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and Johanna T. Lanner1

1Karolinska Institutet, Stockholm SE-171 77, Sweden
2Sapporo Medical University, Sapporo, Japan
3McGill University, 475 Pine Avenue West, Montreal, QC, Canada H2W1S4

Mitochondria

Superoxide

Hydrogen peroxide

Hydroxyl radical

Fe2+ (myoglobin)

nNOS

NOX 2

Nitric oxide

Peroxynitrite

Force

SR Ca2+ release

Superoxide

SOD1

SOD2

Sarcolemma

Myoplasm

Abstract The production of reactive oxygen/nitrogen species (ROS/RNS) is generally considered
to increase during physical exercise. Nevertheless, direct measurements of ROS/RNS often show
modest increases in ROS/RNS in muscle fibres even during intensive fatiguing stimulation, and the
major source(s) of ROS/RNS during exercise is still being debated. In rested muscle fibres, mild and
acute exposure to exogenous ROS/RNS generally increases myofibrillar submaximal force, whereas
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stronger or prolonged exposure has the opposite effect. Endogenous production of ROS/RNS
seems to preferentially decrease submaximal force and positive effects of antioxidants are mainly
observed during fatigue induced by submaximal contractions. Fatigued muscle fibres frequently
enter a prolonged state of reduced submaximal force, which is caused by a ROS/RNS-dependent
decrease in sarcoplasmic reticulum Ca2+ release and/or myofibrillar Ca2+ sensitivity. Increased
ROS/RNS production during exercise can also be beneficial and recent human and animal studies
show that antioxidant supplementation can hamper the beneficial effects of endurance training.
In conclusion, increased ROS/RNS production have both beneficial and detrimental effects on
skeletal muscle function and the outcome depends on a combination of factors: the type of
ROS/RNS; the magnitude, duration and location of ROS/RNS production; and the defence
systems, including both endogenous and exogenous antioxidants.
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Abstract figure legend Schematic diagram showing major sources and interactions of ROS/RNS that affect sarcoplasmic
reticulum Ca2+ release and force production during skeletal muscle fatigue and recovery.

Abbreviations [Ca2+]i, free cytosolic Ca2+ concentration; DTT, dithiothreitol; eNOS, endothelial NO• synthase; FDB,
flexor digitorum brevis; GSH, reduced glutathione; iNOS, inducible NO• synthase; NAC, N-acetylcysteine; NOS, NO•

synthase; nNOS, neuronal NO• synthase; NOX, NADPH oxidase; PLFFD, prolonged low-frequency force depression;
RNS, reactive nitrogen species; roGFP, redox-sensitive green fluorescent protein; ROS, reactive oxygen species; RyR,
ryanodine receptor; SOD, superoxide dismutase; SR, sarcoplasmic reticulum; t-BOOH, tert-butyl hydroperoxide; Tn,
troponin.

Introduction

In a classical study, Reid et al. showed that the general
antioxidant N-acetylcysteine (NAC) mitigated the force
decline when human subjects performed repeated sub-
maximal contractions (Reid et al. 1994). These results
imply that the production of reactive oxygen/nitrogen
species (ROS/RNS) increases in skeletal muscle during
physical exercise and ameliorating the resulting ‘oxidative
stress’ with antioxidants lessens the force decrease.
Moreover, several studies show increases in ROS/RNS in
conditions with skeletal muscle dysfunction and muscle
weakness, such as rheumatoid arthritis (Yamada et al.
2015a,b), Duchenne muscle dystrophy (Khairallah et al.
2012), malignant hyperthermia (Lanner et al. 2012), and in
normal ageing (Andersson et al. 2011). On the other hand,
submaximal force in intact and skinned fast-twitch skeletal
muscle fibres has been shown to increase with acute
exposure to the ROS hydrogen peroxide (H2O2) (Andrade
et al. 1998a, 2001; Murphy et al. 2008; Mollica et al. 2012).
Furthermore, recent human and animal studies show
that treatment with antioxidants hampers the beneficial
effects of endurance training (Gomez-Cabrera et al. 2008;
Ristow et al. 2009; Paulsen et al. 2014). Thus, increases in
ROS/RNS can have both beneficial and detrimental effects
on skeletal muscle contractile function and fitness, and the
outcome probably depends on a combination of factors:
the type of ROS/RNS, the size of ROS/RNS increase,
the duration of ROS/RNS elevation (e.g. milliseconds vs.

hours), and the localization of ROS/RNS production and
accumulation (Droge, 2002; Westerblad & Allen, 2011;
Ristow, 2014). In the first part of this review, we will discuss
the metabolism and sources of ROS/RNS that are likely to
increase during exercise and ways to measure them. In
the latter part, we will discuss ROS/RNS effects on muscle
fibre contractility during exercise (i.e. during induction of
fatigue) and in the subsequent recovery phase.

