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Little is currently known about the coordination of neural activity
over longitudinal timescales and how these changes relate to
behavior. To investigate this issue, we used resting-state fMRI
data from a single individual to identify the presence of two
distinct temporal states that fluctuated over the course of 18 mo.
These temporal states were associated with distinct patterns of
time-resolved blood oxygen level dependent (BOLD) connectivity
within individual scanning sessions and also related to significant
alterations in global efficiency of brain connectivity as well as
differences in self-reported attention. These patterns were
replicated in a separate longitudinal dataset, providing addi-
tional supportive evidence for the presence of fluctuations in
functional network topology over time. Together, our results
underscore the importance of longitudinal phenotyping in
cognitive neuroscience.
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Methodological advances in cognitive neuroscience have
enabled increasingly intricate descriptions of neural dy-

namics using fMRI (1). Studies leveraging these techniques have
highlighted a set of large-scale cortical networks (2) that are
among the most flexible (3) and dynamic (4) regions in the brain
(5). Additional work in the field has shown that coordinated and
adaptable patterns of functional connectivity between these re-
gions underpin a number of higher brain functions, such as
cognition (3), learning (6), and consciousness (7). This work has
largely focused on the study of individuals at single time points,
but it is clear that there are also changes in brain connectivity
over much longer timescales of weeks to months (8, 9). Im-
portantly, it is not currently known how these long-term changes
in connectivity are related to momentary dynamic changes and
how these time-resolved patterns are related to psychological
function.
Here, we leveraged a unique longitudinal resting-state fMRI

(rfMRI) dataset (8) to determine whether fluctuations in whole-
brain connectivity were associated with alterations in the dy-
namic organization of the resting brain over the course of weeks
to months. First, we used affinity propagation to cluster the time-
averaged connectivity patterns from 84 separate rfMRI scanning
sessions, which revealed the presence of two intermittently pre-
sent “metastates” (Fig. 1). Second, we then used the multipli-
cation of temporal derivatives (MTD) (10) technique to estimate
patterns of time-resolved functional connectivity within each
session. By tracking the community structure of the brain within
10-s windows over the course of each scanning session, we were
able to estimate both global and local patterns of time-resolved
connectivity (11). To estimate time-resolved connectivity at the
areal level, we used a previously described measure of network-
level interareal dynamic connectivity—“flexibility”—which describes
the extent to which a given brain region switches frequently be-
tween distinct communities over time (12).

Results
Over the course of 18 mo, a single individual (R.A.P.; male; age
45 y old at the onset of the study) underwent 104 scanning ses-
sions, of which 84 had rfMRI data suitable for subsequent
analysis (8). Time series were extracted from a series of 630
cortical and subcortical parcels (13), which were then used to
create a 630 × 630 parcelwise time-averaged correlation matrix
for each individual scanning session (Fig. 1A). Affinity propa-
gation clustering (14) identified two major clusters (Fig. 1B),
confirming the existence of two large metastates that intermit-
tently fluctuate over longitudinal time (Fig. 1C), significantly
more frequently than would be predicted by a stationary null
model (P < 0.001). Importantly, there were no differences in
head motion [as measured by mean framewise displacements
(MFDs)] between the two states (MFD1 = 0.106 ± 0.01; MFD2 =
0.109 ± 0.12; P > 0.200).
Next, we investigated the time-resolved connectivity between

parcels within each session by calculating the pointwise product
of the temporal derivative of each time series (MTD) (10) within
a sliding window of 10 s. The MTD, which is conceptually similar
to a sliding window correlation of temporally differentiated time
series, has previously been shown to show improvements in
sensitivity to shifts in connectivity structure compared with slid-
ing window Pearson’s correlations of undifferentiated time se-
ries. The MTD is also less susceptible to known sources of
spurious connectivity, such as head motion and global mean
signal fluctuations (10). The calculation of the MTD enabled the
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estimation of a parcel × parcel × time adjacency matrix for each
of the 84 individual scanning sessions. The 3D matrix for each
session was then subjected to a multislice modularity analysis
(15), which estimates the presence of communities of brain re-
gions that extend over time. The community assignment within
each temporal window was then used to estimate the within-
(WT) and between-module (BT) connectivity for each region (SI
Materials and Methods). At the whole-brain level, the tradeoff
between WT and BT (the cartographic profile) can be tracked
over time, thus providing an estimate of temporal fluctuations in
system-wide integration and segregation (11).
At the areal level, we reasoned that regions important for

