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Abstract

Background: Soma localization is an important step in computational neuroscience to map neuronal circuits.
However, locating somas from large-scale and complicated datasets is challenging. The challenges primarily originate
from the dense distribution of somas, the diversity of soma sizes and the inhomogeneity of image contrast.

Results: We proposed a novel localization method based on density-peak clustering. In this method, we introduced
two quantities (the local density p of each voxel and its minimum distance & from voxels of higher density) to describe
the soma imaging signal, and developed an automatic algorithm to identify the soma positions from the feature space
(p, §). Compared with other methods focused on high local density, our method allowed the soma center to be
characterized by high local density and large minimum distance. The simulation results indicated that our method had
a strong ability to locate the densely positioned somas and strong robustness of the key parameter for the localization.
From the analysis of the experimental datasets, we demonstrated that our method was effective at locating somas
from large-scale and complicated datasets, and was superior to current state-of-the-art methods for the localization of

densely positioned somas.

Conclusions: Our method effectively located somas from large-scale and complicated datasets. Furthermore, we
demonstrated the strong robustness of the key parameter for the localization and its effectiveness at a low signal-to-
noise ratio (SNR) level. Thus, the method provides an effective tool for the neuroscience community to quantify the
spatial distribution of neurons and the morphologies of somas.

Keywords: Touching soma localization, Density-peak clustering, Optical microscopic image

Background

Reconstructing brain-wide wiring networks at single-
neuron resolution is the key to understanding how
neuronal circuits orchestrate complex behaviors [1],
and represents a major engineer challenge [2-4]. To
achieve this goal, many computational techniques are
required such as the localization and segmentation of
neuronal somas, which is the first step in digital neur-
onal circuit reconstruction. Soma segmentation can
provide the spatial distribution and morphometrics of
somas, which are quantitative aspects of some brain
disease diagnosis [5, 6]. For example, in Alzheimer's
disease we can sometimes observe selective loss of
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nigral neurons [7], whereas in the cortices of patients
with Huntington disease there is an increase in the
density of large glia and a reduction in the neuronal
size and density [8]. Recent advances in molecular
labeling [9, 10] and imaging techniques [11-16] have
enabled imaging of the whole mouse brain at a micron
spatial resolution, and have provided a database for the
mapping of neuronal circuits. However, the localization
and segmentation of neuronal somas from this type of
dataset is challenging. These challenges primarily
originate from the following three aspects: the dense
distribution of somas (touching somas), the diversity of
soma sizes, and the inhomogeneity of image contrast.
Many methods have been proposed for the automatic
localization of touching cells, such as watershed algo-
rithms [17-20], graph-based methods [21-25], energy
functional-based models [26—31] and machine learning
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approaches [32-34]. Additionally, some special methods
are available for splitting touching cells [35-42], such as
distance transform based cell detection [35], concave
point-based segmentation methods [36, 37] and the gra-
dient flow tracking method [38, 39]. These methods have
their own advantages and behave well for some specific
applications. However, most require enhancement for
wider applications. For example, watershed algorithms
often suffer from over-segmentation of cells when the
image contrast is inhomogeneous; initial localizations
are not easy to set using energy functional-based models
to locate touching cells; distance transform based cell
detection method faces challenges for the case that
multiple cells touching each other; and gradient flow
tracking often results in under-segmentation in locating
touching cells. Therefore, these methods experience dif-
ficulties in locating touching somas from large-scale 3D
images in which a dense distribution of somas, diversity
of soma sizes and inhomogeneity of image contrast are
common. Recently, two methods have been proposed for
the large-scale localization of neuronal somas. The first
is our previous method named NeuroGPS [43], which
introduces the regularization item in the sphere fitting
model to eliminate the influence of the thick neurites on
soma localization. However, when using NeuroGPS to
locate closely positioned somas, the accuracy depends
on the reasonable assignment of initial positions (seeds).
Assigning too many initial positions usually generates
false positive positions. The second method use mean-
shift clustering to search soma positions (i.e., the center
point of the cluster) [44], which generates high recall
and precision rates for the analysis of specific datasets.
However, the number of clusters in mean-shift cluster-
ing is determined by the key parameter, kernel width. A
big kernel width usually leads to a small number of
clusters, and conversely a large number of clusters is
for small kernel width. Thus, it may be difficult to find
a reasonable kernel width that is suitable for the diver-
sity of soma sizes.

