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Abstract

In the last decade, few topics in the area of cardiovascular disease (CVD) research have received 

as much attention as risk prediction. One of the well documented risk factors for CVD is high 

blood pressure (BP). Traditional CVD risk prediction models consider BP levels measured at a 

single time and such models form the basis for current clinical guidelines for CVD prevention. 

However, in clinical practice, BP levels are often observed and recorded in a longitudinal fashion. 

Information on BP trajectories can be powerful predictors for CVD events. We consider joint 

modeling of time to coronary artery disease and individual longitudinal measures of systolic and 

diastolic BPs in a primary care cohort with up to 20 years of follow-up. We applied novel 

prediction metrics to assess the predictive performance of joint models. Predictive performances of 

proposed joint models and other models were assessed via simulations and illustrated using the 

primary care cohort.
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1. Introduction

Cardiovascular disease (CVD) is the leading cause of death in the United States and the 

world. Primary prevention by identifying and treating at-risk individuals remains a major 

public health challenge. Although many traditional risk factors such as hypertension, 

diabetes, and hyperlipidemia have been found to be associated with increased CVD risk, 

predictive accuracy of these traditional risk factors for CVD remains modest and diminishes 

with the increase in age [1, 2, 3]. Numerous attempts to improve the prediction of CVD risk 
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by using new biomarkers have only improved the risk prediction by a modest margin [3, 4, 

5].

In many cohort studies and in usual clinical practice, longitudinal blood pressure (BP) 

measurements were often collected and BP trajectories can be powerful predictors for CVD 

risk [6, 7, 8]. Many current studies focus on systolic BP (SBP) based on the findings from 

the Framingham Heart Study in 1971 that SBP was a superior predictor of CVD risk than 

diastolic BP (DBP) [9]. Recently, however, DBP has also been recognized as an important 

independent risk factor for CVD [10]. In a recent article in the Journal of the American 

Medical Association [11], the authors focused on mid-BP (defined as the mean of SBP and 

DBP) trajectories demonstrating that DBP was a more important contributor to CVD risk in 

younger adults. In addition, it is also known that measurement error is usually different for 

DBP than for SBP because of the greater variability in the auscultatory end point [12].

The most widely used method to incorporate longitudinal measures into a predictive model 

for time to event is perhaps the Cox model with time-dependent covariates. However, such a 

model usually assumes that the longitudinal outcomes are continuously measured without 

errors, which may be unrealistic when the longitudinal measures are collected intermittently 

and measurement errors of SBP and DBP are known to be substantial. Furthermore, it is 

difficult to explore the association between trends in the longitudinal outcomes, other than 

current values, and time to event. Joint models for longitudinal and survival data have 

therefore been proposed to appropriately deal with these issues. Comprehensive reviews of 

joint models have been published [13, 14, 15] and survival prediction using a single 

longitudinal biomarker has been studied in the joint modeling framework [16, 17, 18, 19].

When multiple longitudinal measures are available, extension to the joint model framework 

needs to appropriately account for potential correlations among the longitudinal measures. 

Simultaneous modeling of multiple longitudinal outcomes in joint models offers a number of 

advantages over separate modeling of each longitudinal outcome [20, 21, 22, 23]. First, for 

correlated longitudinal outcomes it is more relevant to estimate the adjusted association of 

each longitudinal outcome with event risk [20]. Second, Fieuws et al. (2008) showed that 

accounting for the correlation between longitudinal measures may substantially enhance the 

predictive ability of joint models [24]. In addition, two papers found that joint models of 

multiple longitudinal outcomes are more efficient compared with separate modeling of each 

outcome in some settings [25, 26]. In many primary care clinics, SBP and DBP were 

repeatedly measured and recorded over time during routine visits to physician offices. To 

utilize the correlation between longitudinal SBP and DBP measures, and account for BP 

measurement errors, we cast the prediction of CAD risk into a joint model framework that 

simultaneously models time to CAD and bivariate longitudinal outcomes of SBP and DBP. 

The Expectation Maximization (EM) approach was used for the parameter estimation of 

joint models. For the prediction of survival probability in the joint model framework, we 

adopted the Monte Carlo (MC) simulation approach proposed by Rizopoulos (2011) [19].

