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We present the bottleneck sequencing system (BotSeqS), a next-
generation sequencing method that simultaneously quantifies rare
somatic point mutations across the mitochondrial and nuclear ge-
nomes. BotSeqS combines molecular barcoding with a simple dilution
step immediately before library amplification. We use BotSeqS to
show age- and tissue-dependent accumulations of rare mutations and
demonstrate that somatic mutational burden in normal human tissues
can vary by several orders of magnitude, depending on biologic and
environmental factors. We further show major differences between
the mutational patterns of the mitochondrial and nuclear genomes in
normal tissues. Lastly, the mutation spectra of normal tissues were
different from each other, but similar to those of the cancers that
arose in them. This technology can provide insights into the number
and nature of genetic alterations in normal tissues and can be used to
address a variety of fundamental questions about the genomes of
diseased tissues.
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The accumulation of random somatic mutations in the nuclear
and mitochondrial genome (mtDNA) over time underlies fun-

damental theories of carcinogenesis, neurodegeneration, and aging
(1–3). Direct observation of these rare mutations in the human body
with age therefore has the potential to enhance our understanding of
human disease. Currently, no simple high-throughput method exists
to directly and systematically quantify somatic mutational load in
normal, nondiseased human tissues at a genome-wide level. Next-
generation DNA sequencing (NGS) technologies are an ideal plat-
form to address this issue, but their sequencing error rate limits the
detection of rare mutations. For example, the Illumina platform
has the lowest reported error rate, but, even with sophisticated
postsequencing analysis, the sensitivity is at best 0.1% (4), far
lower than required to detect rare mutations in normal human
tissues (5, 6).
Two main NGS strategies have been developed for more sen-

sitive detection of rare mutations: single cell genomic sequencing
(7–9) and consensus sequencing with molecular barcodes (10–13).
Single cell genomic sequencing has the potential to detect rare
mutations in a genome-wide fashion, with sensitivity achieved
through the isolation of single cells from the bulk population.
However, point mutations are introduced during whole-genome
amplification of the picograms of DNA isolated from single cells.
To increase the specificity of point mutation calling with single cell
methods, it is necessary to identify the same point mutation in at
least two different cells (14). This approach, although useful for the
evaluation of tumor heterogeneity and other purposes, cannot
accurately call a point mutation that is private to a single cell. In
contrast, consensus sequencing with molecular barcodes can ac-
curately detect very rare point mutations (<10−6) by distinguishing
individual DNA molecules in a population with a unique barcode.

This unique molecule identifier (15) is used to group reads from
the same DNA template; only mutations that are present in most
or all of the reads from the same template are scored as mutations
(10–13). Although sensitive and accurate, molecular barcoding
methods are designed for targeted loci (16–18) or small, predefined
genomic regions (19, 20) rather than unbiased detection across the
human genome.
The bottleneck sequencing system (BotSeqS) technology

described in this work was designed to accurately detect rare
point mutations from a molecularly barcoded library in a com-
pletely unbiased fashion. In addition to describing the technology
and demonstrating its high sensitivity, we report how we used it to
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gain insight into the accumulation of somatic mutations in normal
human tissues.

Results
Principles Underlying BotSeqS. The principal feature of BotSeqS is
the dilution of a sequencing library before PCR amplification. Al-
though the dilution could be performed before or after ligation of
sequencing adapters, it is advantageous to dilute afterward; the
whole procedure is simpler, and more reproducible when inputting
nanograms than picograms of DNA. This dilution creates a bottle-
neck and permits an efficient random sampling of double-stranded
template molecules with a minimal amount of sequencing. Rare
mutations, which would normally be masked by an abundance of
wild-type sequences in conventional libraries, account for much
more of the signal at the corresponding genomic position in a bot-
tlenecked library. Dilution also increases the likelihood that both the
“Watson” and “Crick” strands of a DNAmolecule will be sequenced
redundantly, a feature critical for the high accuracy of BotSeqS and
the relatively small amount of sequencing required to implement it.
The presence of the same rare mutation on both strands can sub-
stantially decrease artifacts and increase specificity (12). Finally, the
random nature of dilution allows DNAmolecules from both nuclear
and mitochondrial genomes to be assessed from one library.