Here, we proposed a method for the automatic large-
scale localization of neuronal somas. This method was
based on density-peak clustering [45], in which two
quantities (the local density p of each voxel and its mini-
mum distance & from voxels of higher density) were in-
troduced and formed the feature space (p, §). From the
feature space, we developed an automatic algorithm to
find the clusters. Each cluster corresponds to the
morphology of a soma, which achieves the localization
of a soma. We demonstrated the validity of the proposed
method for the large-scale localization of somas. We also
demonstrated its strong anti-noise ability, the robustness
of the key parameter for localization, and the high
efficiency in the analysis. Furthermore, we tested our
method on two image stacks. From one dataset, our
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method achieved the localization with a F;-measure of
0.93, which was far superior to some state-of-the-art
algorithms. From the other large scale dataset (4.3 x
2.4 x2.7 mm®, 326 GB), our method located approxi-
mately 35,000 somas and achieved F;-measures of 0.93
and 0.98 from the analysis of two sub image stacks.

Methods

Data acquisition

The experimental datasets were obtained by imaging a
mouse brain with the two-photon fluorescence micro-
optical sectioning tomography system (2p-fMOST) [16].
All experiments were performed in compliance with the
guidance of the Experimental Animal Ethics Committee
at Huazhong University of Science and Technology.
The original size of the volume pixel was 0.5 x 0.5 x
2 um?; it was merged to 2 x 2 x 2 um® for our analysis.
We used three experimental image stacks in Figs. 4c, 5
and 6. The synthetic data consisted of 28 image stacks
with different signal-to-noise ratios (SNR=1, 2, 4 and
6). Each image stack contained only one pair of somas.
The synthetic data were used in Fig. 3 and 4a, b. In
addition, we tested the proposed method on Nissl stain-
ing datasets [46] and structured illumination micros-
copy datasets [47] (Table 1).

Our proposed method for the location of the neuronal
somas consists of the following three steps: 1) extract
the soma’s region by using an adaptive image binariza-
tion and erosion procedure; 2) locate somas with modi-
fied density-peak clustering; and 3) merge the located
results. Detailed descriptions of each step are provided
in the following sections. We also depict the entire
routine of the proposed method in Fig. 1. Notably, our
method can also segment the soma’s shape, and we
present the related segmentation procedure.

Estimation of the soma’s region

The procedure for estimating the soma’s region consists
of the following steps: 1) split the image stack into sub-
blocks; 2) binarize each sub-block and erode each binar-
ized sub-block; 3) merge all eroded sub-blocks into a
single image stack; and 4) extract the connected region
from the merged image stack. We regard the extracted
region as the soma’s region in which one or several
somas may be included.

Generally, the signal intensities of somas vastly change
in large-scale image stacks. This phenomenon increases
the task difficulty in distinguishing between the fore-
ground and background. Considering this point, we split
a large-scale image stack into sub-blocks and analyze
these sub blocks instead of the whole image stack. Using
this procedure, we reduce the range of the signal inten-
sity. When splitting the image stack, the size of a sub-
block is set to approximately 200 x 200 x 200 voxels.
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Table 1 Performance comparison of FarSight, NeuroGPS, HeY's method, GFT and the proposed algorithm in different datasets