In this article, we explored the predictive accuracy of different models using area under 

curve (AUC) and two other recently proposed prediction metrics, including above average 

risk difference (AARD) and mean risk difference (MRD) [27]. The AUC (for ROC) is a 
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well-developed summary criterion for evaluating the performance of prediction models for 

binary outcomes and has also been extended to survival endpoints. Pencina et al. (2012) 

provided a thorough review of existing AUCs for time-to-event outcomes [28]. Rizopoulos 

(2011) studied the AUC in the joint model with a single longitudinal outcome [19]. 

However, several studies showed that the AUC may have low sensitivity for model 

comparison when new biomarkers are added, and the difference in AUC measures has no 

intuitive interpretation because AUC is a function of rank, not of predicted probabilities [29, 

30]. In the past few years, more sensitive criteria have been proposed for the purpose of 

model comparison. Cook (2007) proposed a “reclassification table” to show how many 

subjects will be reclassified if a new biomarker is added to the existing model [29]. Pencina 

et al. (2008) extended the idea of reclassification table and proposed two new criteria: the 

Net Reclassification Improvement (NRI) and integrated discrimination improvement (IDI), a 

measure that integrates net reclassification over all possible cut-offs of the probability of the 

outcome [31]. The IDI is equivalent to the difference in discrimination slopes of two models 

[32], the difference in Pearson R2 measures [33], or the difference in scaled Brier scores 

[34]. Similar criteria were extended to time-to-event outcomes by [35]. Recently Pepe and 

Janes defined AARD and MRD based on previous work of NRI and IDI [27]. AARD and 

MRD have been used to evaluate the improvement in prediction accuracy by adding new 

predictor to an existing Cox model. In this work, we apply AARD and MRD to the joint 

model framework and assess the predictive accuracy of multiple longitudinal biomarkers.

The remainder of this paper is organized as follows: Section 2 describes the motivating 

example of the primary care cohort. Section 3 introduces the joint models and estimation 

method. Section 4 presents the method to calculate conditional survival probabilities from 

the fitted joint model. Section 5 describes definitions and estimators of the AUC, AARD and 

MRD in the joint modeling framework. Sections 6 and 7 report simulation results and data 

application, respectively. Finally the paper is concluded with a discussion in Section 8.

2. A Primary Care Patient Cohort

This primary care patient cohort was assembled in 1991 as part of a depression screening 

study in Wishard Health Service. From 1991 to 1993, patients age 60 years or older were 

consented for depression screening during their regular clinical visits to their primary care 

physicians. A total of 4,413 primary care patients were initially contacted, of whom 115 

refused; 57 were ineligible due to severe cognitive impairment; 284 were not eligible 

because they were non-English speakers, in prison, in a nursing home, or had a hearing 

impairment; 3,957 patients were enrolled in the study. Details about the study have been 

published in [36, 37, 38]. Electronic medical records (EMR) data data are available from all 

enrolled patients and the information include diagnosis of medical conditions, BP measures, 

laboratory test measures and medications order and dispensing.

Among the 3,957 patients, 2,654 (797 males and 1857 females) were free of CAD at 

enrollment. For patients with an incident CAD event, the date of diagnosis was used as the 

event time; otherwise the last outpatient clinic visit prior to December 31, 2010 was used as 

the right censoring time. SBP and DBP measured in sitting position from outpatient clinic 

visits were collected. Since it has been shown that males have significantly increased CAD 
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risk than females [39, 40], we focused this analysis to the 797 male patients in the cohort, of 

whom 28% had incident CAD during the follow-up period. Mean baseline age of patients in 

the analysis sample was 68 years; 65.1% were black, 31.9% were smokers, and 33.6% had 

history of diabetes at baseline. We found that the frequency of BP measure varied from 

patient to patient with a mean frequency of 20.5. For computational convenience, annualized 

SBP and DBP measures during the study period were derived for each participant. On 

average, there were about 5.3 BP measures per subject. Figure 1 plots the annualized 

longitudinal SBP and DBP measures over time by CAD status. The blue and green curves 

represent fitted population mean profiles for the CAD and non-CAD group respectively, 

using quadratic linear mixed-effects models. It can be seen that the population mean SBP 

and DBP were higher over time for the CAD group than the non-CAD group, indicating a 

potential association between the risk of CAD and longitudinal SBP and DBP measures.