Generation of BotSeqS Libraries. A standard Illumina TruSeq PCR-
Free kit was used to generate 44 BotSeqS libraries from the normal
tissues of 34 individuals (Dataset S1, Table S1), which included 9
individuals with one or two technical replicates. In addition, 10 of
our 12 cohorts had more than one biological replicate, each con-
taining 2 to 6 individuals.
The preparation of BotSeqS libraries starts with the random

shearing of genomic DNA (Fig. 1), which fragments the genomes
into variably sized DNA molecules, each possessing unique end
coordinates called endogenous barcodes (10). After ligation of
standard sequencing adapters to the DNA molecules, the library
was diluted to reduce the number of molecules in the population.
To identify the correct dilution factor, a 10-fold dilution series was
assessed on a MiSeq instrument (SI Appendix, Fig. S1). After di-
lution, PCR amplification of the library generated multiple copies
(duplicates) of each DNA molecule. The endogenous barcodes
enable the grouping of sequencing reads into families, also known
as unique identifiers (UIDs) (10); each family represents the PCR-
derived progeny of a single-stranded template and each member of
a family represents the sequence from a single cluster on the
Illumina instrument. In the following, we consider the Watson
strand to be the sequence derived from the first read of the se-
quencing instrument (Illumina adapter P5) and the Crick strand to
be the sequence derived from the second read (Illumina adapter
P7) of each member of the family (Fig. 1). To be considered a
potential mutation, BotSeqS required that the identical sequence
change be observed in ≥90% of the Watson and in ≥90% of the
Crick family members and that each family be composed of at least
two members. BotSeqS libraries were analyzed using an Illumina
HiSeq 2500 instrument on rapid run mode with paired-end reads
of 100 bases each. A median of 70 million clusters per library
passed the standard Illumina quality filters (range 37–190 million
clusters per library) (Dataset S1, Table S1).

BotSeqS Data Processing Pipeline. The goal of the BotSeqS pipeline
was to accurately identify rare, somatic point mutations and to
calculate the prevalence of these mutations in the sample. To
process the data for this purpose, raw sequencing data were
inputted into Illumina’s secondary analysis package (CASAVA 1.8)
with ELANDv2 mapping to the GRCh37/hg19 human reference
genome. The BotSeqS pipeline begins by selecting high quality
reads for analysis (SI Appendix, SI Materials and Methods and
BotSeqS Pipeline Supplement). The data were then organized into
two tables for each BotSeqS library: (i) a “change” table listed all
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Fig. 1. Bottleneck sequencing methodology. Each color at the top of the
figure represents double-stranded DNA from a genome of one cell within a
population. Random, nonclonal point mutations (red) are private to individ-
ual cells. In contrast, clonal reference changes (A in black) are present in all
genomes within the cell population. (step 1) Random shearing generates
variably sized DNA molecules. (step 2) Noncomplementary single-stranded
regions of the Illumina Y-adapters (P5 in gray and P7 in black) are represented
as forked structures ligated to both ends of each DNA molecule. (step 3)
Dilution decreases the number of DNA molecules (five are shown) from the
original population in a random manner. Ends of the DNA molecules align
uniquely to the reference genome. Mapping coordinates are used as unique
molecule “barcodes” during data processing. (step 4) PCR primer (black ar-
rowhead) anneals and primer extends (hashed lines) the Watson and Crick
template of the original DNA molecule independently. The red asterisk rep-
resents an error generated during PCR of the library. (step 5) Watson and
Crick templates generate two families of PCR duplicates. Orientation of P5
(gray) and P7 (black) containing adapters to the DNA molecule (insert) dis-
tinguishes the two families. P5 and P7 sequences dictate which end will be
sequenced in read 1 vs. read 2, respectively, on the Illumina flow cell. Red
asterisks represent the PCR error propagated in the Watson but not the Crick
family members. In contrast to artifacts, real mutations (C:G mutation in red)
will be present in both the Watson and Crick family members. (step 6) The
BotSeqS pipeline identifies and quantifies the number of unique DNA mol-
ecules and point mutations (C:G in red) in the sequencing data by eliminating
artifacts and clonal changes (A:T in black).
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differences from the reference sequence and (ii) a unique mole-
cule table listed all families. Importantly, each table contained
strand information.
Most BotSeqS libraries (37 of 44) had a median number of family

