for the Care and Use of Laboratory Animals.
The investigators understand the ethical principles under
which the Journal of Physiology operates and the work
presented complies with the animal ethics checklist.

Male LETO and OLETF rats (Tokushima Research
Institute, Otsuka Pharmaceutical, Tokushima, Japan) were
used to assess WD-induced advancement of liver disease
(i.e. hepatic fibrosis and inflammation). Animals (8 weeks
old) were randomized to the groups (n = 10 per group):
LETO fed a control diet (L-CON), LETO fed WD (L-WD),
OLETF-CON (O-CON) or O-WD for 24 weeks (up to
32 weeks of age). At 20 weeks of age, additional O-WD
animals were assigned to sedentary (O-SED, n = 12),
food restriction (O-FR, n = 9) or exercise training
(O-EX, n = 10) conditions for 12 weeks to determine
the therapeutic effects of lifestyle modification on NASH.
Animals were individually housed in standard conditions
(0600/1800 h light/dark cycle at 21°C). Body weight was
measured weekly and type 2 diabetes associated-weight
loss, which typically begins at �32 weeks of age when
provided standard chow, was assessed (Song et al. 2013).
At 32 weeks of age, animals were anaesthetized by I.P.
injection of sodium pentobarbital (100 mg kg–1) and killed
by exsanguination following a 12 h fast.

Diet

The WD (D09071604; Research Diets Inc., New
Brunswick, NJ, USA) contained 44.9% kcal fat,
35.1% kcal carbohydrate and 20% kcal protein, with 1%
weight/weight from cholesterol and 17% kcal sucrose.
CON contained 10% kcal fat, 70% kcal carbohydrate and
20% kcal protein, with 3.5% kcal sucrose (D12110704;
Research Diets Inc.). Diet and water were provided ad
libitum (except O-FR) and caloric intake was determined.

Moderate intensity exercise training

At 20 weeks of age, O-EX began treadmill running
5 days week–1 as described previously (Linden et al. 2014).
The speed and duration of the treadmill exercise were
gradually increased over the first 4 weeks of training until
the animals could maintain a running speed of 20 m min–1

for 60 min day–1. By the fifth week of training, animals
ran at 20 m min–1, 60 min day–1, on a 15% incline and
maintained this until 32 weeks of age. Animals in the
O-SED and O-FR groups were placed on the non-moving
treadmill weekly.

Food restriction

O-FR underwent �25% reduction in kcal day–1 (vs.
O-SED) to match the body weights of O-EX. Food was
weighed and animals fed between 15.00 h and 18.00 h
daily.

Dual-energy X-ray absorptiometry

Body composition was assessed before death as described
previously (Linden et al. 2014; Linden et al. 2015).

Serum and whole blood measures

Fasting serum glucose (Thermo Scientific, Waltham, MA,
USA) and insulin (Alpco, Salem, NH, USA) were assessed
using commercially available assays. Haemoglobin A1c
(HbA1c) was determined using a a DCA Vantage analyser
(Siemens AG, Munich, Germany).

Tissue collection and preparation procedure

Livers were flash frozen in liquid nitrogen or placed in 10%
formalin. The retroperitoneal, epididymal and omental fat
pads were excised and weighed.

Intrahepatic lipid content, liver morphology
and apoptosis

Formalin-fixed, paraffin-embedded livers were stained
with haematoxylin and eosin or trichrome stain (IDEXX
RADIL, Columbia, MO, USA). Biochemical intrahepatic
triglyceride (TG) content was determined as described
previously (Rector et al. 2008a). NAFLD activity scores
(NAS) were assessed as defined by Kleiner et al. (2005).
Terminal deoxynucleotide transferase-mediated dUTP
nick end labelling (TUNEL; Roche Applied Science,
Indianapolis, IN, USA) was used to determine apoptotic
cell death.