3. Joint Models and Estimation Method

3.1. Longitudinal Models

Let yl(tij) denote the observed measurement of the l-th longitudinal outcome for the i-th 

subject at the j-th time point, tij, where i = 1, …, n, j = 1, …, ni, l = 1, …, L. The observed 

longitudinal trajectory for the i-th subject is modeled as

where  is the true underlying longitudinal measures of the l-th biomarker for the i-th 

subject;  is the design matrix of fixed effects, including time effects and baseline 

covariates; βl is the corresponding vector of the fixed effects;  is the design matrix for 

the random effects, bil, distributed as bi = (bi1, bi2, …, biL)T ~ N(0, D); εil is the 

corresponding measurement error term, which is assumed to be normally distributed as 

. It is worth noting that the correlations among the multiple longitudinal 

processes and within-subject correlation for each longitudinal biomarker are represented in 

the variance-covariance matrix of random effects D. We assume that the measurement errors 

of different longitudinal outcomes are independent of each other, and they are also 

independent of the random effects bi.

3.2. The Survival Model

For the i-th subject, let  and Ci denote the true event time and censoring time respectively. 

Define the observed event time  and the event indicator . Let 

h0(t) denote the baseline hazard function. Assuming that the hazard function depends on 

some functions of the true longitudinal measures at event time point, , and the 

baseline covariates, wi, then the hazard function can be written as
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where αl represents the association between the function of the true longitudinal measures of 

the lth biomarker at event time and the time-to-event outcome; γ is the coefficient vector for 

the baseline risk factors. In this work, αl, l = 1, 2, …, L, are of primary interest. The 

correlation between the multiple longitudinal biomarkers and the time-to-event outcome is 

induced by the common random effects shared in the longitudinal and survival models. We 

assume the censoring time and the event time are independent given the true longitudinal 

biomarker measures.

The function ℱ(·) can be chosen to explore different functional forms depending on the 

interest of the study. For example, if the focus is the association between longitudinal values 

and event risk, ℱ(·) can be an identity function; if the change in the longitudinal measures is 

of interest, ℱ(·) can be chosen as derivative functions with respect to time t; for studies 

interested in the cumulative history of the longitudinal measures over time and event risk, 

ℱ(·) can be an integration function of  over time t. Depending on the choice of the ℱ(·) 

random effects bi can enter the exponential term in the hazard function in a non-linear 

fashion. This is in contrast with the frailty type of joint models where the random effects 

were part of a linear function in the hazard exponential term.

3.3. Joint Likelihood Function and Estimation Method

Under the conditional independence assumption between bi and εi, the kernel of the joint 

likelihood function can be factored into three components as

(1)

where θ = (γ, α, h0, β, σ, D)T is the vector containing all parameters in the models. Under 

the assumed models for the longitudinal and survival outcomes, the components in (1) are:

In the literature of joint models there are three general types of estimation methods: a two-

stage approach, Bayesian Markov Chain Monte Carlo (MCMC) method, and maximum-
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likelihood approach. In the two-stage approach, parameter estimation is conducted 

separately for the longitudinal model and the survival model separately. Although the two-

stage approach is computationally simple, it can introduce bias and loss of efficiency since it 

ignores the time-to-event information when modeling the longitudinal process [41, 42] as 

the survival process in this setting essentially produces non-ignorable missing data for the 

longitudinal outcomes. The two-stage approach has been discussed by many authors [43, 

42]. Alternatively, both the Bayesian MCMC approach and the maximum-likelihood 

approach incorporate both types of outcomes into a joint likelihood function and 

simultaneously estimates model parameters. The Bayesian MCMC approach has been used 

for joint models of multiple longitudinal outcomes and time-to-event variable [21, 20]. The 

maximum-likelihood method using EM algorithm has also been applied to the joint models 

for time-to-event outcome and a single longitudinal outcome [13, 44, 45, 46, 47]. In this 

work, the maximum-likelihood method using EM algorithm is used to obtain parameter 

estimation of joint models for multiple longitudinal processes and time-to-event outcome. 

For computation of the expected likelihood function, pseudo-adoptive Gaussian-Hermit 

quadrature rule was used to approximate the integrals [47]. The parameter estimation using 

EM algorithm was implemented in R [48].

4. Predictive Accuracy

The focus on predictive accuracy of a survival model can be different varying from 

calibration, discrimination to reclassification. Calibration focuses on quantifying how close 

the predicted outcomes are to the observed outcomes, while discrimination quantifies how 

well a model distinguishes subjects with events from those who do not experience events. 

Reclassification, on the other hand, evaluates the incremental values resulting from adding 

new predictors in the model. In this work we focus on reclassification to evaluate the 

predictive accuracy of new longitudinal biomarker in the joint modeling framework.