Dataset Type Volume Ground truth Proposed FarSight NeuroGPS HeY's method GFT
Data 1 2p-fMOST 150 % 150 x 150 788 764/0.92/ 805/0.85/ 767/0.78/ 620/0.70/ 490/0.60/
2X2X2 um3 0.95/0.93° 0.83/0.84 0.80/0.79 0.89/0.78 0.97/0.74
Data 2 2p-fMOST 100 100 x 100 288 280/0.92/ 268/0.75/ 265/0.84/ 246/0.77/ 231/0.74/
2X2X%X2 um3 0.95/0.93 0.81/0.78 0.92/0.88 0.90/0.83 0.92/0.82
Data 3 2p-fMOST 100 100 x 100 25 24/0.96/ 24/0.88/ 24/0.96/ 24/0.96/ 24/0.96/
2x2x2um? 1.00/0.98 0.92/0.90 1.00/0.98 1.00/0.98 1.00/0.98
Data 4 2p-fMOST 100 x 100 x 100 164 170/0.94/ 179/0.76/ 172/0.88/ 165/0.82/ 144/0.73/
2%2%2 pm? 0.91/0.92 0.70/0.73 0.84/0.86 0.81/0.81 0.83/0.77
Data 5 2p-fMOST 100 100 x 100 148 147/0.96/ 173/0.86/ 146/0.94/ 147/0.84/ 135/0.86/
2X2X%X2 um3 0.97/0.96 0.74/0.80 0.95/0.95 0.85/0.85 0.94/0.90
Data 6 SIMP 100 100 x 100 496 486/0.95/ 528/0.82/ 407/0.82/ 399/0.79/ 452/0.89/
1Xx1x2um’ 0.97/0.96 0.77/0.80 0.99/0.90 0.99/0.88 0.98/0.93
Data 7 SIM 100 x 100 x 100 93 89/0.96/ 97/0.88/ 84/0.90/ 87/0.90/ 83/0.88/
1TX1x2 um3 1.00/0.98 0.85/0.86 1.00/0.95 0.97/0.93 0.99/0.93
Data 8 Nissl staining 100 100 x 100 695 616/0.85/ 680/0.86/ 551/0.77/ 502/0.66/ 501/0.71/
1Tx1x1 um3 0.95/0.90 0.84/0.85 0.97/0.86 0.91/0.77 0.98/0.82
Data 9 Nissl staining 100 x 100 x 50 287 266/0.90/ 263/0.79/ 216/0.74/ 197/0.67/ 187/0.64/
1x1x1um? 0.97/0.93 0.86/0.82 0.98/0.84 0.97/0.79 0.99/0.78
Mean + SD /recall 093 +0.04 0.83 £0.05 0.85+0.08 0.79£0.10 0.78£0.12
/precision 0.96+0.03 0.81+£0.07 0.94 £0.07 0.92£0.07 0.96 £0.05
/F 0.94+0.03 0.82+0.05 0.89+0.06 0.85+0.07 0.85+0.08
two-side p-value of Mann-Whitney test /recall 0.001" 0.021™ 0.005" 0.008"
compared with the proposed method /precision 0.000" 0.893™ 0.209™ 0.789™
/F, 0.000” 0051"™ 0010 0025’

ns not significant

*» <005, ** p<0.01

?Number of detected cells/recall/precision/F;-measure

PStructured illumination microscopy

Input an image stack,

Extract soma’s
region by adaptive
/ image binarization
and erosion, I

Locate somas with
density-peak
clustering in every
connected region of
the stack /’

Merge the located
results

Fig. 1 The flow chart of the proposed method for the localization of neuronal somas
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Any two neighboring regions have overlapping regions
to eliminate the boundary effects. The overlapped width
is set to 12 fold of the size of a voxel (24 pum). This set-
ting can eliminate boundary effects and avoids the extra
calculations required for the overlapped regions.

For each sub-block, let I(x, y, z;) be its kth slice. We
binarize I(x, y, zx) for all k, with the following formula

C(xvyvzk)

(1)

1 I(x,y,2k) > C(x,9,2k) + threpinarization
B .Y, = 1) ! 1)
(3,24 { 0 otherwise

Here, C(x, y, zx) represents the background image, gen-
erated as follows: the image min (I(x, y, zx), threorsu) is
convolved 10 times with averaging template of 3 x 3 x
1 pixels. Here, 3x 3 x 1 and 10 are empirical values that
can ensure that the convolved images are sufficiently
smooth and approach the background. threqgrsy is a bi-
narization threshold estimated by Otsu’s method [48].
threpinarization I EQ. (1) is the predetermined binarization
parameter. The above binarization procedure is based
on the assumption that C(x, y, zx) can be approached
with the Poisson background model, which is suitable
for most images collected with optical microscopy. The
selection principle of threpinarization Should assure that
the soma regions can be completely identified, and al-
lows the identified region to contain a small part of the
background points. Generally, threpinarization 1S set to
larger values 5 — 8 if the signal intensity of the soma
regions is more than double the intensity of the back-
ground; otherwise it is set to 2 — 4. Based on this
principle, threpinarization 1S set to 2 for the simulation
dataset in our analysis. This value is low and ensure that
all soma regions can be identified (even for SNR=1)
and that the identified region contain only about 3 % of
the background points, estimated with the Poisson back-
ground model. For experimental signals with high SNRs
but with soma artifacts, threpinarization 1S S€t to 6 to elim-
inate the soma artifacts. Notably, the soma regions
consist of voxel points with B(x, y, z;) = 1.