ROS/RNS in contracting muscle: metabolism, sources
and methods to measure

A free radical is an atom, molecule or ion with
unpaired valency electron(s), generally making them
highly unstable and reactive (Halliwell & Gutteridge,
1984). The dominant ROS in cells are superoxide
(O2

•−) and its downstream derivatives, such as H2O2.
Similarly, the central RNS in cells are nitric oxide
(NO•) along with its downstream derivatives, such
as peroxynitrite (ONOO•−). ROS/RNS production in
skeletal muscle is generally considered to increase during
physical exercise (Powers & Jackson, 2008). However,
the direct mechanisms and sources of the increased
ROS/RNS production during exercise remain uncertain
and they are likely to differ depending on the type of
activity, e.g. endurance vs. resistance training or short-
term high-intensity vs. prolonged low-intensity exercise.
Moreover, direct measurements of ROS/RNS during
exercise are relatively rare and the increases detected
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with conventional fluorescent indicators are often rather
modest (e.g. Reid et al. 1992; Pye et al. 2007; Sakellariou
et al. 2013; Cheng et al. 2015), which implies that such
measurements are methodologically problematic.

Superoxide. O2
•− is generated through either incomplete

reduction of oxygen in the mitochondrial electron
transport chain or as a specific product of enzymatic
reactions. O2

•− is negatively charged and hence relatively
impermeable to cell membranes. It has a relatively long
half-life (�1 μs), which permits diffusion within the
muscle cell and allows interaction with several cellular
targets (Winkler et al. 1999). Calculations in endothelial
cells indicate that the steady-state cellular concentration
of O2

•− is in the pico- to nanomolar range (Carballal et al.
2014).

Complexes I and III are the two major sites of O2
•−

production in the mitochondria (Cadenas et al. 1977;
Turrens & Boveris, 1980; Murphy, 2009; Tahara et al. 2009;
Quinlan et al. 2012). Early reports suggested that 2–5% of
the total oxygen consumed by mitochondria was reduced
to O2

•− (Boveris & Chance, 1973; Loschen et al. 1974). This
measure of O2

•− production seems far too high in contra-
cting skeletal muscle fibres, because oxygen consumption
increases massively during intense exercise and prolonged
exercise would then result in dangerously high ROS levels,
severe oxidative stress, and muscle damage (Westerblad
& Allen, 2011). Accordingly, more recent data indicate
that only �0.1–0.2% of the oxygen consumed by the
mitochondria forms O2

•− (St-Pierre et al. 2002; Murphy,
2009; Tahara et al. 2009; Brand, 2010). The extent of
mitochondrial O2

•− production in muscle also critically
depends on other factors, such as sub- vs. supramaximal
exercise intensity or sufficient vs. limited O2 delivery. For
instance, mitochondrial ROS production appears to be
higher during state 4 (basal) than during state 3 (maximal
ADP-stimulated) respiration, and the latter dominates
during aerobic exercise (Powers & Jackson, 2008). Thus,
only a very small fraction of the oxygen consumed by the
mitochondria during exercise is reduced to O2

•− and there
is no fixed relation between the rates of mitochondrial
oxygen consumption and O2

•− production.
Enzymes that produce O2

•− in skeletal muscle include
NADPH oxidase (NOX) (Pal et al. 2013), phospholipase A2

(Nethery et al. 1999), xanthine oxidase (Gomez-Cabrera
et al. 2010) and uncoupled NO• synthase (NOS) (Stuehr
et al. 2001). Of these enzymes, NOX has received most
recent attention and is proposed to be a major contributor
to O2

•− production in skeletal muscle both at rest and
during contractile activities (Michaelson et al. 2010; Pal
et al. 2013; Sakellariou et al. 2013). A skeletal muscle fibre
expresses two NOX isoforms, NOX2 and NOX4, and of
these NOX2 has received most attention (Sakellariou et al.
2014). NOX2 has several subunits and is localized in the
sarcolemma, either at the surface or in the t-tubular system

(Javeshghani et al. 2002; Hidalgo et al. 2006; Sakellariou
et al. 2014). NOX4 is less studied in skeletal muscle. It
has been proposed to be localized in the sarcoplasmic
reticulum (SR) where it may affect the Ca2+ release
channel (ryanodine receptor 1; RyR1) (Sun et al. 2011;
Sakellariou et al. 2014).

For decades, mitochondria have been considered as the
major site for O2

•− production in contracting skeletal
muscle. Accordingly, a recent study using mouse flexor
digitorum brevis (FDB) fibres transfected with a novel
mitochondrial-targeted superoxide biosensor (mt-cpYFP)
shows strictly localized mitochondrial O2

•− production
during repetitive contractions (Wei et al. 2011). Moreover,
pretreatment with a mitochondrial-targeted antioxidant
(SS-31) decreased ROS production, as measured with
the fluorescent ROS indicator MitoSOX Red, in isolated
mouse muscle fibres during repeated tetanic contractions
(Cheng et al. 2015). Conversely, recent studies propose
NOX2 as the main producer of ROS in contracting skeletal
muscles, because the contraction-mediated increase
in cytosolic ROS was prevented by pharmacological
inhibition or genetic knockdown of NOX2 (Michaelson
et al. 2010; Pal et al. 2013; Sakellariou et al. 2013). Thus,
there are conflicting results regarding the importance of
different sources of O2

•− in contracting muscle and further
studies are required to resolve this issue.