We assume that the maximum-likelihood estimates of the joint models have been obtained 

from a training sample n = {Ti, δi, yi1, …, yiL; i = 1, 2, …, n}. Based on the multiple 

longitudinal measurements up to time t of a given new subject from a testing sample similar 

to the training sample, one can predict the survival probability at any time point t. We 

propose to define true positive rate (TPR) and false positive rate (FPR) using a subject’s 

current risk at time t, i.e.,

where the current risk at time t, ri(t), depends on the predicted longitudinal biomarker 

measures up to time t, , and the fitted joint 

models.

In this work we concentrate on assessing predictive accuracy using the current risk function. 

If the interest is to assess predictive accuracy at a future time point, t + Δt, based on the 

longitudinal biomarker measures up to time t, one can utilize the conditional risk function in 

defining TPR and FPR,
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The risk function ri(t) is equivalent to ri(t + Δt | t) when Δt is equal to 0, thus the concept of 

using conditional risk function of ri(t + Δt|t) in predictive accuracy is similar to using the 

current risk function of ri(t).

For the prediction of survival probability, we explored two methods discussed in [19]: the 

empirical Bayes method and Monte Carlo (MC) simulation approach. The empirical Bayes 

method is essentially the first order approximation of the survival probability function

where the subject-specific random effect prediction, bi, is calculated by 

 using the observed data from the testing sample; the 

maximum-likelihood parameter estimates (θ̂) of the joint models are based on the training 

sample. The empirical Bayes approach has the advantage of computational simplicity, but 

the derivation of its standard error is not straightforward. The MC simulation approach was 

proposed to predict conditional survival probabilities [19]. Instead of directly calculating the 

survival probability, the predicted survival probability is summarized from a series of 

posterior expectation of the survival function. In the simulation section, we assessed the 

performance of these two methods in survival probability prediction.

For a given threshold p, we define TPRt(p) = P(r(t) ≥ p | T ≤ t) and FPRt(p) = P(r(t) ≥ p | T > 

t). Based on Zheng et al. (2013) [49], the estimators of TPR and FPR are written as follows

(2)

(3)

Note that (2) and (3) use data from all subjects including those censored for the risk 

prediction.

AUC is a commonly used criterion for discrimination in prediction. However, researches 

showed that the AUC may have low sensitivity for risk model comparison, and the 

difference in AUC measures has no intuitive interpretation [29, 30]. AUC at time t can be 

written as  and estimated by
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Pepe et al. (2008) and Pepe and Janes (2013) proposed two new measures, Above Average 

Risk Difference (AARD) and Difference in Mean Risk (MRD), which may be more 

sensitive in comparing models with different risk predictors and have more meaningful 

interpretations [50, 27]. AARD and MRD are defined as following:

where ρt = P(T ≤ t). Similarly, the estimation of AARD and MRD are written as follows:

where ρ̂ is the average risk in the population. AARD can be interpreted as the difference in 

the proportions of events and non-events at the average risk in the population while MRD 

measures the area between TPRt(p) and FPRt(p) across the risk scale.

5. Simulation Study

We first assessed the performance of the empirical Bayes and the MC simulation approaches 

in predicting conditional survival probabilities in joint modeling framework with two 

longitudinal biomarkers and a time-to-event outcome. We then applied the 3 criteria of AUC, 

AARD and MRD to assess the predictive accuracy of various prediction models.

We adopted a split sample design where one sample is used to build the prognostic model 

and the other sample is used to validate the model and make predictions. We first simulated 

200 training data sets from joint models with two correlated normally distributed 

longitudinal outcome variables and one time-to-event outcome variable. Additional 200 

testing data sets were simulated using the same covariate values and random effects as in 

training data sets. Longitudinal data were simulated for 500 subjects each with 11 equally 

spaced bivariate longitudinal evaluations over a 5-year period. We considered the similar 

fixed and random model structures for the two longitudinal outcomes, where the fixed 

effects included intercept, time effect, and one binary baseline covariate, and the random 

effects included random intercept and random slope. The correlation between the two 

longitudinal outcomes is represented by the correlation between the random variables. The 

longitudinal models are then written as follows:
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where . The random effects (b01i, b11i, b02i, b12i) are 

normally distributed with mean 0 and standard deviation σ01, σ11, σ02, and σ12 respectively. 

They are pairwise independent except that b01i and b02i are correlated with correlation 

coefficient ρ.