members between 5 and 20 (SI Appendix, Fig. S2A), demonstrating
that the libraries underwent successful bottlenecking. Almost half
(median 45%, range 8–62%) of the unique molecules from each
BotSeqS library had both the Watson and Crick duplicate families
represented in the dataset, ensuring specificity in the subsequent
mutation analysis (SI Appendix, Fig. S2A). Furthermore, a median
of 60,640 (range 2,127–147,200) unique molecules from the nuclear
genome was assessed per BotSeqS library, which resulted in ∼0.4%
of the nuclear genome being covered, comparable with other
genome-wide techniques such as exome sequencing.
To identify rare, somatic mutations, it was necessary to eliminate

germ-line and clonal variants from the BotSeqS data (we defined
clonal as those present in both strands of more than one template
molecule). We performed whole genome sequencing (WGS) of
the same DNA sample or the same libraries that had been diluted
for BotSeqS for 32 of the 34 individuals in this study (Dataset
S1, Table S1). For the remaining two individuals (COL238 and
COL239), Sanger sequencing was performed to eliminate clonal
variants, demonstrating that WGS was not necessary for BotSeqS.
The vast majority (median 92%, range 88–94%) of variants were
found to be germ-line, easily identifiable from the matched WGS
dataset. In addition to clonality, we eliminated potential artifacts
by considering only well-mapped positions and by using other fil-
ters (Dataset S1, Tables S2–S6 and SI Appendix, SI Materials and
Methods). The requirement for mutations to be present on both
strands was indeed necessary because, in the absence of this filter,
there was ∼10-fold higher nuclear mutation prevalence associated
with a large number of G→T transversions known to represent
artifacts in NGS library preparations (SI Appendix, Fig. S2B) (21).
Analysis of technical and biological replicates showed a similar
average range (∼twofold) in mutation prevalence from both the
mtDNA and nuclear genome (SI Appendix, Fig. S2C). We further
performed a “spike-in” validation experiment by mixing one indi-
vidual’s normal DNA (PEN93) into another individual’s normal
DNA (PEN95) at two different ratios. Using BotSeqS, we were
able to detect PEN93-specific SNPs in both samples, with a 7.4-
fold difference in prevalence between the low and high spike-ins,
within the expected error of the intended 10-fold difference (SI
Appendix, SI Materials and Methods).
From the 44 BotSeqS libraries, we identified a total of 666 and

876 rare somatic point mutations in mtDNA and nuclear DNA,
respectively (Dataset S1, Tables S7 and S8). All rare mutations
passed visual inspection, and a subset was Sanger-sequenced to
confirm that the mutations were not germ-line or highly prevalent in
the samples evaluated (SI Appendix, SI Materials and Methods).
As expected from previous studies, point mutation prevalence of
mtDNA (1.4 ± 1.3 × 10−5 mutation per base pair, mean ± SD) were
significantly higher than those of nuclear DNA (5.2 ± 3.5 × 10−7) in
25 control individuals (two-tailed t test, P < 0.0001) (Dataset S1,
Table S9). We further determined the specificity of BotSeqS using
discordant germ-line heterozygous calls to estimate a false positive
rate of 2.6 × 10−12 (SI Appendix, SI Materials and Methods).

Mutation Prevalence Varies with DNA Repair Capacity and Carcinogen
Exposure. We first asked whether BotSeqS can detect the elevated
levels of mutations in the normal tissues of mismatch repair de-
ficient individuals. Individuals with biallelic inactivating germ-line
mutations in mismatch repair machinery show higher levels of
mutation in both normal and tumor tissues (22, 23). Therefore, we
tested DNA from normal colon epithelium of individuals (COL238
and COL239) with biallelic germ-line inactivating mutations in the
Post-Meiotic Segregation 2 (PMS2) gene. Using BotSeqS, we found
that the average mutation prevalence of nuclear DNA in these two
siblings (6.6 ± 3.5 × 10−5 mutation per base pair; ages 16 and 18 y)

was significantly higher than that in similarly aged individuals
(5.1 ± 1.7 × 10−7 for COL235, COL236, COL237, and COL374;
average age 24 y) with proficient mismatch repair (two-tailed t test,
P < 0.05) (Fig. 2A). This 130-fold increase in nuclear mutation
prevalence was associated with a significant difference in the nu-
clear mutational spectrum between PMS2+/+ and PMS2−/− cohorts
(Fisher’s exact test, P = 0.04, Fig. 2B).
We also tested whether BotSeqS could identify a high number of