Hydrogen peroxide. Dismutation of O2
•−, both

spontaneous and catalysed by superoxide dismutase
(SOD), constitutes the major source of H2O2 in muscle
cells (2O2

•− + 2H+ → H2O2 + O2). Two out of
three SOD isoforms are highly abundant (�10–20 μM)
within the skeletal muscle fibres: SOD1 requires
copper–zinc as a cofactor and is located in the cytosol
and in the mitochondrial intermembrane space; SOD2
uses manganese as a cofactor and is located in the
mitochondrial matrix (Powers & Jackson, 2008). Of the
total SOD activity in skeletal muscle fibres, �15–35% is in
the mitochondria and the remaining 65–85% in the cyto-
sol. The highest SOD activities are present in oxidative
slow-twitch muscle fibres and endurance exercise
increases SOD activity in both slow- and fast-twitch fibres
(Higuchi et al. 1985; Powers et al. 1994; Oh-ishi et al.
1997; Bruton et al. 2008). H2O2 is cell permeable and
relatively stable with a half-life of seconds to minutes.
The concentration of H2O2 in skeletal muscle has been
calculated to be �10–100 nM at rest and to increase to
�100–200 nM during contractions (Vasilaki et al. 2006).
In comparison to other ROS, H2O2 is a relatively weak
oxidizing agent, but in the presence of Fe2+ it can be
converted into the highly reactive and cytotoxic hydroxyl
radical (OH•) (Halliwell & Gutteridge, 1984; Powers &
Jackson, 2008). In skeletal muscle, H2O2 is metabolized
to H2O via three major antioxidant enzymatic systems:
glutathione peroxidases (H2O2 + 2GSH → 2H2O +
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GSSG), where GSH is reduced glutathione and GSSG
is oxidized glutathione; catalase (2H2O2 → 2H2O +
O2); and peroxiredoxins (PRX(reduced) + H2O2 →
PRX(oxidized) + 2H2O) (Sakellariou et al. 2014).

Methods to measure ROS. Quantitative measurements
of ROS in skeletal muscle are rare and this is to a large
extent due to the fact that methods available to measure
O2

•− and H2O2 production have severe shortcomings.
Many studies of mitochondrial ROS production are
performed with in vitro measurements on isolated
mitochondria. This approach is problematic because the
techniques used to isolate mitochondria from muscle alter
mitochondrial structure and function by, for instance,
causing fragmentation, loss of soluble matrix enzymes
and altered respiratory rates and O2

•−/H2O2 production
(Schwerzmann et al. 1989; Picard et al. 2011a,b).
Fluorescent ROS indicators (e.g. dichlorofluorescein,
dihydroethidium, MitoSOX Red) commonly used to assess
changes in ROS in intact muscle fibres have limitations
in that they, for instance, are not specific to a certain
ROS (Kalyanaraman et al. 2012). Moreover, increases in
the overall fluorescence of these indicators in response
to repeated contractions are relatively small (e.g. Reid
et al. 1992; Pye et al. 2007; Sakellariou et al. 2013;
Cheng et al. 2015) and therefore it is difficult to assess
contraction-induced ROS changes in a quantitative and
spatially/temporally confined manner. To deal with the
limited specificity of these fluorescent ROS indicators, it
has been suggested that they should be combined with
HPLC-based methods (Kalyanaraman et al. 2012), but
such methods are cumbersome when following real-time
changes in ROS, e.g. during repeated contractions and in
the following recovery period.

Promising new tools for dynamic and site-specific
assessment of ROS have recently been developed and
these will hopefully lead to a better understanding of the
role(s) of ROS in muscle biology. For instance, genetically
engineered fusion of redox-sensitive green fluorescent
protein (roGFP) and the peroxide Orp1 has been used
to measure the concentration of H2O2 (Gutscher et al.
2009). Furthermore, Rodney and co-workers recently used
roGFP fused to the regulatory subunit p47phox of NOX2
for real-time ROS measurements in contracting mouse
skeletal muscle fibres (Pal et al. 2013). Furthermore,
roGFP-based ROS indicators are relatively sensitive,
reversible, ratiometric (i.e. independent of changes in
indicator concentration) and pH insensitive (Hanson et al.
2004; Gutscher et al. 2009; Meyer & Dick, 2010; Pal
et al. 2013). Thus, genetically engineered fusion proteins
constitute a novel group of ROS indicators that allow
more specific detection of one ROS and can be targeted to
organelles or proteins (e.g. mitochondria or NOX2).