dynamic communication should show “flexible” behavior (6)—
that is, a dynamic region should communicate with a wide variety
of regions over time and hence, switch between modules fre-
quently over the course of a resting session. As an initial step, we
estimated the flexibility of each of 347 regions (333 cortical and
14 subcortical) within a single rfMRI session [repetition time
(TR) = 0.72 s; spatial resolution = 2 mm3] from 100 unrelated
individuals from the Human Connectome Project (HCP) (16).
We observed marked heterogeneity in the flexibility of neural
regions in the resting state, with regions within default and sa-
lience network, along with a number of subcortical regions,
showing the most flexible behavior during rest. In contrast, re-
gions within the frontoparietal network showed the most stable
behavior during rest (Fig. 2B). We also observed similar patterns
of flexibility across 84 sessions from the individual subject and a
similar longitudinal dataset from a single individual (“Kirby”)
(Fig. 2C) (8) as well as in data from 100 unrelated individuals
from the HCP Consortium (spatial correlation between mean
regional flexibility from 100 subjects in HCP and mean flexibility
across 84 sessions in the MyConnectome Project: r = 0.440) (Fig.
2A), suggesting that the flexibility of brain regions over time is
relatively stable across subjects and datasets.
We were next interested in determining whether the two

temporal metastates showed unique dynamic signatures within
the individual resting-state sessions. Indeed, the two metastates
were associated with distinct patterns of time-resolved connectiv-
ity, with metastate 2 highlighted by markedly increased flexibility
in the visual, somatomotor, frontoparietal, and cingulo-opercular

networks (Fig. 3A) [false discovery rate (FDR) α = 0.05]. These
differences (in all but six parcels: left insula, bilateral superior
frontal gyrus, and bilateral temporal pole) were significantly
greater than the 95th percentile of a null distribution populated
by results obtained from a phase randomized dataset (17), which
scrambles dynamic interrelationships in the data. In addition,
although there were similar patterns of modularity in both states
(i.e., the extent to which the network was partitioned into tight
knit communities; Q1 = 0.609 ± 0.07; Q2 = 0.600 ± 0.08; P =
0.240), we observed higher global efficiency (i.e., the ease with
which a pair of regions within the largest connected component
of the network can communicate; E1 = 0.308 ± 0.02; E2 = 0.319
± 0.02; P = 0.002; greater than 95th percentile of phase-
randomized null distribution) (Fig. 3C) and systems-level in-
tegration (i.e., the extent to which the community structure of
the brain was dissolved; greater than 95th percentile of phase-
randomized null distribution) (Fig. 3B) in metastate 2. Together,
these results show that the dynamic interplay between fronto-
parietal and sensorimotor regions is related to differences in the
capacity of the whole brain to alter its information processing
capacity over longitudinal time.
Given that behavioral capacities, such as attention and alert-

ness, are known to fluctuate over time, we next investigated
whether fluctuations in time-resolved connectivity were related
to fluctuations in psychological function. To do so, we identified
questions from the self-reported Positive and Negative Affect
Schedule (18) that were significantly different when collected on
days associated with scanning sessions that were later identified
as occupying either of the metastates. This analysis revealed a
differential relationship (Mann–Whitney u test; FDR P < 0.05)
between the behavior associated with one of two states, with the
less flexible state (metastate 1) corresponding to questions as-
sociated with fatigue (drowsy: Q28; sleepy: Q57; sluggish: Q58; and
tired: Q62) and the state with more flexible interareal dynamics
(metastate 2) associated with heightened attention (attentive:
Q11; concentrating: Q18; and lively: Q43). Interestingly, the four
“fatigue”-related questions were also found to be significantly
different when comparing sessions acquired with or without
caffeine/food, a factor that was manipulated in the study (8) (all
P < 0.002). However, caffeine and food were not associated with
any of the questions tracking self-reported attention and were
similarly not associated with the presence of either metastate (all
P > 0.200) (8). As such, this finding suggests that the fluctuations
in flexibility were not simply related to drowsiness within the
scanner; however, definitive resolution of this issue would re-
quire simultaneous EEG/fMRI data to track the electrophysio-
logical signatures of sleep architecture (19, 20).
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Fig. 1. (A) Graphical depiction of the experiment—time series from 630
cortical and subcortical parcels in 84 separate sessions were submitted to
time-averaged connectivity analysis. Affinity propagation was then used to
cluster the similarity of each session’s time-averaged connectivity. Sepa-
rately, the time series from each session were subjected to a time-resolved
functional connectivity analysis, and then, a multislice community detection
algorithm was used to track the modular structure of the brain over time.
(B) Spatial similarity of parcelwise resting-state functional connectivity ma-
trices for each session over time [the cluster identity of each session is rep-
resented as either red (metastate 1) or blue (metastate 2) in the vector
alongside the adjacency matrix]—there were two temporal metastates
identified at the group level using affinity propagation clustering of the
similarity between time-averaged connectivity matrices (metastate identity
shown alongside adjacency matrix). (C) A timeline showing the relative oc-
currence of each session colored according to its metastate. A similar pattern
was observed in the replication dataset (Fig. 4E).