mutations in the normal tissues of individuals exposed to environ-
mental carcinogens. We previously performed genome-wide
sequencing of upper tract urothelial carcinomas, representing a
cancer type associated with exposure to aristolochic acid (AA) or
smoking (24). Mutagens in tobacco smoke as well as AA are me-
tabolized to form DNA-adducts in the normal kidney cortex (24,
25). We compared four age-matched normal kidney cortices from
individuals (KID034, KID035, KID036, and KID037; average age
64 y) without known exposure to tobacco smoke or to AA with the
normal kidney cortex of three heavy smokers (SA_117, SA_118,
and SA_119; average age 65 y), as well as with three individuals who
had been exposed to AA (AA_105, AA_124, and AA_126; average
age 79 y). The nuclear point mutation prevalences in smokers and
AA-exposed kidneys were significantly higher, by 27- and 36-fold,
respectively, than in the nonexposed controls (one-way ANOVA
with Bonferroni multiple comparison posttest, P < 0.0001 for AA
and P < 0.001 for smoking) (Fig. 2A). This increased number of
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mutations in the nuclear genome was associated with a signif-
icantly altered nuclear mutational spectrum (Fisher’s exact test
with Bonferroni multiple comparison correction, P = 2.6 × 10−8 for
AA and P = 1.5 × 10−15 for smoking) (Fig. 2B). Interestingly, the
mtDNA point mutation prevalences and spectra between the
nonexposed and exposed groups were not significantly different,
despite the dramatic difference in their nuclear genomes (Fig. 2 A
and B).

Rare Mutations Accumulate with Age. Many lines of evidence in-
dicate that the human body accumulates random mutations with
age. BotSeqS was designed to directly measure differences such as
these, and we tested whether the prevalence of rare point muta-
tions in the DNA of three normal human tissues was dependent
upon age. Normal colonic epithelium from 11 individuals showed
mutation prevalences that significantly increased with age, by an
average of 30-fold in mtDNA and 6.1-fold in nuclear DNA, over
91 y (Fig. 3 and Table 1) (one-way ANOVAwith Bonferroni multiple
comparison posttest, P < 0.001 for both). Similarly, mutation preva-
lences increased by an average of 19-fold in mtDNA and 6.5-fold in
nuclear DNA over 64 y in normal kidney cortices. The mutation
prevalences in brain frontal cortex also significantly increased with
age, albeit more slowly, by 7.3-fold in mtDNA and 5.7-fold in nuclear
DNA over 90 y (one-way ANOVA with Bonferroni multiple com-
parison posttest, P < 0.001 for mtDNA and P < 0.05 for nuclear).

Within our dataset, we could directly compare point mutation
prevalences in brain versus colonic tissues in three different age
groups (children <10 y; adults between 20 and 40 y; and old adults
≥90 y). Interestingly, the nuclear mutation prevalence in the colon
was not significantly different from that of the brain in children
(1.8 ± 0.5 × 10−7 in colon vs. 1.1 ± 0.3 × 10−7 in brain, two-way
ANOVA with Bonferroni multiple comparison posttest, P > 0.05).
However, the mutation prevalence in the colon was significantly
higher than that of the brain in young adults (5.5 ± 1.6 × 10−7 in
colon vs. 2.2 ± 1.1 × 10−7 in brain, two-way ANOVA with
Bonferroni multiple comparison posttest, P < 0.05) as well as in
old adults (1.1 ± 0.2 × 10−6 in colon vs. 6.3 ± 2.3 × 10−7 in brain,
two-way ANOVA with Bonferroni multiple comparison posttest,
P < 0.01) (SI Appendix, Fig. S3). No significant differences were
found between the mtDNA mutation prevalence of the colon
versus that of the brain in relatively young individuals (children or
young adults). However, the mtDNA mutation prevalence in the
colon was significantly higher than that of the brain in old indi-
viduals (3.7 ± 1.0 × 10−5 in colon vs. 1.3 ± 0.2 × 10−5 in brain,
two-way ANOVA with Bonferroni multiple comparison posttest,
P < 0.0001) (SI Appendix, Fig. S3).