The binarized image stack B also contains artifacts
and noise points. Therefore, we eliminate these unneces-
sary points using the erosion operation [49]. For each
volume pixel with a value of 1, we set its value to zero
when the sum value of this volume pixel and its 26-
connected volume pixels is less than the erosion thresh-
old T; otherwise, there is no change in its value. We
perform this operation for all this type of volume pixels
in image stack B to complete one erosion operation. We
iteratively repeat this erosion operation until the eroded
image stack reaches steady state. We set the erosion
threshold 7 to 9 in the first erosion operation and con-
tinuously increase this value with a step of 0.027 for the
subsequent erosions. The maximum value of T is less
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than 11. The specific stability condition of erosion refers
to that the relative change rates of two indices, gener-
ated with the erosion operation, are less than the given
threshold threeyosion (0.1 % in our experiment). In these
two indices, one is the number of voxels with value 1
and the other is the number of connected regions in the
eroded image. Here, threg,osion and T are used to control
the intensity of erosion. The reasonable number of
erosion operations should ensure that the soma morph-
ologies cannot be damaged and is determined by the
voxel size and the minimum radius of the cells. We
verified that the settings in our experiment are suitable
for voxel sizes ranging from 1x1x1 pm® to 2x2 x
2 um?® and soma radii ranging from 3 to 10 pm.

We merge all eroded image stacks into a single image
stack using the following method. We detect the
overlapped region of two neighboring sub-blocks
according to the label information from the splitting of
the image stack. The overlapped region contacts two un-
overlapped regions and is equally divided into two
regions denoted by R, and R,. This partition leads to
one sub-block denoted by A with R, and R, indicating
the interior and boundary regions, respectively, and the
other denoted by B with R, and R, indicating the inter-
ior and boundary regions, respectively. We assign the
signal of A in region R, and the signal of B in region R,
to the overlapped region. We merge all neighboring
sub-blocks in x-axis direction, thereby making the size
of the merged sub-blocks the same as the size of the
original image stack in the x-axis direction. By continu-
ously using the same operation in the y- and z-axis
directions, all sub-blocks can finally be merged into a
single image stack.

Finally, we extract the connected region (which refers
to the estimated soma region) from the merged image
stack using region growing. During the extraction, two
volume pixels with values of one are regarded as con-
nected if their positions appear in the sphere region with
the radius of the square root of 3. Next, we locate somas
in each connected region.

Localization and segmentation of somas based on fast
search of density peaks

For each connected region, we use the density peak
clustering method [45] to locate and segment somas.
Briefly, we locate somas by finding density peaks of the
signal (cluster center) and segment somas via the cluster
assignment.

The density peak clustering is recently proposed
clustering method. It depends on two quantities: the
local density p; of each point, and its minimum distance §;
from points of higher density. The two quantities con-
struct the 2D feature space (p, 8). The feature space, com-
bined with the hypothesis “cluster center is characterized
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by a higher density p than their neighbors and by a
relatively large distance §” [45], provides the effective
information for data clustering. However, the original
density-peak clustering method has a disadvantage in that
it requires the manual selection of cluster centers. It is
infeasible to select cluster centers manually when we use
the method to locate thousands of cells from large-scale
images. Therefore, we developed a new method to auto-
matically select cluster centers.

The modified density peak clustering method applied
for soma localization and segmentation consists of three
parts (Fig. 2):

a) computing the local density p; of each voxel point,
and its minimum distance §; from points of higher
density, and constructing the feature space (p, d);

b) finding candidate cluster centers by recognizing
the isolated points in the p-8 space, and deleting
redundant cluster centers by restricting the
minimum distance J;

c) assigning cluster for the points except the identified
cluster centers.

Computing p, &
For the voxel point p; (i=1, 2, ..., m) in the estimated
soma region, the local density is defined as

1
pi:E Z I(Pj)K(Pia Pj)
i:HﬂrP/ ZSR
1 1 lpi-ll5
== I(p; - 2
5 IZ 1) = e @)
J: || Pi-pj ZSR

Here, I(p;) represents the signal value of volume point
Pi» K(ps, pj) is a Gaussian kernel function with a kernel
width o, Z is a normalization constant, R is the window
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radius of the kernel function (R=20), and ||.||o is 2-
norm. In our experimental dataset analysis, the kernel
width o is set to 4 pm, which is slightly more than half
of the average value of the soma’s radius.

After obtaining the local density of each voxel point,
we calculate the minimum distance 8 of a voxel point
using the following formula

vmin pi—ijz
J: P/‘Px Pl < max p}
vj
& =q M pi‘prz (3)
1 p; = maxp;
vj

Identifying cluster centers

Cluster centers are characterized by a higher density p
than their neighbors and by a relatively large distance §,
and act as isolated points in the p-8 space. Therefore,
the possible cluster center points can be selected accord-
ing to the feature density A (the density computed in
the p-8 space). The redundant cluster centers can be
removed by restricting the minimum distance 8. Below
are the specific steps.