Nitric oxide. NO• is a versatile biological signalling
molecule that is generated via enzymatic reactions

of nitric oxide synthase (NOS) and the production
increases in muscle fibres during repeated contractions
(Pye et al. 2007; Cheng et al. 2015). NO• can also be
formed from the inorganic anions nitrate (NO3

−) and
nitrite (NO2

−) (Weitzberg et al. 2010). Skeletal muscle
constitutively expresses neuronal and endothelial NOS
(nNOS and eNOS, respectively), whereas inducible NOS
(iNOS) is upregulated in response to acute inflammatory
insults. Despite its name, nNOS is expressed at higher
levels in human skeletal muscle than in human brain
(Nakane et al. 1993). NO• is synthesized by NOS from
L-arginine, NADPH and O2. nNOS and eNOS are activated
by increases in the free cytosolic Ca2+ concentration
([Ca2+]i) (Forstermann et al. 1994). The Km of [Ca2+]i

for the activation of nNOS is �200 nM and [Ca2+]i

reaches higher levels during contractions (>1 μM), hence
nNOS will become highly active during contractile acti-
vities (Bredt & Snyder, 1990). Under normal conditions,
nNOS is mostly compartmentalized to submembrane
scaffolds that are part of the dystrophin glycoprotein
complex (Brenman et al. 1995). In addition, minor
fractions of nNOS are detectable in association with the
SR and with mitochondria (Buchwalow et al. 2005). In
line with this, data from our group and others show that
some nNOS co-localize with the RyR1 in skeletal muscle
from mouse and human subjects (Salanova et al. 2008;
Yamada et al. 2015b). Interestingly, the amount of nNOS
co-localized with RyR1 was markedly increased in muscles
from mice with collagen-induced arthritis (Yamada et al.
2015b).

NO• on its own is relatively stable but it reacts
rapidly with numerous cellular targets, which results in
a biological half-life time of �0.3 s in skeletal muscle
under physiological conditions (Thomas et al. 2001).
Nevertheless, NO• is small, uncharged and freely diffusible
through membranes and is therefore considered to exert
effects over distances even exceeding 100 μm (Thomas
et al. 2001). The concentration of NO• has been calculated
to be �20 nM in resting rat diaphragm muscle fibres
(Boczkowski et al. 1999).

Peroxynitrite. ONOO•−, formed when NO• reacts with
O2

•−, is a potent oxidizing and nitrating agent able to
react with a wide range of biomolecules. The biological
half-life under physiological conditions is �10 ms and it
is estimated to influence cellular targets within �5–20 μm
(Radi, 1998; Romero et al. 1999; Szabó et al. 2007; Carballal
et al. 2014). Calculations in endothelial cells indicate that
the steady-state level of ONOO•− is �1 nM (Carballal et al.
2014).

The rate constant of ONOO•− formation has been
estimated to be within the range of (4–16) × 109 M−1 s−1

(Goldstein & Czapski, 1995; Botti et al. 2010), which is
higher than the rate of SOD conversion of O2

•− to H2O2

((1–2) × 109 M−1 s−1) (Klug-Roth et al. 1973; Hsu et al.
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1996). Thus, when NO• is produced at a high rate, it will
rapidly react with O2

•− to produce significant amounts
of ONOO•− even in the presence of the high physio-
logical concentrations of SOD (�10–20 μM). In fact, the
formation of ONOO•− from NO• and O2

•− can occur
about six times faster than the rate at which SOD can
convert O2

•− to H2O2 (Beckman & Koppenol, 1996).
Peroxiredoxins represent an efficient detoxification system
for ONOO•− and CO2 accounts for another fraction
of the ONOO•− consumption by forming carbonate
radicals and nitrogen dioxide (Carballal et al. 2014). On
the other hand, GSH (present at mM concentration in
muscles) does not react sufficiently fast in vivo to directly
scavenge ONOO•−; instead, glutathione may counter-
act ONOO•−-dependent processes via reactions with
secondary radicals (Ferrer-Sueta & Radi, 2009).