The Mutational Patterns in mtDNA Are Very Different from Those of
Nuclear DNA.We examined the spectra of the rare point mutations
in each normal tissue studied. Mutations in mtDNA were domi-
nated by transitions (97% in colon, 89% in kidney, and 91% in
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Fig. 3. Normal human tissues accumulate point mutations over a lifetimewith genome-specific and tissue-specific mutational patterns. Point mutation prevalences
in nuclear (Top) and mitochondrial (Bottom) genomemeasured in four normal tissue types (brain frontal cortex of 9 individuals, kidney cortex of 5 individuals, colon
epithelium of 11 individuals, and duodenum of 1 individual). Twenty-six total individuals were assessed, with each individual contributing to one normal tissue type.
Pie chart Insets show the prevalences of each substitution out of the six possible substitution types (see pie chart legend, right side). Each pie chart was compiled
from the individuals represented in their respective scatter plots, with the exception that duodenum was omitted. The number of substitutions generating the pie
charts for the nuclear genome was n = 31 for brain, n = 73 for kidney, and n = 94 for colon, and for the mitochondrial genome was n = 181 for brain, n = 299 for
kidney, and n = 116 for colon.

Table 1. Summary of prevalence of rare mutations in normal human tissues in this study

Genome Normal human tissue

Average mutation prevalence ± SD (× 10−7) mutation per base pair
Average
lifespan, y

Average lifespan
fold-increaseYoung child (<10 y) Young adult (20–40 y) Mid/old adult (>40 y)

mtDNA Brain frontal cortex 18 ± 7 (n = 3) 43 ± 6 (n = 3) 130 ± 18 (n = 3) 90 7.3
Kidney cortex 15 (n = 1) n.d. 280 ± 64 (n = 4) 64 19
Colon epithelium 12 ± 17 (n = 2) 110 ± 43 (n = 3) 370 ± 100 (n = 3) 91 30

Nuclear Brain frontal cortex 1.1 ± 0.3 (n = 3) 2.2 ± 1.1 (n = 3) 6.3 ± 2.3 (n = 3) 90 5.7
Kidney cortex 1.2 (n = 1) n.d. 7.8 ± 1.5 (n = 4) 64 6.5
Colon epithelium 1.8 ± 0.5 (n = 2) 5.5 ± 1.6 (n = 3) 11 ± 1.5 (n = 3) 91 6.1

n.d., not determined.
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brain) with a heavy strand bias, as expected from previous studies
(12) (Fig. 3 and Dataset S1, Table S7). The ratio of transitions-to-
transversions was strikingly different in mtDNA (average of 15)
compared with nuclear DNA (average of 1.1) in all three tissues.
To further assess the differences in mutation prevalence between

the two genomes, we calculated the ratio between mtDNA-to-
nuclear mutation prevalences for each individual (Dataset S1,
Table S9). Point mutation prevalences in the mtDNA were on
average 25-fold higher than the nuclear genome in normal tissues
(SI Appendix, Fig. S4, control cohort). In patients with exposure
histories or DNA repair defects, the ratios were significantly smaller
due to the concomitantly greater number of nuclear (but not mi-
tochondrial) DNA mutations in such individuals compared with
those from the control cohort (one-way ANOVA with Bonferroni
multiple comparison posttest, P < 0.05) (SI Appendix, Fig. S4).

Mutational Spectra Are Tissue Specific. Although rare mutations in
mtDNA are dominated by transitions, there are still tissue-specific
mtDNA differences that can be appreciated from the pie charts in
Fig. 3. For example, mitochondrial C:G-to-T:A transitions were
more prominent, and A:T-to-G:C transitions less prominent, in
normal colon (54% and 42%, respectively) and brain (51% and
40%, respectively) compared with normal kidney tissues (36% and
53%, respectively). The mutation spectra in the nuclear DNA of all
three tissues were much more diverse. For example, C:G-to-T:A
transitions predominated in normal colon (44% in colon compared
with 22% in kidney and 29% in brain) whereas normal kidney and
brain harbored a proportionately greater fraction of A:T-to-G:C
transitions (25% in kidney and 19% in brain compared with 15% in
colon) as well as A:T-to-C:G transversions (12% in kidney and
16% in brain compared with 5% in colon). Moreover, A:T-to-T:A
transversions were more frequent in kidney (16%) compared with
colon (6%) and brain (6%). Pairwise comparisons of the muta-
tional spectra within each genome revealed significant differences
between the substitution pattern of kidney and colon (Fisher’s
exact test with Bonferroni multiple comparison correction, P =
0.0029 in mtDNA and P = 0.031 in nuclear DNA).
We compared the spectra of the rare mutations found in normal