The time-to-event endpoint was simulated from a proportional hazard model with a Weibull 

baseline hazard function, h0(t) = abtb−1, where a and b are the corresponding shape and scale 

parameters respectively. The proportional hazard model is assumed to depend on the current 

values of the two longitudinal outcomes at the event time point. Particularly, the proportional 

hazard model is written as . Overall, the censoring 

percentage is about 30% and on average there are about 6 repeated bivariate measurements 

for each subject. In the actual model fitting, we used a more flexible piecewise constant 

baseline hazard function instead of the parametric Weibull baseline risk function. Three 

simulation scenarios were considered by varying variances of residual errors and variance-

covariance matrix of random effects:

• Scenario 1 : σ1 = σ2 = 0.2, σ01 = σ02 = 0.2, σ11 = σ12 = 0.05;

• Scenario 2 : σ1 = σ2 = 0.5, σ01 = σ02 = 0.5, σ11 = σ12 = 0.2;

• Scenario 3 : σ1 = σ2 = 0.2, σ01 = σ02 = 0.5, σ11 = σ12 = 0.2.

Other parameters are set as β01 = 0.2, β11 = 0.5, β21 = 0.2, β02 = 1, β12 = 0.2, β22 = 0.5, ρ = 

0.5, a = 0.005, b = 1.1, α1 = 1, and α2 = 1.

5.1. MC Simulation vs. Empirical Bayes for Predicting Conditional Survival Probabilities

Let i(t) = {yi1(s), yi2(s), …, yLi(s); 0 ≤ s ≤ t} denote the ith new subject’s longitudinal 

biomarker measures up to time t for L different biomarkers, the conditional survival 

probability at time t + Δt given the survival up to time t can be written as

We fitted joint models to each training data set and estimated parameters using the EM 

algorithm. For each testing data set, data from the first 2 years was used to predict subject 

specific random effects. Twenty subjects were randomly selected from each testing data set. 

Selected subjects’ conditional survival probabilities at different time points t (t > 2) and Δt 
were predicted with the empirical Bayes approach and the MC simulation approach 

separately, using parameter estimates from the training data set and predicted random effects 

using the first 2 years of the testing data. In the MC simulation approach, the median based 

on 200 MC replicates was used as the predicted conditional survival probability. Predicted 

conditional survival probabilities obtained from the two approaches were compared to 

predictions based on random effects and parameter values used in generating the 

longitudinal and survival outcomes. We reported the average biases between the true and 
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predicted conditional survival probabilities for the selected subjects over the 200 testing data 

sets.

Results are presented in the supporting web materials. It is evident that the MC simulation 

approach generally performs better in predicting conditional survival probabilities than the 

empirical Bayes approach - smaller biases are observed for the MC simulation approach. In 

addition, the results show that for fixed Δt, biases increase as time t increases. This may be 

explained by the fact that more subjects drop out as time t increases leading to less accurate 

random effect predictions. On the other hand, the results also indicate that for fixed time t, 
biases generally increase as the prediction window Δt increases. In other words, conditioning 

on the same number of longitudinal biomarker measures, the performance of the prediction 

gets worse when the window for prediction is longer.

5.2. Predictive Accuracy

The formulation in the prediction of conditional survival outcomes can also readily extended 

to the prediction of survival outcome by specifying Δt = 0. In this section, we present 

additional simulations to examine the performance of AUC, AARD and MRD in evaluating 

the predictive performance of various models based on parameter estimates from training 

data sets. Our main interest is in comparing AUC, AARD and MRD of joint models using 

only the first longitudinal biomarker (JM1), and joint models using both longitudinal 

biomarkers (JM2). However, as the Cox’s models were also commonly used in analyzing 

this type of data, we included the Cox model using only baseline biomarker measures as 

time-independent covariates (Cox baseline), Cox model with longitudinal biomarker 

measures as time-dependent covariate (Cox time-dependent) in the simulation comparisons.

For JM1 and JM2 models, individual survival probabilities at time t (t > 2) for subjects from 

testing data set were obtained using similar procedures as described for predicting 

conditional survival probabilities in the previous section. For the Cox’s baseline model, 

individual survival probabilities were calculated using estimated parameters from the 

training data set and longitudinal measures at baseline from the testing data. The same 

technique was applied for the Cox’s time-dependent model, except for using the longitudinal 

measures up to time t from the testing data. Based on predicted survival probabilities, TPR 

and FPR can be readily calculated for different models. Accordingly, AUC, AARD and 

MRD were derived from TPR and FPR values.