Hepatic hydroxyproline content and gelatin
zymography

Hepatic hydroxyproline content was assessed using a
commercially available assay (Sigma, St Louis, MO,
USA) and gelatinase activity was determined by gelatin
zymography using commercially available reagents (Life
Technologies, Grand Island, NY, USA).
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Table 1. Western diet-induced effects on animal characteristics and NAFLD activity and fibrosis scores

L-CON L-WD O-CON O-WD

Body weight (g) 526.8 ± 11.9 567.7 ± 12.9† 648.3 ± 25.3∗¶ 746.9 ± 30.8†

Weight loss from peak body weight (%) –0.5 ± 0.2 –0.1 ± 0.1 –5.5 ± 1.9∗ –3.3 ± 1.3∗

Mean energy intake (kcal week–1) 516.5 ± 9.9 557.1 ± 10.2† 749.4 ± 18.7∗ 831.7 ± 8.9∗†

Percentage body fat (%) 19.7 ± 1.3 22.5 ± 1.2 33.1 ± 3.4∗ 38.2 ± 3.0∗

Fat pad mass (g) 24.0 ± 1.7 37.2 ± 3.4†§ 68.5 ± 6.7∗¶ 111.9 ± 10.3∗†‡§

NAS Steatosis 0.3 ± 0.1 2.6 ± 0.2† 2.2 ± 0.2∗‡ 3.0 ± 0∗†

Inflammation 0.1 ± 0.1 0.9 ± 0.2†§ 0.8 ± 0.1∗‡ 2.9 ± 0.9∗†‡§

Ballooning 0 ± 0 1.5 ± 0.2†§ 1.4 ± 0.2∗‡ 2.0 ± 0∗†‡§

Total 0.4 ± 0.2 5.0 ± 0.5† 4.4 ± 0.4∗ 7.9 ± 0.1∗†

Fibrosis Fibrosis score 0 ± 0 0.9 ± 0.1† 1.0 ± 0.2∗ 2.3 ± 0.2∗†

All values are the mean ± SE; n = 10/group. ∗P < 0.05, significant main effect of strain. †P < 0.05, significant main effect of diet.
‡P < 0.05 for interaction (OLETF vs. LETO within diet). §P < 0.05 for interaction (CON vs. WD within strain, P < 0.05). ¶P < 0.05 for
interaction (L-WD vs. O-CON).

Quantitative RT- PCR

Gene expression was quantified using the ABI 7500
Fast Sequence Detection System and Software (Applied
Biosystems, Carlsbad, CA, USA) as described previously
(Linden et al. 2014). Ppib served as the housekeeping
gene. L-CON was the referent group when determining
whether WD could induce NASH in the normophagic
LETO or the hyperphagic OLETF. Because we hypo-
thesized that 12 weeks of lifestyle modification would not
completely resolve NAFLD in animals with advanced liver
disease, LETOs fed the western diet (L-WD) were used
as the referent group when assessing the effects of FR
or EX.

Western blot analysis

Western blot analyses were conducted as described pre-
viously (Rector et al. 2008a). CD68 antibody was from
Santa Cruz Biotechnology (Dallas, TX, USA). Inter-
leukin (IL)-1β, α smooth muscle actin (αSMA), MMP-2,
MMP-12 and CCN1 antibodies were obtained from
Abcam (Cambridge, MA, USA). Transforming growth
factor (TGF)-β and cleaved caspase-3 antibodies were
obtained from Cell Signaling (Beverly, MA, USA). MMP-9
and tissue inhibitor of metalloproteinase (TIMP)-1 anti-
bodies were obtained from EMD Millipore (Billerica, MA,
USA). Protein bands were quantified using a densitometer
(Bio-Rad, Hercules, CA, USA).

Statistical analysis

Two-way ANOVA was used to determine significant main
effects between rat strain (LETO vs. OLETF) and diet
(CON vs. WD), as well as significant strain × diet
interactions. Fisher’s least significant difference post hoc
comparisons were used to determine differences when

significant main effects and interactions were observed. To
determine differences in the treatment arm of the study, a
one-way ANOVA with Fisher’s least significant difference
post hoc comparisons was performed (SPSS, version 22.0;
IBM Corp., Armonk, NY, USA). Values are reported as
the mean ± SE. P < 0.05 was considered statistically
significant.

Results

Animal characteristics following 24 weeks of western
diet

OLETF rats weighed significantly more and had a greater
energy intake and greater adiposity than LETO rats
(P < 0.001) (Table 1). Ad libitum access to the WD
led to increased body weight (P < 0.01), energy intake
(P < 0.001) and total fat pad mass (P < 0.001) compared
to the CON diet for LETOs and OLETFs. The hyperphagic
OLETF rats were more susceptible to increases in total fat
pad mass with both the CON diet (P < 0.05 L-CON vs.
O-CON) and the WD (P < 0.001 L-WD vs. O-WD). Fat
pad mass was further increased with the WD in the OLETF
(�65% increase vs. O-CON; P < 0.001).