Step 1) Discretize the feature space. We equally divide
the intervals (0, max p;) and (0, max §;) into
the [1000max p,] + 1 and [1000max ;] + 1
subintervals, respectively. Here, [.] is a
rounding operation. We count the number of
feature points (p, 8) that drop into the grids to
generate a feature image. We convolve the
generated image with a two-dimensional
Gaussian window, and obtain the filtered image
that contains the information of the density
of the feature points. Here, the size of the

p - d feature space
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centers. assigning each remaining
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=

Fig. 2 The steps for the localization and segmentation of somas
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two-dimensional Gaussian window is 11 x 11 grids
and the kernel widths for x- and y-coordinates are
both set to 3-fold the size of the grid.

Step 2) Estimate the density of the feature points. For
each feature point, we estimate its density by
using the value of the pixel, whose region
contains the feature point, in the filtered
image. This density is named the feature
density, denoted by A.

Step 3) Generate the candidate cluster center points.
We obtain the cluster center points by using
the following formula

& 5(1')2& (4)

max |-z

;| A(i)<thre

selective

Here, thregeective is @ predetermined parameter
and is set to 107 in our analysis. Ry, is the
minimum value of the estimated soma radius,
and is approximately equal to 3 pm in our
dataset. Notably, we usually set thresejective tO @
small value to ensure that the candidate points
contain all soma positions in the estimated
region. The redundant points generated here
can be deleted in Step 4.

Step 4) Delete redundant cluster centers. We sort the
candidate center points generated in Step 3 in
the order of the descending signal density p,
obtained with Eq. (2). We traverse the points
in this order using the following method. For
the current point, we search its nearest point
among the points that have not been traversed,
and calculate the distance between the point
and its nearest point. If the distance is less
than the minimum value of the estimated soma
radius, we label this nearest point. The above
procedure is repeated until all candidate points
are traversed. We regard the unlabeled
candidate points as the final cluster centers,
i.e., the positions of somas.

Assigning cluster
After identifying the cluster centers, we assign each
remaining point to the same cluster as its nearest
neighbor of higher density. The detailed steps are
described below.

Step 1) Label the cluster centers. We assign a unique
sequence number to each cluster center.

Step 2) Sort the points in the estimated region. We sort
the points in the estimated region in the order
of the descending local density p. The sorted
points exclude cluster centers.
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Step 3) Assign the points to their clusters. For the
current sorted point, we search its nearest
point among the points that have higher local
densities p than the current point. If the
nearest point has been assigned to a sequence
number, we assign this number to the current
point; otherwise, no operation is performed on
this point. Using this way, we traverse all
sorted points and the unassigned points form a
new point series.

Step 4) Repeat Step 2 for the new point series until all
points are assigned to their clusters. Points
with the same labels are placed into the same
cluster.

Performance evaluation

We use the precision rate, recall rate and F;-measure
to evaluate the localization results derived by the algo-
rithms. We regard the manually localized positions as
true positions. We define an automatically localized
position as a true positive position provided that the
distance between the automated localized and true
positions is less than the fixed threshold, which is set to
8 pum in our experiment. The precision rate is defined
as the ratio of the true positive positions to the auto-
matically localized positions. The recall rate is defined
as the ratio of the true positive positions to the manu-
ally localized positions. The Fj-measure is defined as

2 isi i L
cxprecisionxreca”  Note that these three evaluation indices
precision—+recall

are influenced by the threshold used to identify the true
positive positions. The reasonable value should ensure
that the evaluation indices change slowly when increasing
or decreasing this threshold around the pre-set value.

Results

Segmentation of simulated touching somas at different
levels of SNR

A simulation test was performed to validate the effect-
iveness of our method for soma localization. The syn-
thetic data consisted of 28 image stacks with different
signal-to-noise ratios (SNR=1, 2, 4 and 6). Each image
stack contained only one pair of somas. At each SNR
level, there were 7 image stacks with different levels of
overlap. All somas had a fixed radius of 10 um, and the
distance between a pair of somas (denoted by d) ranges
from 2 to 26 pm. When generating the simulation data-
set, let the sphere represent a soma. The signal in the
inner and out region of a soma is a Poisson signal with
mean value of I, + I, and I,. SNR is defined as the ratio
of I, to the square root of I, + I,. I,, was fixed and set to
100 in our analysis. In this case, the SNR was deter-
mined by ,. All simulation datasets are shown in Fig. 3a,
and their localization results are shown in Fig. 3b. From
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datasets derived from our method

Fig. 3 Segmentation of touching somas at different levels of SNR. a The simulation datasets that contain 28 pairs of somas. All somas had the
fixed radius of 10 um and the distance of a pair of somas, denoted by d, ranged from 2 um to 26 um. b The segmented results on the simulated

Fig. 3b, we see that our method effectively separated the
severely-touching somas at low SNR levels (d =14 for
SNR = 1). Additionally, the separated somas, the slightly-
touching somas, and the severely-touching somas were
well located and segmented with our method if the SNR
was equal to 2 or greater than 2. These results indicate
the effectiveness of our method.