The sample means and empirical standard errors of AUC, AARD, and MRD for the four 

models were summarized over the 200 testing data sets in Tables 1, 2 and 3. It was shown 

that JM2 model had notable better predictive performance compared to JM1 model. The 

predictive measures under the true models using pre-specified parameter values and random 

effects provided the upper ceiling of these criteria. Considering the differences in the 

numeric ranges for the three measures, we included percentage gains in the prediction 

accuracy criteria from adding a second longitudinal marker. In particular, we presented two 

quantities: true percentage gain and estimated percentage gain. In terms of AUC, they were 

calculated as (AUCJM2 − AUCJM1)/AUCtrue and (AUCJM2 − AUCJM1)/AUCJM2 

respectively. These quantities were calculated similarly for AARD and MRD. The estimated 

prediction gain can be used in data applications when the true measures are unknown. Both 
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AARD and MRD showed much higher true and estimated percentage gains from the 

addition of the new longitudinal marker than AUC, with MRD showing the greatest gain 

among the three measures. We also observe that JM2 has better predictive performance on 

AUC, AARD and MRD than the two Cox models as expected. From the results of JM2 we 

observe that the predictive performance improves as time t increases which can be explained 

by the increased numbers of both longitudinal measures and events.

For the Cox baseline model, as expected, the predictive performance does not improve as t 
increases because only the baseline measurements are used in the survival probability 

prediction. However, it’s interesting that the Cox time-dependent model has even worse 

predictive performance than the Cox baseline model despite that more longitudinal measures 

were used in survival probability prediction. It’s worth noting that parameter estimation of 

Cox time-dependent model is based on the training dataset, and the repeated measurements 

up to time t were used in the survival probability prediction. In particular, parameter 

estimates in Cox time-dependent model heavily rely on the observed longitudinal outcomes 

in the training dataset which contributes to the biases in survival probability predictions in 

the testing dataset. When further simulations using the same datasets as training and testing 

data were conducted, we found that Cox time-dependent model had satisfactory predictive 

performance, thus confirming that predictive accuracy of Cox time-dependent models were 

sensitive to variations between the training and testing data (results not presented).

Additional simulations were conducted to assess how the prediction of random effect 

predictions and (fixed) parameter estimates in the joint models influence prediction 

accuracy. These simulation results were presented in the supporting web materials. We 

observe that the accuracy of random effect predictions had significant impact on prediction 

accuracy.

6. Data Application

We applied joint models to the aforementioned primary care patient cohort data of 797 male 

patients. Out of the 797 subjects, we randomly selected 597 subjects to create the training 

data set and used the remaining 200 subjects as the testing data set. For convenience we 

centered patients’ baseline age at 60 years. In order to explore different longitudinal 

trajectories over time and various functions of longitudinal outcomes in the survival model, 

we fitted four different sets of joint models to the training data set using the proposed EM 

algorithm. The best set of models were determined using the Akaike Information Criterion 

(AIC). Based on Figure 1, the annualized longitudinal SBP and DBP measures over time by 

CAD status, there seems no clear nonlinear pattern thus the linear mixed-effects model with 

quadratic fixed effect terms is able to capture the underlying longitudinal trajectory in blood 

pressure measures. The 4 sets of joint models differing in the longitudinal model or hazard 

function are as follows.

Joint models 1 consider the following models

(4)
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for the observed longitudinal SBP and DBP measures respectively. The random effect vector 

bi = (b01i, b11i, b02i, b12i)T is normally distributed with mean zero and an unstructured 

variance-covariance matrix of D; εij1 and εij2 and are independently distributed as 

and  respectively. The hazard function satisfies

(5)

where the piecewise constant function h0(t) consists of 7 equally spaced intervals with 6 

interior knots based on percentiles of the observed event time points. The above hazard 

function depends on the current values of SBP and DBP measures and some baseline risk 

factors.

Joint models 2 assume the same longitudinal models (4) as in the joint models 1, but use the 

slopes of SBP and DBP measures in the hazard function instead,

(6)

Joint models 3 assume the same hazard model (5) in the joint model 1, but include a 

quadratic fixed time effect for both SBP and DBP measures,

(7)

Joint models 4 assumes (6) and (7).

In the implementation of the EM algorithm, we used 3 pseudo-adaptive Gaussian-Hermite 

quadrature points for numerical integration over the random effects and 7 Gaussian-Kronrod 

quadrature points for the integration in the survival function. Models were compared 

according to AIC: smaller AIC indicates better model fit. Among the 4 joint models 

considered, Joint models 3 was the best fitting (AIC=49464) followed by Joint models 4 

(AIC=49475), Joint models 1 (AIC=49537) and Joint models 2 (AIC=49548). Here we 

present parameter estimates from Joint models 3 in Table 4.