kidney and colon tissues to the clonal DNA mutations in cancers
derived from the cells of these organs, using publicly available data
for the latter (26, 27). Brain frontal cortex was excluded in this
analysis because it was not clear what tumor type should be used
for comparison. To search for similarities and differences among
normal and tumor mutational spectra, principal component anal-
ysis was performed on the nuclear and mtDNA spectra derived
from the data on normal kidney cortex, normal colon epithelium,
clear cell renal carcinoma, and colorectal carcinoma. We found
that the spectra of the rare mutations in normal colon and kidney
tissues were very similar to those of the corresponding cancer type
(SI Appendix, Fig. S5).

Discussion
BotSeqS is a straightforward NGS-based approach that can accu-
rately measure rare point mutations in an unbiased, genome-wide
manner. Using BotSeqS, we were able to achieve several important
goals: (i) define estimates of rare mutation prevalences across the
whole genome; (ii) simultaneously evaluate rare mutations in both
the nuclear and mitochondrial genomes of the same population of
cells; (iii) compare the prevalence of rare mutations among various
normal tissues of individuals of different age, DNA repair capacity,
or exposure histories; and (iv) identify the spectra of rare mutations
in normal tissues, allowing their comparison with those of clonal
mutations in cancers.
Our data show that mutations increase with age, a result that is

broadly consistent with the literature (2, 3). The rate of increase of
mutations is not as great in the brain as it is in the colon or kidney,
presumably because the colon and kidney are both self-renewing
tissues throughout adult life whereas the brain is not. On the other

hand, the fact that the mutation prevalence increased at all after
childhood was surprising, given that the major cell types in the
prefrontal cortex are generally thought to be postmitotic (28).
There are several potential explanations for this increase. A small
number of cells that are replicating more actively than neurons or
glia could be responsible for the increase. Such cells could in-
clude microglia or infiltrating lymphocytes or other inflammatory
cells. Alternatively, these mutations could represent the results
of spontaneous DNA damage independent of DNA replication. A
recent single-cell sequencing study of human neurons suggested
that spontaneous damage occurs during transcription (29). How-
ever, in contrast to single-cell sequencing, BotSeqS measures
mutations that are found on both strands. Thus, for the explana-
tion of spontaneous DNA damage to be plausible, the mutations
identified by BotSeqS would have to have been subject to DNA
repair. Consistent with this possibility, DNA repair processes are
known to be active in postmitotic neurons and glia (30).
A third possibility is that these mutations are artifacts of the

procedure we used to detect them. It is fascinating that this formal
possibility is essentially impossible to exclude because many of the
mutations we detected are likely found in only one cell of the tissue
studied, and the DNA from that cell is no longer available for
subsequent evaluation. Additionally, there is no other technique
available to observe such mutations with the sensitivity achieved
here. Our sensitivity is currently limited only by the amount of
sequencing devoted to the project. We can easily detect mutations
occurring at 6 ×10−8 per base pair using a small fraction of an
Illumina HiSeq 2500 flow cell. We estimate that mutations could
be detected at <10−9 per base pair using an entire flow cell. Sup-
porting this sensitivity is BotSeqS’s high specificity, where strand-
discordant germ-line SNPs yield a false positive rate of 2.6 × 10−12

errors per base pair. The only other method that approaches this
sensitivity and specificity has been described by Loeb and co-
workers (12, 31), but their method is applicable only to predefined
regions of the genome. In the absence of direct confirmation, we
are forced to use correlations and other approaches to support the
accuracy of the technology described herein. These correlations
include the following, as detailed in Dataset S1, Table S9: similar
mutation prevalences and spectra identified in different DNA
aliquots of the same samples; similar mutation prevalences and
spectra identified in the same tissues of different individuals of
similar age; expected increases in mutation prevalence with age;
tissue-specific differences and age-dependent increases in mu-
tation prevalence; higher mutation prevalences in normal tissues
deficient in mismatch repair or exposed to environmental mu-
tagens; and mutation spectra in normal tissues consistent with
those previously observed in cancers from the same tissues. Other
in silico and experimental approaches used to evaluate the accu-
racy of BotSeqS are described in the SI Appendix, SI Materials
and Methods.
We also were able to compare mutation prevalence in the mi-