Acute effects of ROS/RNS on myofibrillar function
in skeletal muscle

The intracellular events leading to contraction of skeletal
muscle fibres start with RyR1-mediated Ca2+ release
from SR. Ca2+ then binds to the troponin (Tn) complex
consisting of TnC, TnI and TnT. Ca2+ binding to the
Tn–Ca2+ complex moves the position of the tropomyosin
filaments, hence turning on cross-bridge cycling and
contraction by uncovering active sites of actin for myo-
sin binding (Gordon et al. 2000). In addition, the degree
of myofibrillar activation depends on the kinetics of
cross-bridge attachment and detachment to actin, because
an actin-bound cross-bridge exerts mechanical impact on
tropomyosin that facilitates the binding of neighbouring
cross-bridges (Brenner, 1988; Gordon et al. 2000). The
result of these interacting processes is the steep, sigmoidal
force–[Ca2+]i relationship. Changes in the Tn–Ca2+ inter-
action and/or cross-bridge kinetics can affect the steepness
of the force–[Ca2+]i relationship as well as the position on
the [Ca2+]i axis; for simplicity, we will refer to alterations
in the latter parameter as changes in myofibrillar Ca2+
sensitivity. Generally, acute ROS/RNS-mediated changes
in force generation are more marked with activation
at submaximal than at maximal frequencies (Lamb &
Westerblad, 2011). Submaximal contractions occur on the
steep part of the force–[Ca2+]i relationship, which means
that even small changes in myofibrillar Ca2+ sensitivity, or
SR Ca2+ release, have large effects on the generated force
(Fig. 1). In this context it is worth noting that everyday
activities generally require low to moderate forces and
the firing frequencies of motor units are therefore set to
produce submaximal contractions (Marsden et al. 1971;
Grimby & Hannerz, 1977)

Intact fast-twitch mouse muscle fibres acutely exposed
to the reducing agent dithiothreitol (DTT) showed
decreased submaximal (30–60 Hz) force. Acute exposure
to H2O2, or its non-metabolizable analogue tert-butyl

hydroperoxide (t-BOOH), has the opposite effect, that
is, it increased submaximal force (Andrade et al. 1998a,
2001; Cheng et al. 2015). The effect on [Ca2+]i during
contractions was small both with DTT and H2O2/t-BOOH
exposure, hence the changes in force production were
explained by altered myofibrillar Ca2+ sensitivity. The
force-potentiating effect of H2O2/t-BOOH exposure was
transient and prolonged (more than 5 min) exposures
resulted in a marked decrease in submaximal force, again
accompanied by only minor changes in tetanic [Ca2+]i

(Andrade et al. 1998a, 2001; Cheng et al. 2015) (Fig. 2A).
Intriguingly, the depression of submaximal force induced
by prolonged exposure to H2O2 was reversed by exposure
to DTT and, vice versa, the depression induced by initial
exposure to DTT was reversed by H2O2 (Andrade et al.
1998a) (Fig. 2B). To sum up, myofibrillar Ca2+ sensitivity
is highly susceptible to acute exogenous exposure to
oxidizing and reducing agents, the effect is readily reversed
by the opposite redox challenge, and rested muscle fibres
appear to be in a suboptimally reduced state (Andrade
et al. 1998a; Lamb & Westerblad, 2011; Powers et al.
2011).

The effect of H2O2 application on the myofibrillar Ca2+
sensitivity of skinned fast-twitch fibres differs markedly
depending on the presence or absence of myoglobin and
glutathione, which are normally present in intact skeletal
muscle fibres (Murphy et al. 2008; Lamb & Westerblad,
2011). Thus, application of H2O2 on its own had little
effect in skinned rat fast-twitch fibres, whereas myo-
fibrillar Ca2+ sensitivity was severely decreased in the
presence of myoglobin. The proposed mechanism was
that H2O2, through the Fenton reaction, interacts with
Fe2+ on myoglobin to produce the highly reactive OH•

1

F
or

ce

2

1

2

0.5 s[Ca2+]i

Figure 1. Changes in myofibrillar Ca2+ sensitivity have a much
larger effect on submaximal than on maximal force
Schematic representation of the effect of increased (blue lines) and
decreased (red lines) myofibrillar Ca2+ sensitivity. (1) Stimulation at
frequencies giving unfused tetani results in forces on the steep part
of the force–[Ca2+]i relationship and changes in sensitivity have a
large effect (�40% in the example) on force output. (2) Conversely,
the same changes in sensitivity have little effect (here �10%) at
higher stimulation frequencies and fused tetani. Similar changes
occur with changes in tetanic [Ca2+]i, i.e. larger effects in unfused
contractions.

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society



5154 A. J. Cheng and others J Physiol 594.18

(Murphy et al. 2008). On the other hand, application
of H2O2 to skinned fast-twitch fibres in the presence of
myoglobin and glutathione resulted in an initial increase
in myofibrillar Ca2+ sensitivity followed by a decrease
(Murphy et al. 2008), i.e. a pattern very similar to that
observed when intact fast-twitch fibres are exposed to
H2O2 or t-BOOH (see Fig. 2). Subsequent experiments
on skinned fast-twitch rat and human muscle fibres
revealed a likely mechanism for the initial increase in
myofibrillar Ca2+ sensitivity: GSH reacts with oxidized
cysteine residues on the fast isoform of TnI (TnIf;
probably Cys133) and the resulting S-glutathionylation
increases myofibrillar Ca2+ sensitivity (Mollica et al. 2012).
Accordingly, human muscle showed a marked increase in
TnIf S-glutathionylation following 40 min of low-intensity
cycling at �60% peak oxygen consumption (Mollica
et al. 2012), and a recent study shows that repeated
stimulation can increase myofibrillar Ca2+ sensitivity
by S-glutathionylation of TnIf in in situ experiments
performed on rat gastrocnemius muscles (Watanabe et al.
2015). Notably, no corresponding increase in myofibrillar
Ca2+ sensitivity was observed in mammalian slow-twitch
fibres, or in chicken and toad fibres, which have TnI iso-
forms that lack the equivalent of Cys133 (Mollica et al.
2012).