We then used data from the first 5 years in the testing data set to estimate patients’ subject-

specific random effects. Based on parameter estimates from the training data set and the 

random effect estimates from the first 5 year testing data, predicted conditional survival 

probabilities given t (t > 5) were further computed using the MC simulation approach.

6.1. Predicting Conditional Survival Probabilities

As an example, we chose two subjects from the testing data set to illustrate how the 

longitudinal BP measures over time influence the conditional survival probability 

predictions. We selected subjects 143 and 318 with the same baseline risk covariates. 

Subject 143 is a 66 years old black male with a history of smoking and diabetes, and was 

lost to follow up 6.97 years after baseline. Subject 318 has the same demographics as subject 
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143, except that a CAD event was observed at year 7.5. The two selected subjects have the 

same characteristics allowing us to study the effect of longitudinal BP measures over time on 

the risk of developing CAD. The plot of longitudinal BP measures over time for the two 

subjects is plotted in Figure 2. It is observed that, in general, longitudinal BP measures of 

subject 143 increase and then decrease over time, while subject 318 has an increasing and 

then decreasing trend in BP measures over time. The two subjects’ predicted conditional 

survival probabilities were plotted in Figures 3 and 4. In Figures 3 and 4, the upper left panel 

is the conditional survival probability plot when t = 0 and Δt varies from 0 to 12 years; the 

upper right panel is the conditional survival probability plot when t = 2 and Δt varies from 0 

to 10 years; the lower left panel is the conditional survival probability plot when t = 4 and Δt 
varies from 0 to 8 years; the lower right is the conditional survival probability plot when t = 

6 and Δt varies from 0 to 6 years. From the two plots, we clearly observed how the 

longitudinal BP measures impacted on the risk of developing CAD. Overall, subject 318 had 

larger risk in developing CAD than subject 143.

6.2. Predictive Accuracy

We evaluated the predictive performance of Joint models 3 using the testing data set. 

Predictive results of joint models with both longitudinal SBP and DBP (JM2) were also 

compared to the other commonly used models, including the Cox model with baseline SBP 

and DBP as fixed covariates, the Cox model with observed longitudinal SBP and DBP as 

time-dependent covariates, joint models with only longitudinal SBP (JM1), and joint models 

with only longitudinal DBP (JM1). Predictive results using different models and criteria at 

various time points were presented in Table 5. From these results, we observe that JM2 

model has the best predictive performance: AUC, AARD and MRD of JM2 are higher than 

those of all the other models. Particularly, JM2 model has better prediction performance than 

either of the two JM1 models, indicating that the joint models incorporating both 

longitudinal SBP and DBP can enhance the predictive ability of CAD than using either SBP 

or DBP. It is worth to noticing that in joint models 3, we observed that SBP and DBP is 

highly correlated through the random intercepts, 0.78 (95% CI [0.72, 0.85]). The strong 

correlation between SBP and DBP may substantially enhance the predictive ability of joint 

models, which is consistent with the findings in Fieuws et al [24].

AARD and MRD provide summary measures of the distance between the events and non-

events risk distributions. For example, AARD of JM2 (SBP and DBP) at year 15 is 

approximately 0.30 which means that 30% more people in the CAD group than patients in 

the non-CAD group are above the population average risk. Compared to prediction models 

using only SBP or DBP, joint models using both SBP and DBP (JM2) can provide about 

20.8% estimated gains in prediction when compared to models using SBP only, and 17.5% 

gains in prediction compared to using DBP only. Similarly, MRD of JM2 model at year 15 is 

0.127 implying the mean CAD risk in the CAD group is 13% higher that in the non-CAD 

group. Joint model using both SBP and DBP also shows 44% estimated gains in MRD than 

the model using SBP only and 28% estimated gains than the model using DBP only. Both 

AARD and MRD shows greater gains of the joint models with two biomarkers over the 

single biomarker models than the estimated gains using AUC.
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7. Discussion

When multiple longitudinal outcomes are collected along with the primary endpoint of time-

to-event variable in biomedical studies, it’s of practical need and scientific interest to assess 

how these longitudinal measurements can be used to predict the survival probability and 

how much the longitudinal measurements can contribute to prediction. In this work we 

studied the predictive performance of multiple longitudinal measurements for a time-to-

event outcome in a joint modeling framework. Especially, we applied various prediction 

metrics including AARD and MRD to evaluate the predictive accuracy of various models. 