Robustness of clustering parameter on soma localization

Our method used density-peak clustering for the
localization of a soma. Compared with published
localization methods [44, 50, 51] that employ mean-
shift clustering [52] for this purpose, our method had a
stronger robustness of the clustering parameter on
soma localization. We used the simulated datasets, gen-
erated with the above-described procedure, to verify
this point. These two cluster methods both have a com-
mon parameter (kernel width) that influences the
localization results. Generally, a large kernel width re-
sults in a smooth signal point density curve, but loses
the soma boundary information and thus easily con-
fuses densely positioned somas. A small kernel width
retains most of the soma boundary information but
leads to more than one density peak in the inner region
of a soma. Therefore, we regarded kernel width as the
key cluster parameter, and we quantified the influence
of kernel width on the localization results (Fig. 4a, b).
We compared the localization results derived using
these two methods on one dataset (Fig. 4a). The results

indicated that the reasonable value of kernel width for
density-peak clustering ranged from 1 to 7 pm, which
was far larger than the range (2.5 - 4 pm) used for
mean-shift clustering. We used more datasets to verify
this conclusion and obtained the similar results
(Fig. 4b), although the reasonable range narrowed as
the SNR decreased.

Additionally, we compared the computation efficien-
cies of these two methods. We used an experimental
image block from the hippocampal region with a 200 x
200 x 500 size to generate the testing datasets, which
consisted of the first 50, 100, ..., 500 slices of this
image stack. The results indicated that our method had
linear time complexity and was approximately 10-
foldfaster than mean-shift based localization method
when analyzing a large scale dataset with more than
400 slices (Fig. 4c). The localization part of our method
included three steps: computing the local density p;
searching the minimum distance §; and identifying
cluster center points. The bottleneck was the search
for the minimum distance. We reduced the searching
space to speed up our method using two strategies:
locating somas in every connected region rather than
in the whole image stack and using local search for the
minimum distance in each connected region. We dem-
onstrated that the complexity of our method is about
proportional to the volume of the image stack. The
detailed demonstration of the algorithm complexity is
provided in Additional file 1.
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hippocampal image stacks of different sizes
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size of image stacks

Localization of the touching somas from an experimental
dataset

We used a dataset with closely positioned somas to val-
idate the effectiveness of our method for touching soma
localization. The dataset was from a hippocampal region
with a volume of 150 x 150 x 150 (2 x 2 x 2 um?). From
this dataset, 788 somas were manually detected (Fig. 5a)
and many somas touched one another. We presented
the soma localizations derived by the manual method
and our method in Figs. 5a and b. Our method located
764 somas. The recall and precision rates were 0.92 and
0.95, respectively. The somas on the boundary were
neglected in the quantifications, which could explain
why some somas were not manually labeled. Further-
more, our method also behaved well when the key
parameter, kernel width, vastly changed. Figure 5c
showed that our method provided the segmented results
with F; scores greater than 0.8 for kernel width ranging
from 2.5 to 8.0 um. These two boundary values, 2.5 and
8 um, vastly deviated from the optimal parameter of

4.0 pm, representing slightly more than half of the aver-
age soma radius. This result indirectly verified that our
method was suitable for dealing with the diversity of
soma sizes. From the above results, we conclude that
our method is effective at locating touching somas.

Large-scale soma localization

Our method also effectively located somas from huge
and complicated datasets. We used a dataset in which
somas exhibited diversity in their spatial distributions
and sizes to test our method. The size of this dataset
was 2124 x 1200 x 1370 and the voxel size was 2 x 2 x
2 um?®. A total of 35274 somas were detected when our
method was used to analyze this dataset. To quantify the
segmentation, we selected two typical subregions with
the same size of 100 x 100 x 100, labeled with A and B.
Region A contained densely positioned somas and region
B contained sparsely positioned somas, as shown in
Fig. 6a- a and b. The quantified results were as follows:
for region A, the recall rate, precision rate, and F;-