Liver phenotype following consumption
of the western diet

WD contributed to the progression of liver disease in both
LETOs and OLETFs (Fig. 1A, trichrome stained images).
O-WD developed hallmark characteristics of NASH,
including hepatocyte ballooning, nuclear displacement
and bridging fibrosis (Fig. 1A, arrows), which contributed
to clinically significant NAS (P < 0.001 vs. O-CON)
(Table 1). OLETF rats also had increased relative liver
weight (P < 0.001) (Fig. 1B) and hepatic TG content
(P < 0.001) (Fig. 1C) compared to the LETOs. WD
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Figure 1. Western diet-induced NASH liver phenotype
Representative trichrome stained images (A), relative liver weight (B), biochemical TG analysis (C), hepatic hydro-
xyproline content (D), collagen 1α1 mRNA expression (E), activated HSC related proteins (F), IL-1β protein content
(G) and TRAIL mRNA expression (H). All data are the mean ± SEM (n = 10 per group). ∗P < 0.05, significant main
effect of strain. #P < 0.05, significant main effect of diet. $P < 0.05 for interaction (OLETF vs. LETO within diet).
+P < 0.05 for interaction (CON vs. WD within strain, P < 0.05). &P < 0.05 for interaction (L-WD vs. O-CON).
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increased these variables in OLETF and LETO rats
(P < 0.001), with greater susceptibility to WD-induced
hepatomegaly in OLETF compared to LETO rats
(P < 0.001 L-WD vs. O-WD). O-CON animals had
relative liver weights that were �20% greater liver than
L-WD (P < 0.01), although biochemical liver TG content
and steatosis score did not differ between L-WD and
O-CON (P < 0.05) (Table 1). Although the WD increased
collagen 1α1 mRNA expression, hepatic hydroxyproline
content and the fibrosis score (Table 1) in both LETO
and OLETF rats, the hyperphagic OLETF rat had greater
WD-induced injury, as indicated by an �2.5 fold increase
in collagen 1α1 expression (P < 0.001 vs. O-CON)
(Fig. 1D) and �80% increase in hepatic hydroxyproline
content (P < 0.001 vs. O-CON) (Fig. 1E). Hepatic stellate
cell (HSC) activation is a key contributor to fibrogenesis,
and OLETF rats had greater hepatic protein expression of
TGF-β (P<0.001) (Fig. 1F) andαSMA (P<0.01) (Fig. 1F)
compared to LETO rats. The WD also induced increases
in hepatic TGF-β (P < 0.05), with similar responses in
both the OLETF and LETO rat strains. The OLETF rats
demonstrated a marked WD-induced increase in hepatic
αSMA protein content (P<0.001) (Fig. 1F), which was not
observed in the LETO rats. Additionally, CCN1, a protein
associated with HSC senescence, was markedly lower in
OLETF compared to LETO rats (P < 0.001) (Fig. 1G)
regardless of diet.

Inflammation and hepatocyte apoptosis are other
hallmark characteristics of NASH. WD increased
inflammation scores (P < 0.001) (Table 1) and hepatic
IL-1β protein expression (P < 0.01 vs. CON) (Fig. 1G)
in the LETO and the OLETF, with inflammation scores
significantly elevated in O-WD vs. L-WD (P < 0.001)
(Table 1). Cellular apoptosis was assessed by counting
DAPI stained nuclei that were associated with TUNEL
staining and no differences were observed among groups
for the number of apoptotic cells per field of vision
(data not shown) despite WD-induced increases in hepatic
TRAIL mRNA expression (P < 0.05) (Fig. 1H).

Markers of extracellular matrix remodelling were
assessed because of their importance in the regulation
of fibrosis. WD feeding increased MMP-2 gelatinase
activity by �70% (P < 0.01) (Fig. 2A) and MMP-9
gelatinase activity by �140% (P < 0.01) (Fig. 2A) despite
a similar protein content for these MMPs among groups
(Fig. 2A). WD feeding also increased the hepatic protein
expression of MMP-12 (P < 0.01 vs. CON) (Fig. 2B)
and lowered TIMP-1 protein content (P < 0.001 vs.
CON) (Fig. 2B), with O-WD showing greater responses
in both (P < 0.05 vs. L-WD). Interestingly, there
was a WD-induced increase of �3.5 fold in MMP12:
TIMP-1 (P < 0.001), an indicator of extracellular matrix
remodelling, with this being �40% lower in the OLETF
vs. the LETO rats (P < 0.01) (Fig. 2B).