Extensive cross-validation based simulations were conducted to assess the predictive 

performance of various models using different predictive criteria.

Joint models of multiple longitudinal outcomes and time-to-event outcome can find many 

applications in practical use. The joint modeling framework offers a powerful tool for data 

collected in routine clinical practice where biomarkers such as BP, lipids, glucose level and 

other markers are collected as part of routine clinical care. The use of joint modeling 

approach can offer prospective prediction of patients’ risk for various diseases based on the 

collective longitudinal measures of these marker values and give clinicians a better tool to 

utilize these repeatedly measured marker values. In health care system with comprehensive 

electronic medical record data, the modeling and prediction approach can be incorporated 

into the computer system to offer real-time modeling and prediction results for individual 

patient, providing on-going decision support to clinicians and leading ultimately to better 

patient care and health outcomes.

Parameter estimation for this work was implemented using the EM algorithm in R. When 

the number of longitudinal outcomes are highly increased, to avoid potential slow 

computation using the EM algorithm, alternatively, one can apply a Bayesian MCMC 

approach. The Bayesian MCMC approach has been applied previously in joint models of 

multiple longitudinal and time-to-event outcomes [51, 22, 21, 20, 52].

The predictive accuracy measures proposed in this work are model-based, hence their 

validity depends on the correct specification of both the longitudinal and the survival 

models. Our simulation results demonstrated the potential impact of omitting a longitudinal 

variable from the models. Further research will be needed to fully determine the robustness 

of these predictive accuracy measures with mis-specified models.

In this work, we didn’t construct any formal statistics to test the prediction improvement in 

joint models with multiple longitudinal outcomes compared to other models. This remains 

an interesting research extension in computing the standard errors of predictive criteria by 

performing Bootstrap techniques, for example. In simulations, it is also observed that 

random effect prediction has some impact on the predictive accuracy of joint models. It is 

therefore of interest to propose new approaches to improve the accuracy of random effect 

prediction in the joint modeling framework.
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Figure 1. 
Observed annualized longitudinal SBP and DBP measures over time and fitted population 

mean curves for the CAD and non-CAD group.
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Figure 2. 
Longitudinal blood pressure profiles for two selected patients.
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Figure 3. 
Conditional survival probability predictions for subject 143. The solid line denotes the 

median of predicted conditional survival probabilities over the 200 MC samples. The two 

dashed lines represent the 95% point-wise confidence intervals.
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Figure 4. 
Conditional survival probability predictions for subject 318. The solid line denotes the 

median of predicted conditional survival probabilities over the 200 MC samples. The two 

dashed lines represent the 95% point-wise confidence intervals.
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Table 4

Parameter estimates, standard errors and 95%CI using the training data set. α1 and α2 are the association 

estimates between the risk of CAD and current value of SBP and DBP at event time point, respectively. λi i = 

1, …, 7 denote the baseline hazards of the 7 piecewise constant intervals.

Parameter Estimate StdErr lower 95 %CI upper 95 %CI

Longitudinal SBP

Intercept 135.20 0.96 133.31 137.08

time 0.33 0.18 −0.03 0.69

time2 −0.04 0.01 −0.07 −0.02

Age −0.04 0.06 −0.17 0.08

Race 5.33 0.98 3.41 7.25

log(σ1) 2.49 0.01 2.46 2.52

Longitudinal DBP

Intercept 79.19 0.40 78.41 79.97

time −1.64 0.11 −1.85 −1.43

time2 0.05 0.01 0.04 0.07

Age −0.13 0.03 −0.18 −0.08

Race 3.18 0.37 2.45 3.90

log(σ1) 1.94 0.01 1.91 1.97

Time-to-CAD

Age 0.06 0.01 0.04 0.08

Smoking History 0.36 0.18 0.01 0.71

Race −0.53 0.19 −0.90 −0.17

Diabetes 0.06 0.17 −0.27 0.40

α1 0.021 0.010 0.001 0.041

α2 0.018 0.017 −0.015 0.050

log(λ1) −8.41 1.00 −10.38 −6.45

log(λ2) −8.79 1.00 −10.75 −6.83

log(λ3) −8.43 1.00 −10.38 −6.47

log(λ4) −7.70 0.98 −9.62 −5.79

log(λ5) −6.96 0.96 −8.85 −5.07

log(λ6) −7.09 0.95 −8.96 −5.22

log(λ7) −6.51 0.92 −8.32 −4.70
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