Intact fast-twitch fibres showed several changes (albeit
relatively minor, �5%) in cross-bridge function in

response to acute exposure to either H2O2 or t-BOOH:
decreased maximum shortening velocity, increased
maximum force production (i.e. force at saturating
[Ca2+]i), and increased rate of force redevelopment after
shortening (Andrade et al. 2001). The same treatment
resulted in increased myofibrillar Ca2+ sensitivity and
the faster force redevelopment might contribute to this
increase (Brenner, 1988). The concentration of peroxide
used by Andrade et al. (1 μM) would be within or close to
the physiological range and hence endogenous increases
in H2O2 occurring during, for instance, high-intensity
exercise are likely to affect cross-bridge function (Andrade
et al. 2001).

What about the effects of acute exposure to ROS/RNS
other than H2O2 on myofibrillar function? Myofibrillar
Ca2+ sensitivity appears not to be affected by O2

•− (Bruton
et al. 2008; Murphy et al. 2008). Acute exposure to NO•

donors leads to decreased myofibrillar Ca2+ sensitivity
(Andrade et al. 1998b; Dutka et al. 2011). Studies on intact
muscle fibres exposed to NO• donors indicate that the
NO•-induced decrease in Ca2+ sensitivity is not caused
by altered cross-bridge kinetics (Morrison et al. 1996;
Andrade et al. 1998b) and therefore it would be due to
impaired Ca2+–Tn interaction. ONOO•− is known to
decrease both myofibrillar Ca2+ sensitivity and maximum
force in slow- and fast-twitch muscles (Dutka et al.
2011).
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Figure 2. Transient and reversible effects of H2O2 on myofibrillar contractile function
Original [Ca2+]i and force records from submaximal (50 Hz) contractions of single FDB muscle fibres exposed to
H2O2 (300 µM) for up to 8 min (A) and H2O2 for 6 min followed by exposure to the reducing agent DTT (1 mM)
for 10 min (B). Note that H2O2 causes major force changes whereas [Ca2+]i is little affected, which means that
H2O2 mainly acts at the myofibrillar level. The effects on force are time dependent with brief H2O2 exposure
resulting in increased submaximal force, which is followed by a progressive force decline (A). Furthermore, the
force depression caused by prolonged H2O2 exposure is reversed by reduction with DTT (B). Conversely, prolonged
exposure to DTT results in depressed submaximal force that can be reversed by application of H2O2 (not shown).
Figure adapted from Andrade et al. (1998).
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Effects of ROS/RNS on contractile function during
fatigue and recovery

Studies of human exercise show a clear positive effect
of decreased ROS/RNS on endurance when fatigue is
induced by submaximal contractions, whereas the effect
is small or absent with maximal contractions (Reid et al.
1994; Powers et al. 2011). ‘Classical’ fatigue-causing factors
may dominate during the latter type of exercise and
potential effects of ROS/RNS would therefore be difficult
to discern (Allen et al. 2008). Such ‘classical’ factors that
contribute to the force decrease in acute fatigue include
accumulation of inorganic phosphate ions due breakdown
of creatine phosphate (Dahlstedt et al. 2003), depletion
of inter- and intramyofibrillar glycogen (Ørtenblad et al.
2013; Nielsen et al. 2014), and impaired action potential
propagation (Pedersen et al. 2004; de Paoli et al. 2013).
In a general sense, the positive effects of reducing
ROS/RNS during fatigue with submaximal contractions
fit with the fact that acute ROS/RNS effects are most
marked on the steep part of the force–Ca2+ relationship
(see above). However, acute exogenous application of
H2O2 results in a transient increase in myofibrillar Ca2+
sensitivity (see Fig. 2) and some skinned fibre experiments
show increased rather than decreased myofibrillar Ca2+
sensitivity after fatiguing contractions (Gejl et al. 2016;
Watanabe et al. 2015). Thus, these results suggest that

reducing ROS/RNS during fatigue would impair rather
than improve performance. One tentative explanation for
this apparent conflict is that exogenously applied and end-
ogenously produced H2O2 have different effects. Another
tentative explanation is that the effect of increases in
ROS/RNS other than H2O2 dominates; for instance, both
NO• and ONOO•− have been shown to decrease myo-
fibrillar Ca2+ sensitivity (Andrade et al. 1998b; Dutka
et al. 2011). Furthermore, deleterious effects of oxidants
may overpower any potentiating effects when the physical
activity is prolonged and/or highly intense (Lamb &
Westerblad, 2011).