Alterations in body weight, adiposity and markers
of type 2 diabetes with exercise training or food
restriction

Having demonstrated that WD feeding induced a NASH
phenotype in OLETF rats, we next tested the efficacy
of FR or EX treatments on NASH-related outcomes.
Because it was considered improbable that either moderate
intensity exercise training or modest food restriction
would completely resolve NASH and restore the liver
phenotype to that seen in L-CON rat during a 12 week
treatment period when maintained on a WD, L-WD fed
animals were used as control reference groups for these
assessments. O-SED animals weighed �25% more than
L-WD animals (P < 0.001) and this was associated with
increased energy intake (P < 0.001), percentage body fat
(P < 0.001) and fat pad mass (P < 0.001) (Table 2).
No differences in body weight or fat pad mass were
observed between O-SED, O-FR or O-EX. O-SED had
lower percentage body fat than O-FR (P < 0.05) despite
a significantly greater weekly energy intake (P < 0.001)
and this was probably a result of the �5% weight loss
from peak body weight observed in O-SED (P < 0.001)
(Table 2). Consistent with our previous studies (Rector
et al. 2010; Rector et al. 2011; Linden et al. 2014), O-SED
rats were hyperglycaemic and exercise training partially
attenuated fasting blood glucose (P < 0.01 vs. O-EX)
(Table 2). Interestingly, fasting insulin concentrations were
similar between O-SED, O-EX and O-FR groups (Table 2),
which was a result of the transition to frank type 2 diabetes
and a loss of β-cell function in the sedentary OLETF rats,
whereas hyperinsulinaemia was prevented with EX and
FR. This is supported by the significantly elevated HbA1c
levels observed in O-SED animals compared to EX and
FR rats (P < 0.001 vs. O-FR and O-EX) (Table 2). The
loss of body mass in the O-SED rats with uncontrolled
type 2 diabetes progression is consistent with the clinical
literature, where type 2 diabetics lose muscle and fat mass
as the condition worsens (Park et al. 2009).

Changes in liver phenotype with exercise training
or food restriction

O-SED developed progressive liver disease that was
partially attenuated with FR or EX, as indicated by reduced
fibrosis (less trichrome staining) (Fig. 3A) and lower NAS
(P < 0.05) (Table 2). Both FR and EX reduced relative
liver weight by �25–50% (P < 0.001 vs. O-SED) (Fig. 3B),
although no differences were observed among OLETF
groups in hepatic TG content (Fig. 3C) or steatosis score
(Table 2). Hepatic hydroxyproline content was reduced
with FR (P < 0.01 vs. O-SED) (Fig. 3D), normalizing it
to levels similar to L-WD, whereas EX lowered hepatic
mRNA expression of collagen 1α1 (Col1α1; P < 0.05 vs.
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O-SED) (Fig. 3E). Both FR and EX similarly reduced
fibrosis scores vs. O-SED (P < 0.01) (Table 2), although
neither completely reversed the condition.

When assessing measures related to HSC activation,
both FR and EX lowered hepatic αSMA mRNA expression
by �40–50% compared to O-SED (P < 0.05) (Fig. 3F),
although these reductions in mRNA did not coincide with
lower αSMA protein content (Fig. 3G). FR also attenuated
hepatic protein expression of TGF-β (P < 0.05 vs. O-SED)
(Fig. 3G). Interestingly, only EX increased CCN1 protein
expression (P < 0.01 vs. O-SED), partially restoring it to
the level of L-WD (P < 0.01) (Fig. 3G).

Both FR and EX lowered hepatic inflammation scores
compared to O-SED (P < 0.01 vs. O-SED) (Table 2). FR
also lowered the hepatic mRNA expression of MCP-1

(P < 0.001) (Fig. 4A) and protein content of CD68
(P < 0.01) (Fig. 4B) vs. O-SED, restoring them to levels of
L-WD. Additionally, FR attenuated hepatic IL-1β protein
(P < 0.001) (Fig. 4C) and tumor necrosis factor α mRNA
(P < 0.01) (Fig. 4D) compared to O-SED.