Ground truth

Proposed

analyze this dataset and are plotted against kernel width

Fig. 5 Soma localization results derived by the proposed method. a The manual localizations from the image stack with the total size of 150 x
150 x 150 voxels and with the voxel size of 2 x 2 x 2 um>. b Shows the localization of the somas derived by the proposed approach. The detailed
results can be found in the enlargement of the region (circles). White dots indicate manually located positions of somas; red dots are the positions
located by our method. Arrows and triangles indicate the false positive positions and the missing positions respectively. ¢ Robustness of Gaussian
kernel width on the localization. The evaluation indexes, including localization precision, recall and F;-measure, are obtained using our method to
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measure were 0.95, 0.92, and 0.93, respectively, whereas
for region B, these three quintiles were 1.00, 0.96, and
0.98, respectively. This result indicates the validity of our
methods on this dataset. Figure 6b shows the touching
soma segmentation results of three connected regions.
Note that the different gray levels here represent differ-
ent somas. We also illustrated the complexity of this
dataset by quantifying related quantities. In Fig. 6¢, we
calculated the radii of the detected somas and the corre-
sponding radius distribution with a mean of 5.9 pm and
a standard deviation of 1.8 pum. Figure 6¢ showed that
the radii of the detected somas were in a wide range
(primarily 3 to 10 pum), indicating the diversity of soma
sizes. In Fig. 6d, we calculated the distribution of the
overlap measure of the detected somas. The overlap
measure refers to the ratio of the total radii of a pair of
detected somas to the distance between this pair of

somas. A detected soma and its closest detected soma
form a pair of detected somas. From this definition, an
overlap measure of more than 1 corresponds to the two
somas touching one another. In Fig. 6d, this value of
more than 1 accounted for 23 % of the somas, indicating
a certain number of touching measures. Figure 6e
showed the different levels of signal intensity of the de-
tected somas, which primarily ranged from 80 to 200.
These statistical results verify the complexity of the data-
set, which may be challenging for the previous methods.

Comparison of the proposed method with other methods
in different datasets

We compared our method with four other methods
(FarSight [42], our previously proposed method Neu-
roGPS [43], HeY’s concave point-based method [37] and
the gradient flow tracking (GFT) [38]) and quantified
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the localizations obtained with these five methods on
nine different experimental datasets. These datasets were
from three types of images: 2p-fMOST [16], Nissl stain-
ing [46], structured illumination microscopy [47]. We
made Mann-Whitney [53] test of evaluation indexes
(precision, recall, Fi-measure), since they were not nor-
mal distributions, and analyzed the test results.

The localization evaluation indexes of these methods
on the nine datasets were listed in Table 1. The last two
rows at the table were values of mean, standard devi-
ation and the results of Mann-Whitney test. For the re-
call index, the p-values were all less than 0.05, indicating
the proposed method is superior to the other approaches
in recall. This was because the other methods easily gen-
erated under-segmentation for densely positioned cells
(Data 1, Data 2, Data 4, Data 6, Data 8, Data 9), resulting
in lower values of recall. For sparsely positioned cells
(Data 3, Data 5, Data 7), almost all methods could get
fine results. Though the proposed method was not sig-
nificantly better than the other approaches in precision
(except FarSight, p-value, 0.000), it still kept high accur-
acy (mean value, 0.96) and was more stable than other
methods (standard deviation, 0.03 vs. ~0.07). The test
results of Fj-measure also indicated that the proposed
method behaved more accurately and stably. We showed
the localization results of these datasets in Additional
file 2: Figure S1-S9. Notably, for better localization, all
the datasets were preprocessed by the method in “Esti-
mation of the soma’s region”, and we used the prepro-
cessed datasets as the input of these methods.

Discussion
Methods [44, 50, 51] using the typical clustering method
mean-shift [52] have been proposed to locate cells. Re-
cently, Frasconi et al. [44] proposed a method for the
large-scale localization of somas in which mean-shift
was employed to estimate the initial soma positions. As
indicated in Fig. 4, it is difficult to find a reasonable
parameter when using mean-shift for estimating the po-
sitions of somas with a diversity of sizes. Therefore, this
method considers the structure of the mouse brain
region and regards it as prior information for the identi-
fication of the final soma positions. This operation
significantly enhances the localization accuracy but con-
strains its application range. In contrast to this method,
our method uses density-peak clustering rather than
mean-shift to locate somas, and does not require prior
structure information for soma identification. Thus, our
method may have a wider application than this method
and maintain a high level of localization accuracy.
Generally, the localization of cells consists of three steps:
image preprocessing; initial cell localization; and identifi-
cation of the real initial positions. For example, Frasconi’s
method uses supervised semantic deconvolution for image
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preprocessing, mean-shift to estimate the initial cell posi-
tions, and structure information from the brain region to
identify the real somas. Methods based on model fitting,
including our previous NeuroGPS [43], use the threshold
value to extract the soma’s region, search for positions cor-
responding to signal peaks that are regarded as the initial
positions, and model fitting to screen the real soma posi-
tions. FarShight method [42] is not an exception, and em-
ploys a multi-scale Laplacian of Gaussian (LoG) filter to
initially estimate the soma positions. The estimation of the
initial positions is an important factor to determine the
soma localization accuracy. In contrast to the above
methods that use the feature (i.e., the soma center
featured by a signal peak), our method introduced
density-peak clustering, which allowed the soma center to
be featured by a signal peak and a large distance &
between the signal peak point and its closest point corre-
sponding to the higher signal peak. Thus, our method
used more features, which might make the estimation of
the initial soma positions be more accurate.