In contrast to the situation during the actual induction
of acute fatigue, obvious effects of increased ROS/RNS are
seen during the subsequent recovery period (Westerblad
& Allen, 2011). For instance, isolated mouse soleus
fibres did not fatigue prematurely when exposed to
severe oxidative stress (fatigued at 43°C in the pre-
sence of 10 μM H2O2 or t-BOOH), but contractures
developed and the fibres died �10 min after the end
of stimulation (Place et al. 2009). Under less extreme
conditions, fatigued muscle fibres frequently enter a
prolonged state of severely depressed submaximal force,
i.e. prolonged low-frequency force depression (PLFFD)
(Allen et al. 2008). At the muscle fibre level, depressed
submaximal force can be due to decreased SR Ca2+ release
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Figure 3. The prolonged low-frequency force depression (PLFFD) after fatiguing stimulation is the result
of complex ROS/RNS effects on SR Ca2+ release and myofibrillar Ca2+ sensitivity
A, [Ca2+]i (upper panel) and force (lower panel; mean data ± SEM) in 30 Hz contractions produced during PLFFD
(red circles) initially in standard Tyrode solution, followed by addition of DTT (1 mM) or the non-metabolizable
analogue of H2O2, t-BOOH (10 µM). The effect of the same exposures on unfatigued fibres are also shown (green
circles). B, simplified model of ROS/RNS effects on SR Ca2+ release and myofibrillar Ca2+ sensitivity. Key proteins
for SR Ca2+ release are the t-tubular voltage sensors, the dihydropyridine receptors (blue boxes), and the SR Ca2+
release channels, RyR1 (green boxes). These proteins appear to be in an optimal redox state at rest and become
overly oxidized during fatiguing stimulation resulting in decreased [Ca2+]i, which is not affected by application
of either t-BOOH or DTT (see A). In the rested state, myofibrillar proteins are in a suboptimal reduced state.
Some myofibrillar proteins become overly oxidized during induction of fatigue and the resulting force decrease is
transiently counteracted by application of DTT. Intriguingly, other myofibrillar proteins apparently remain reduced
during fatigue since application of the oxidizing agent t-BOOH temporarily improves force generation, i.e. similar
to the effect in the rested state (see A). Figure adapted from Cheng et al. (2015).
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and/or reduced myofibrillar Ca2+ sensitivity. Acutely
fatigued fast-twitch mouse FDB fibres displayed a marked
PLFFD that is mainly caused by decreased SR Ca2+
release (Westerblad et al. 1993). Intriguingly, the cause
of PLFFD changes towards reduced myofibrillar Ca2+
sensitivity in genetically modified mouse FDB fibres over-
expressing the mitochondrial matrix redox enzyme SOD2
(Bruton et al. 2008), in rat FDB fibres that endogenously
express more SOD2 (Bruton et al. 2008), and in mouse
FDB fibres treated with the mitochondria-targeted anti-
oxidant SS-31 or the NOS inhibitor L-NAME (Cheng
et al. 2015). In a recent study we show that PLFFD is
accompanied by RyR1 fragmentation in vastus lateralis
muscles of recreationally active human subjects after one
session of high-intensity interval training (6 × 30 s all-out
cycling) (Place et al. 2015). Conversely, when elite end-
urance athletes performed the same exercise, a similar
PLFFD was observed but the RyR1 remained intact. The
elite endurance athletes had higher levels of the anti-
oxidant enzymes SOD2 and catalase in their muscles
than recreationally active subjects. Moreover, a similar
RyR1 fragmentation could be induced by high-intensity
stimulation of isolated mouse FDB muscles and this
fragmentation was blocked by the antioxidant NAC
(Place et al. 2015). Collectively, these results indicate
that accumulation of mitochondrially generated O2

•−, or
ONOO•−, preferentially affects SR Ca2+ release, probably
via redox modifications of RyR1 (Bellinger et al. 2008a,b;
Andersson et al. 2011; Lanner et al. 2012). Conversely,
when O2

•− is more efficiently metabolized, the resulting
increase in H2O2, or downstream products, preferentially
leads to changes in myofibrillar Ca2+ sensitivity. In other
words, antioxidants do not prevent PLFFD, but they can
change the underlying mechanism from impaired SR
Ca2+ release to reduced myofibrillar Ca2+ sensitivity. The
question is then: Does this matter? Our answer is: Yes, it
probably does.

Impaired SR Ca2+ release caused by redox modifications
of RyR1 is associated with increased SR Ca2+ leak
at rest, and the resulting increase in resting [Ca2+]i

may stimulate mitochondrial biogenesis and thereby
improve muscle endurance (Wright et al. 2007; Bruton
et al. 2010). On the other hand, major adaptations
are unlikely to be triggered when PLFFD is caused
by decreased myofibrillar Ca2+ sensitivity. Accordingly,
prolonged changes in gene expression were recently shown
after one session of high-intensity interval training that
induced PLFFD accompanied by ROS/RNS-dependent
RyR1 fragmentation in recreationally active subjects.
Conversely, prolonged changes in mRNA levels were
not observed in elite endurance athletes where PLFFD
occurred while RyR1 remained intact (Place et al. 2015).
Thus, ROS/RNS-induced changes in RyR1 structure and
function provide a mechanism as to why treatment with

antioxidants hamper the beneficial effects of endurance
training (Gomez-Cabrera et al. 2008; Ristow et al. 2009;
Paulsen et al. 2014).