Finally, extracellular matrix remodelling-related
markers were assessed. MMP-2 and MMP-9 gelatinase
activity were elevated in O-SED rats (P < 0.01 vs.
L-WD for both) (Fig. 5A) despite no differences in
hepatic MMP-2 protein expression and �10% lowering
of MMP-9 protein expression (P < 0.05 vs. L-WD)
(Fig. 5A). EX and FR normalized MMP-2 activity and
FR normalized MMP-9 activity to levels similar to
L-WD. Additionally, both EX and FR attenuated hepatic
MMP-12 protein expression by �15–20% (P < 0.05)
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markers
Hepatic MMP-2 and MMP-9 protein content and
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figure can be viewed at wileyonlinelibrary.com]
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Table 2. Animal characteristics and NAFLD activity and fibrosis scores with FR or EX

O-SED O-FR O-EX

Body weight (g) 706.5 ± 20.4 739.8 ± 8.3 720.4 ± 10.6
Weight loss from peak body weight (%) −5.0 ± 1.0a −0.2 ± 0.1b −1.2 ± 0.8b

Mean energy intake (kcal week–1) 857.3 ± 40.4a 687.6 ± 0.0b 758.1 ± 9.7c

Percent body fat (%) 34.2 ± 2.4a 39.6 ± 1.4b 38.1 ± 1.3a,b

Fat pad mass (g) 97.1 ± 1.3 107.4 ± 4.4 102.1 ± 5.4
Glucose (mg dl–1) 343.8 ± 21.5a 296.6 ± 11.5a,b 253.4 ± 13.8b

Insulin (ng ml–1) 2.8 ± 0.7 4.3 ± 0.3 2.7 ± 0.4
HbA1c (% glycosylated) 9.7 ± 0.01a 4.1 ± 0.01b 4.3 ± 0.03b

NAS Steatosis 3.0 ± 0 3.0 ± 0 3.0 ± 0
Inflammation 2.5 ± 0.2a 1.5 ± 0.3b 1.8 ± 0.3b

Ballooning 2.0 ± 0 2.0 ± 0 2.0 ± 0
Total 7.5 ± 0.2a 6.5 ± 0.3b 6.8 ± 0.3b

Fibrosis Fibrosis score 2.7 ± 0.2a 1.7 ± 0.2b 1.9 ± 0.3b

All values are the mean ± SE; n = 9-12/group except HbA1c (n = 3 per group). Values with different superscript letters are significantly
different (P < 0.05).

and the MMP-12: TIMP-1 ratio by �25-30% vs. O-SED
(P < 0.01) (Fig. 5B).

Discussion

Food restriction and exercise training are known to
prevent and improve NAFLD related outcomes (Rector
& Thyfault, 2011); however, the efficacy of these life-
style modifications in the treatment of liver fibrosis
remains unclear. Although chemical inducers and
methionine-choline deficient diet models are often used
to quickly induce NASH in rodents, these models do not
result in a pathology consistent with that observed in
patients with NASH (Ota et al. 2007; Vetelainen et al. 2007;
Baeck et al. 2012; Staels et al. 2013). In the present study,
we aimed to utilize a more pathologically and physio-
logically relevant model of NASH and demonstrated that
OLETF rats fed a WD containing high fat, high sucrose
and high cholesterol for 24 weeks developed not only
frank type 2 diabetes, but also hepatic inflammation,
significant fibrosis and elevated NAS consistent with
human NASH. Although FR provided better protection in
some characteristics of NASH, both FR and EX beneficially
affected markers of HSC activation and extracellular
matrix remodelling , as well as reduced fibrosis.

The prevalence of NASH is growing at alarming rates,
with �20% of obese individuals developing liver disease
that includes inflammation, fibrosis and/or cirrhosis
(Younossi et al. 2002), although the assessment of therapies
for NASH in humans is difficult because it requires
liver biopsies. Physiologically relevant animal models are
limited but, recently, the addition of cholesterol to rodent
diets was shown to increase the number of inflammatory
cell foci by �1.5 fold (Liang et al. 2014; Mells et al. 2015)
and also induce mild to severe hepatic fibrosis (Ichimura

et al. 2015). OLETF rats fed rodent chow develop mild
perivenular fibrosis (Linden et al. 2015), which was shown
to be enhanced with the WD in the present study, in
which O-WD developed bridging fibrosis, severe biliary
fibrosis, elevated hepatic hydroxyproline content and
hepatocellular inflammation. Because the observed liver
phenotype more closely resembles human NASH, this
model was used to better understand the therapeutic
effects of lifestyle interventions on liver fibrosis.