A B C

Fig. 2. The flexibility (percentage of time “switching” between unique
modules) of brain regions across (A) 100 unrelated subjects from the HCP,
(B) 84 sessions from the MyConnectome Project dataset (MyConn), and (C) 152
sessions from the Kirby dataset.
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To ensure that the results that we observed were not reflective
of idiosyncratic patterns within the MyConnectome Project
dataset (e.g., the patterns related to caffeine and food intake)
(8), we replicated our analysis in a separate longitudinal dataset
of a single individual (www.nitrc.org/projects/kirbyweekly). Briefly,
this dataset included 158 sessions collected over 4.5 y in a single
individual (male; 40 y old) using a scanning protocol with lower
spatial and temporal resolution (TR = 2 s; spatial resolution =
3 mm3). After preprocessing, 138 scanning sessions from this
dataset passed quality assessment and were subjected to our
analysis. In addition, all data were minimally “scrubbed” to
remove the potential effect of head motion on connectivity
measures (21, 22), however the results were independent of this
preprocessing step. We found similar fluctuations in connectivity
(Fig. 4), with two metastates fluctuating intermittently over the
period of the study (Rep1 = 44.9%; Rep2 = 55.1%) (Fig. 4E).
Consistent with the findings in the discovery cohort, the two
metastates were associated with similar differences in flexibility
(r = 0.360) (Figs. 4B and 5), cartography (r = 0.536) (Fig. 4C),
and network topology [i.e., different global efficiency (RepE1 =
0.283 ± 0.05; RepE2 = 0.329 ± 0.04; P = 0.002) but similar
modularity (RepQ1 = 0.545 ± 0.03; RepQ2 = 0.539 ± 0.02; P =
0.312) (Fig. 4D)]. No psychological data were available for this
dataset (9), and therefore, the behavioral analyses could not be
replicated. Despite this idiosyncracy, the results of the replica-
tion analysis provide confirmatory evidence for the presence of
metastates over the course of weeks to months.

Discussion
Here, we showed that fluctuations in rfMRI functional connec-
tivity over the course of weeks to months in a single individual
are related to specific patterns of time-resolved connectivity,
network topology, and self-reported attention. By tracking large-
scale descriptions of functional connectivity over a period greater
than 1 y, we identified the presence of two longitudinal meta-
states that fluctuated over time (Fig. 1 B and C). These meta-
states were characterized by separable patterns of time-resolved
connectivity at both the global and areal levels. Specifically, we
observed quantitative differences in the regions that showed
flexible behavior over time, sharing community structure with
many regions, while also regularly switching modular assign-
ments (Fig. 3). These findings were replicated across two sepa-
rate individuals (both with unique scanning protocols), providing
some degree of support for their generalizability. However, de-
spite the relatively similar patterns of flexibility associated with

each of two metastates (spatial correlation betweenMyConnectome
Project and Kirby datasets: r = 0.360) (Fig. 5), we did observe
some qualitative differences between the two datasets (Figs. 3A
and 4B) that may relate to individual differences in dynamic
brain composition over time.
There is growing evidence that functional connectivity fluc-