A recent study from our laboratory highlights the
complexity of fatigue-induced redox effects (Cheng et al.
2015). Neither exposure to DTT nor t-BOOH had any
clear-cut effect on the impaired SR Ca2+ release during
PLFFD. Unexpectedly, application of DTT as well as
t-BOOH resulted in a major, but transient, increase in
myofibrillar Ca2+ sensitivity during PLFFD. The effect of
DTT during PLFFD was opposite to that in the rested state,
where DTT decreased force production, which implies
that redox-sensitive sites were suboptimally reduced under
resting conditions, became too oxidized during fatigue,
and this was reversed by DTT. The effect of t-BOOH
was more intriguing since the results showed a trans-
iently improved myofibrillar force production both in
the unfatigued state and during PLFFD. Thus, some
functionally important sites on myofibrillar proteins
appeared to remain in a suboptimally reduced state during
fatigue and the function of these was then temporarily
improved by exogenous peroxide application (Fig. 3).
While these intriguing findings illustrate the complexity
of redox effects, further studies are clearly required before
they can be understood at a more precise mechanistic level.

Conclusions

In this review we discuss intricate ROS/RNS effects
on myofibrillar contractile function. While mechanisms
underlying some changes in myofibrillar function are fairly
well established, others are more uncertain. For instance,
it is fairly well established that S-glutathionylation of
TnIf can cause an initial increase in myofibrillar Ca2+
sensitivity during exogenous H2O2 exposure, whereas the
mechanism(s) behind the decreased sensitivity during
prolonged exposure remains uncertain. Due to such
uncertainties we find it premature to discuss complex
changes in contractile function, e.g. mechanisms under-
lying PLFFD, in terms of one specific ROS/RNS acting
on one specific molecular target. This type of knowledge
would, for instance, require improved methods to measure
changes in a specific ROS/RNS with good temporal
and spatial resolution. Moreover, an obvious risk with
reductionistic approaches to assess the complex ROS/RNS
effects is that simplistic cellular or subcellular experiments
are prioritized to get at the molecular mechanism. Our
opinion is that such experiments often provide the correct
answer to the wrong question.

In studies of ROS/RNS-induced changes in myofibrillar
function, we find it essential to measure both force and
[Ca2+]i, since both are likely to be affected. Experiments
on enzymatically isolated muscle fibres are technically
much easier to perform than experiments on dissected
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fibres. However, enzymatically dissociated fibres lack
tendons and force measurements become cumbersome.
Intact whole muscles are also easier to use than dissected
single muscle fibres, but [Ca2+]i is then difficult to
measure, especially in deeper parts of the muscle. The
mechanism of PLFFD shifts from decreased tetanic
[Ca2+]i in wild-type muscles to reduced myofibrillar Ca2+
sensitivity in SOD2-overexpressing muscles (Bruton et al.
2008). Experiments with enzymatically dissociated fibres
would detect decreased tetanic [Ca2+]i during recovery
of wild-type fibres, whereas [Ca2+]i returned to the
pre-fatigue level with SOD2 overexpression. Thus, the
conclusion would be that increased SOD2 activity pre-
vents PLFFD. Conversely, experiments with intact whole
muscles would detect a similar force depression during
recovery of wild-type and SOD2-overexpressing muscle,
and the conclusion would be that SOD2 overexpression
has no effect on PLFFD. Thus, the correct conclusion
requires experiments with simultaneous measurements of
force and [Ca2+]i in fully intact fibres, or the combination
of experiments with enzymatically dissociated fibres and
whole muscles.

A wide range of antioxidants, including gp91ds-tat
and SS-31, could not prevent the loss of force observed
after acute fatiguing stimulation of healthy mouse muscle
fibres (Cheng et al. 2015). Moreover, improved anti-
oxidant capacity in muscles of endurance athletes did
not prevent the development of PLFFD after a session
of high-intensity interval training (Place et al. 2015). On
the other hand, prolonged administration of antioxidants
(e.g. vitamin C and E) has been shown to hamper the
beneficial effects of endurance training in humans and
rodents (Gomez-Cabrera et al. 2008; Ristow et al. 2009;
Paulsen et al. 2014). Thus, the overall impact of antioxidant
supplementation in association with endurance training
is negative: antioxidants do not prevent the exercise-
induced prolonged ROS/RNS-dependent decline in cont-
ractile function, whereas they can hamper the beneficial
adaptations that come with endurance exercise.
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