One of the first recommendations for those diagnosed
with NAFLD/NASH is to undergo a weight management
programme (energy restriction, exercise training) and
recent evidence suggests that �10% reductions in body
weight are needed for histological improvements in
NAFLD patients (Thoma et al. 2012). More severe
weight loss induced from gastric bypass surgery has been
shown to provide some degree of NASH resolution, with
improvements in hepatic inflammation, fibrosis and NAS
score (Liu et al. 2007), whereas more modest reductions
in body weight (–5.8%) from lifestyle modifications
improved fibrosis in �50% of the participants (Hickman
et al. 2004). Exercise training may also contribute
to improved liver histology in NASH, with human
cross-sectional data suggesting that vigorous exercise has
greater benefit (Kistler et al. 2011). We demonstrate
that moderate intensity EX and modest FR reduced
histological fibrosis without weight reduction or lower
liver TG content in the OLETF rat, highlighting the
importance of lifestyle modification in NASH. Reductions
in fibrosis were accompanied by �25% reduction in
col1α1 mRNA expression with EX and �10% reduction
in hepatic hydroxyproline content with FR. Although
fibrosis was attenuated with these treatments, significant
hepatic fibrosis was still present. Future studies are
needed to determine whether a vigorous or high-intensity

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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exercise training regimen may be more efficacious for the
treatment of NASH-related fibrosis.

Another hallmark characteristic of NASH is
inflammation. Importantly, hepatic pro-inflammatory
immune responses promote activation and the survival of

HSCs (Pradere et al. 2013) and TGF-β related fibrogenesis
(Hellerbrand et al. 1999). Hyperphagia in combination
with WD increased inflammatory cell infiltration in
the present study, whereas the WD had a more modest
effect on hepatic inflammation in the non-hyperphagic
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LETO. Both FR and EX improved hepatic inflammation
scores, whereas FR lowered the protein content of
CD68 and IL-1β and tumor necrosis factor α mRNA
expression. These data highlight the importance of
limiting poor dietary choices because diet-induced injury
may contribute to HSC activation and fibrogenesis.

Once activated, HSCs promote fibrogensis by
up-regulating TGF-β, col1α1 and PDGF-β (Czochra et al.
2006; Giraudi et al. 2015). In the present study, ad libitum
access to WD promoted HSC activation in both the
LETO and the OLETF, although hyperphagic animals were
more susceptible to increases in TGF-β and αSMA. Life-
style modification effectively lowered markers of HSC
activation, with FR lowering hepatic TGF-β protein
content, and both FR and EX lowering hepatic αSMA
mRNA expression by �40–50%, probably managing the
initial step in fibrogenesis and limiting fibrosis. This
potential regulation of initiation of fibrogenesis with life-
style modification is further supported by alterations in
CCN1. CCN1 expression is increased within hepatocytes
and HSCs during early liver injury and cirrhosis (Bian
et al. 2013; Kim et al. 2013; Borkham-Kamphorst et al.
2014) and may have protective effects. Gene deletion
of CCN1 is associated with a reduction in senescent
HSCs and induces bridging fibrosis (Kim et al. 2013).
Conversely, overexpression of CCN1 decreases αSMA
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Figure 4. Liver macrophage markers with FR or EX
Liver monocyte chemoattractant protein-1 mRNA expression (A),
CD68 protein expression (B), IL-1β protein expression (C) and tumor
necrosis factor α mRNA expression (D). All values are the
mean ± SEM (n = 9–12 per group). Values with different
superscripts are significantly different, P < 0.05.

and col1α1 mRNA (Borkham-Kamphorst et al. 2014),
supporting its beneficial effects on NASH-related fibrosis.
CCN1 can bind to TGF-β and lower SMAD signalling to
prevent collagen deposition (Borkham-Kamphorst et al.
2014) and has been associated with endoplasmic reticulum
stress-induced apoptosis of HSCs (Borkham-Kamphorst
et al. 2016). In the present study, CCN1 expression
was lower in the OLETF compared to LETO rats and
exercising training increased it by �2.8 fold compared
to O-SED. These effects on CCN1 were not observed
with modest FR. These data indicate that exercise training
may have therapeutic effects, in part by increasing CCN1,
perhaps reducing the potential for HSC activation and
limiting fibrogenesis. This concept warrants further, more
mechanistic investigations.