tochondrial and nuclear genomes of the same tissues. In normal
individuals, in the absence of exposures to mutagens, the mutation
prevalence was much higher in the mitochondria than in the nuclear
genome (median ratio of 26). This finding is consistent with the
relatively poor efficiency of DNA repair in the mitochondria com-
pared with the nuclear genome (32). Equally important, however, is
that the ratio of mitochondrial to nuclear mutation prevalences was
vastly lower (median of 1.3) in the normal kidneys of individuals
exposed to either cigarette smoke or AA. This finding is not con-
sistent with the known, less efficient repair of DNA in mitochon-
dria. Moreover, there was a shift toward the AA mutational
signature, A:T-to-T:A transversions, in the nuclear DNA of nor-
mal kidneys in individuals exposed to AA, but virtually none in the
mtDNA. One possibility is that the higher mutation prevalence in
the mtDNA could be masking the effect of environmental muta-
gens on the mitochondrial genome compared with its effect on the
nuclear genome. Another possibility is that there are unexpected
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and pronounced differences in the ways through which these mu-
tagens cause DNA damage in these two organelles.
Another original observation of our study is the finding that

mutation spectra differed among normal human tissues, even in
the absence of exposures to known mutagens. Whether such dif-
ferences reflect varying exposures to as yet unidentified commonly
encountered mutagens, or tissue-specific processes such as DNA
repair, is not known. In some cases, the rare mutation spectra in
normal tissues were found to be similar to the clonal mutations
found in cancers. Although varying mutation spectra in cancers
have often been attributed to cancer-specific processes, our data
suggest that at least a subset of these mutations actually reflect
tissue-specific processes. This concept is consistent with the idea
that a substantial fraction of the mutations found in cancers occur
in normal stem cells (33, 34). We envision that the straightfor-
ward approach described here, which can easily measure very
rare mutations in any tissue or cell type of interest, will be
applicable to questions of broad biomedical interest.

Materials and Methods
Human Tissue Samples. Normal, nondiseased flash frozen tissues for this
study were acquired from five sources (Dataset S1, Table S1). COL229,
COL231, COL232, COL233, COL234, COL235, COL236, COL237, and SIN230 were
obtained from consented patients at the Johns Hopkins Hospital with the
approval of the Johns Hopkins Institutional Review Board. COL373, COL374,
COL375, and BRA01-09 were requested from the NIH NeuroBioBank (https://
neurobiobank.nih.gov/), with the request being approved and fulfilled by the
University of Maryland Brain and Tissue Bank and the University of Miami
Brain Endowment Bank. KID034-038 were purchased as 200-mg flash frozen

blocks from the Windber Research Institute. COL238 and COL239 were pre-
viously reported (22, 35, 36). SA_117, SA_118, SA_119, AA_105, AA_124, and
AA_126 were acquired by C.-H. Chen and Y.-S. Pu (Department of Urology,
National Taiwan University Hospital and College of Medicine, Taipei, Taiwan)
as previously reported (24).

Genomic DNA Purification. Tissues were dissociated by pulverization, and ge-
nomic DNA was purified using Qiagen AllPrep. DNA was resuspended in TE
buffer (10mMTris, 1mMEDTA, pH8.0). DNA concentrationwas quantitatedby
Qubit (ThermoFisher) or TapeStation (Agilent). Assuming 6.6 pg of DNA per
human cell, themedian number of cell equivalents (before dilution for BotSeqS)
was 1.2 million (range 0.2–5.3 million).

Preparation of Illumina Y-Adapter–Ligated Molecules. Genomic DNA (34 ng to
1 μg) in 55 μL of TE buffer was fragmented using BioRuptor (Diagenode) at
high intensity for 15 s on and 90 s off, using seven cycles at 3 °C. After random
fragmentation, Illumina Y-adapters were ligated to the DNA fragments using a
TruSeq DNA PCR-Free kit (Illumina) according to a standard low DNA input
Illumina protocol with selection for 350-bp insert sizes. In general, with an input
of 500 ng of genomic DNA into the library prep, a 105-fold dilution on
Y-adaptor–ligated DNA molecules was performed prior to PCR. Further details
on dilution of BotSeqS libraries, sequencing, and data analysis are provided in
SI Appendix.
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