tuates over relatively short timescales (i.e., on the order of 0.1–
0.01 Hz) (23–25), and as such, it is perhaps unsurprising that
similar dynamic patterns exist over longer periods of time. In-
deed, it has been hypothesized that such fluctuations in topology
are an essential emergent feature of the complex network or-
ganization of the brain (26). Evidence for these fluctuations has
been shown using computational modeling approaches (27) as
well as electrophysiology (28) and more recently, fMRI (11). In
addition, other recent work has also shown that alterations in
brain network topology track with task performance (29, 30)
along with individual differences in intelligence (31) and atten-
tional capacity (32). Together, these findings provide evidence
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Fig. 3. (A) Significant differences in patterns of flexibility between the two
temporal metastates (FDR P < 0.05)—metastate 2 (blue) was associated with
higher flexibility than metastate 1 (yellow/red). (B) Differences in the car-
tographic profile between metastate 1 (yellow/red) and metastate 2 (blue)—
metastate 2 was associated with a shift toward higher integration (FDR P <
0.05). (C) Metastate 2 was associated with greater global efficiency than
metastate 1 (P = 0.002). ***P < 0.01.
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Fig. 4. (A) We identified two temporal metastates using affinity propaga-
tion clustering (replication metastate identity shown alongside adjacency
matrix). (B) Significant differences in patterns of flexibility between the two
temporal metastates (FDR P < 0.01): blue, significantly higher time-resolved
connectivity in replication metastate 2; red, significantly higher time-
resolved connectivity in replication metastate 1. (C) Differences in the carto-
graphic profile between replication metastate 1 (yellow/red) and replication
metastate 2 (blue)—replication metastate 2 was associated with a shift toward
higher integration (FDR P < 0.05). (D) Replication metastate 2 was associated
with greater global efficiency than replication metastate 1 (P = 0.001). ***P <
0.01. (E) A timeline showing the relative occurrence of each session colored
according to its metastate.
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Fig. 5. (A) Difference in flexibility across the two metastates in both the
Kirby (y axis) and MyConnectome Project (x axis) datasets (r = 0.360).
(B) Similarity of network-level flexibility in both the Kirby (red) and
MyConnectome Project (MyConn; blue) datasets—values represent the per-
centages of significantly different flexibility values that occurred within each
of 15 predefined networks (only those with >0 significant regions shown).
CON, cingulo-opercular network; DMN, default mode network; FPN, fron-
toparietal network; SC, subcortical; SM, somatomotor; VAN, ventral atten-
tion network; VIS, visual.
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for detailed temporal organizational structure within the func-
tional connectome.
An important question facing the field is whether the temporal

fluctuations observed in this study vary as a function of neuro-
logical and psychiatric disease. Given that impairments in at-
tention are common in neuropsychiatric disorders (33, 34) and
that the symptomatology of these conditions often fluctuates
over time, it is reasonable to predict that the dynamic interre-
lationships between large-scale brain systems over longitudinal
time might also become impaired in turn. To this end, others
have used a similar approach to the one devised in this study to
show that dynamic patterns of brain connectivity track with
changes in positive mood (35). If this result can be shown to be
the case in psychiatric and neurological disorders, the methods
described here will have important implications for tracking
disease states over time through either the prediction of symp-
tom onset or the response of individual subjects to treatment. In
addition, the results will also have an influence on the inter-
pretation of comparisons between clinical groups, wherein
differences in network configurations between cohorts may, in
fact, reflect differences in temporal dynamics rather than purely
spatial pathology per se. Although the path toward solving these
issues is currently opaque, it is nonetheless important for studies

interrogating brain network abnormalities in cohort studies to
broaden their hypothetical lens to include alternative interpre-
tations of significant differences between diseased cohorts.
In conclusion, we have identified a network of cortical and

subcortical regions that participate in flexible behavior and alter
their time-resolved connectivity profile over longitudinal time,
leading to changes in global information processing capacity that
track with alterations in self-reported attention. Together, these
results support the hypothesis that fluctuations in dynamic inter-
connectivity between neural regions define the functional capac-
ities of the human brain (6, 36) and also, have important
implications for the study of neuropsychiatric disorders that
display fluctuations in phenotypic expression of psychological
and neurological characteristics over time (8).

Materials and Methods
Institutional Review Board approval for this study was deemed unnecessary
by the University of Texas Office of Research Support.
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