Hepatocyte apoptosis is often elevated in NASH patients
and these increases can contribute to HSC activation
and liver fibrosis (Canbay et al. 2002; Ribeiro et al.
2004). The induction of apoptosis can occur from an
up-regulation of the apoptotic factor TRAIL. In the pre-
sent study, hepatic TRAIL mRNA was increased with
WD in OLETF rats; however, TUNEL staining was not
affected despite the NASH phenotype. Although some
apoptosis is probably present, this does not account for the
dramatically different liver phenotypes observed between
O-WD and L-WD or the partial resolution of NASH with
FR or EX.

Another means by which NASH related fibrosis may
be regulated is via alterations in extracellular matrix
remodelling proteins because of their ability to regulate
collagen turnover. Circulating MMPs are increased in
NASH (D’Amico et al. 2010), whereas models of liver
fibrosis have increased the hepatic expression of MMPs
(Wanninger et al. 2011; Nunes de Carvalho et al. 2013).
MMPs do not respond uniformly during pathology
and some MMPs promote fibrogenesis, whereas others
contribute to fibrolysis. MMP-12 deficiency is associated
with a lowered liver hydroxyproline content and increased
gelatinase (MMP-2 and MMP-9) activity during acute
injury (Madala et al. 2010), supporting its contribution to
fibrogenesis. Overexpression of hepatic PDGF-β increases
MMP-2 and MMP-9 activity (Czochra et al. 2006),
perhaps serving as a protective mechanism during HSC
activation to limit fibrogenesis. In the present study,
increased hepatic fibrosis in O-WD corresponded to
elevations in MMP-12 protein expression, consistent with
MMP-12 playing an important role in fibrogenesis. The
WD triggered active remodelling in both L-WD and
O-WD rats, with an increased ratio of MMP-12:TIMP-1
and MMP-2 collagenase activity, although it was the
hyperphagic condition in the OLETF that resulted in
greater hepatic collagen deposition.

Additionally, we determined the efficacy of EX or FR on
these markers of extracellular matrix remodelling aiming
to determine whether these therapies could contribute to

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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fibrosis resolution. Exercise training has been shown to
alter the content and activity of MMPs in skeletal muscle
(Rullman et al. 2009; Scheede-Bergdahl et al. 2014). Pre-
vious work has also shown that apoptosis of HSCs (Oakley
et al. 2005) or the injection of CCN1 (Kim et al. 2013) was
associated with increased gelatinase expression/activity
and decreased TIMP-1 expression. Taken together, this
indicates that an overall change in HSC activation may
alter gelatinase activity and limit liver fibrosis. In the
present study, FR and EX training lowered markers of
HSC activation and EX increased CCN1 but alterations in
HSC activation were not associated with MMP-2 activity
because MMP-2 activity was suppressed in O-FR and
O-EX vs. O-SED. Interestingly, both MMP-9 activity and
TIMP-1 were suppressed with FR; similar findings were
seen in hepatic macrophage markers, suggesting that
macrophages may influence MMP-9 activity in the OLETF
rat, although further studies are needed to better elucidate
these mechanisms. It is important to note that both FR

and EX suppressed active MMP-12 protein expression
compared to O-SED because MMP-12 can have inhibitory
effects on the anti-fibrotic MMP-13 (Madala et al. 2010).
Overall, these findings suggest that FR and EX training
have modest and independent effects on ECM remodelling
proteins and that the differential responses in the ECM
remodelling proteins may result from the decelerated
progression of liver disease with these therapies.

In summary, both LETO and OLETF rats had
maladaptive health outcomes when provided ad libitum
access to a WD high in sucrose, fat and cholesterol for 24
weeks but the hyperphagic OLETF rat developed a more
severe NASH phenotype with inflammation and bridging
fibrosis. Moreover, although neither exercise training, nor
food restriction therapy resulted in complete resolution
of the WD-induced NASH phenotype, both EX and
FR had independent beneficial effects on reducing liver
fibrosis that occurred without significant reductions in
body weight or improvements in hepatic steatosis. These
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improvements probably resulted from lowering HSC
activation and altering extracellular matrix remodelling
proteins. These findings highlight the beneficial effects
of lifestyle modification on liver fibrosis and should
be considered when designing therapeutic regimens for
NASH patients.
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