Image preprocessing is required for soma localization.
The goal of image preprocessing is to increases the sig-
nal difference between the soma’s region and the back-
ground region, and to decrease the difficulties in
extracting the soma’s region. Considering the diversity
of images, it is difficult to find one commonly used
image preprocessing method that is suitable for most
soma images. Our method employs binarization and
erosion to extract the soma’s region. The correspond-
ing parameter settings are used to accurately extract
the soma’s region based on the following assumptions:
1) the estimated radius of somas ranges from 3 to
10 pm; 2) the background noise is Poisson noise; and
3) the voxel size ranges from 1x1x1 pum?® to 2 x 2 x
2 um®, With the exception of the assumption 3, the as-
sumptions are suitable for the most cell imaging. We
also note that the binarization parameter is not rele-
vant to the voxel size, and that the estimation of the
soma’s region for a voxel size far smaller than 1 x 1 x
1 um?® can be obtained with high accuracy by increas-
ing the erosion intensity. The above analysis indicate
that our image processing method can be applied to
most image stacks.

The proposed method contains five main parameters:
threpinarization; P €erosion; the maximum value of the ero-
sion threshold 7; Gaussian kernel width o; and the
threshold for selecting candidate cluster center points
thregelective- The preprocessing parameters, threpinarization
three osion and the maximum value of the erosion thresh-
old T are used to accurately extract the soma regions.
The threpinarization setting is used to ensure that the
extracted foreground can completely cover the soma
regions. The erosion operation is used to eliminate the
artifacts and noise points in the binarized image stack.
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thregrosion and T are used to control the intensity of the
erosion, and their settings are determined by the voxel
size and the soma radii. We verified that these settings
were suitable for voxel sizes ranging from 1x1x1 pum?
to 2x2x2 um® and soma radii ranging from 3 pm to
10 pm, indicating that these settings were suitable for
most cell images. The Gaussian kernel width o is a scale
parameter used to compute the local density and is re-
lated to the soma radii. Too larger values of ¢ usually
lead to under-segmentation, whereas too small values
may result in over-segmentation. A suitable o value is
about half of the average value of the soma radius (3 —
4 pm). The threshold threggecive is used to select
candidate cluster center points. Cluster centers are char-
acterized by a higher density p than their neighbors and
by a relatively large distance §, and act as isolated points
in the p-8 feature space. Therefore, the possible cluster
center points can be selected according to the feature
density A (the density computed in the p-§ feature
space). The thregeciive setting should ensure that all
soma positions are included in the candidate cluster
center points. Therefore we set it to a small value of
10 in our experiment. This setting is suitable for di-
verse datasets, including two-photon fluorescence
datasets [16], Nissl staining datasets [46], structured
illumination microscopy datasets [47], and wide field
fluorescence datasets [54]. In short, for different data-
sets, clustering parameters are easily set, and we usu-
ally need to set suitable preprocessing parameters for
accurately extracting soma regions according to the
image contrast, the influence of neurites. For datasets
with many neurites (such as Data 1 — 5 in Table 1),
we need to fine tune the preprocessing parameters to
eliminate the neurites and keep soma regions. In this
case, the proposed method can be categorized as a
semi-automated approach. For datasets without neur-
ites (such as Data 6 — 9 in Table 1), we only need to
set the binarization parameter according to the image
contrast and the complex erosion operation is not
necessary. Therefore, the proposed method can work
relatively automatically.

Conclusions

In conclusion, we propose a novel method for the
localization of touching somas based on modified
density-peak clustering. This method can effectively
locate somas from large-scale and complicated datasets.
Furthermore, we have demonstrated the strong robust-
ness of the key parameter for the localization and its
effectiveness at a low SNR level. Thus, the method pro-
vides an effective tool for the neuroscience community
to quantify the spatial distribution of neurons and the
morphologies of somas.
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