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Fumarate hydratases (FHs) are essential metabolic enzymes grouped
into two classes. Here, we present the crystal structure of a class I
FH, the cytosolic FH from Leishmania major, which reveals a pre-
viously undiscovered protein fold that coordinates a catalytically
essential [4Fe-4S] cluster. Our 2.05 Å resolution data further reveal
a dimeric architecture for this FH that resembles a heart, with each
lobe comprised of two domains that are arranged around the active
site. Besides the active site, where the substrate S-malate is bound
bidentate to the unique iron of the [4Fe-4S] cluster, other binding
pockets are found near the dimeric enzyme interface, some ofwhich
are occupied bymalonate, shown here to be a weak inhibitor of this
enzyme. Taken together, these data provide a framework both for
investigations of the class I FH catalytic mechanism and for drug
design aimed at fighting neglected tropical diseases.
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Fumarate hydratase (FH; also known as fumarase; EC 4.2.1.2)
catalyzes the stereospecific reversible hydration/dehydration

of fumarate to S-malate (Scheme 1). Eukaryotic cells express
both mitochondrial and cytosolic FH isoforms. The mitochondrial
FH is well known for its participation in the tricarboxylic acid cycle
and may also take part in the succinic fermentation pathway (1).
The cytosolic FH is thought to produce the fumarate substrate for
dihydroorotate dehydrogenase (2), an enzyme involved in the de
novo pyrimidine biosynthetic pathway. In addition, cytosolic FH
can migrate from the cytosol to the nucleus, where it plays a key
role in DNA repair (3). Because of these vital roles, FHs are
potential therapeutic targets. FHs have been grouped into two
classes with no obvious amino acid sequence similarity. Class I
FHs include trypanosomatids FHs (4, 5) and are [4Fe-4S] cluster-
containing homodimeric enzymes. Class II FHs include human
FH (6) and are Fe-independent homotetrameric enzymes. Al-
though the FHs from class II have been structurally characterized
(7), a structure of an intact class I FH has been elusive until now.
Here, we report the 2.05 Å resolution structure of a FH from

Leishmania major (LmFH-2). LmFH-2, encoded by the LmjF29.1960
gene, was previously shown to be a cytosolic enzyme able to
reversibly convert fumarate to S-malate with preference for
S-malate production (5). Consistent with the classification as a
class I FH, LmFH-2 activity assays reveal the presence of an ox-
ygen-sensitive cofactor (5). Only a few other class I FH enzymes
have been biochemically characterized, including class I FHs from
Euglena gracilis var. bacillaris (8), Escherichia coli (9, 10), bacte-
rium strain MPOB (11), and Burkholderia xenovorans (12), but the
L. major enzymes LmFH-2 and LmFH-1 (the mitochondrial iso-
form) are the only class I FH characterized from a parasite in the
Trypanosomatidae family. Trypanosomatids are responsible for
neglected tropical diseases (NTD), such as leishmaniases, Chagas
disease, and sleeping sickness, which infect millions of people and
represent a substantial health and economic burden on developing
countries. The high sequence identity shared (60–75%) by trypa-
nosomatid FHs suggests not only structural similarity but also a

similar mechanism of action. Our data reveal that LmFH-2 has a
previously undiscovered protein fold, providing a structural frame-
work both for investigations of the class I FH catalytic mechanism
as well as for drug design aimed at fighting NTD.

Results and Discussion
Overall Structure of LmFH-2. The crystal structure of LmFH-2 was
solved by single-wavelength anomalous dispersion (SAD) using
iron as the anomalous scatterer and refined to 2.05 Å resolution
(Table S1). The asymmetric unit contains one copy of the func-
tional homodimeric enzyme, and the monomers are related by a
noncrystallographic twofold axis (Fig. 1A). The superposition of
Cα atoms between chains A and B shows a high level of structural
similarity with an rmsd of 0.22 Å. The quaternary structure of
LmFH-2 resembles an upside-down heart (Fig. 1A), with each
monomer consisting of two structural domains arranged around
the catalytic [4Fe-4S] cluster (Fig. 1B).
The LmFH-2 monomer contains 23 β-strands (β1 to β23) and 18

α-helices (α1 to α18), and can be described as being composed of two
domains: an N-terminal domain (Asp-28 to Pro-375) and a
C-terminal domain (Thr-385 to Ala-568), connected by a flexible
linker (Asp-376 to Thr-384) (Fig. 1B and Fig. S1). The first 27
residues and the flexible linker were excluded from the structure
because of the lack of interpretable electron density. The N-ter-
minal domain can be divided in subdomains 1 (Asp-28 to Lys-213
and Asp-349 to Pro-375) and 2 (Gly-214 to Ala-348) (Fig. 1C).
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Subdomain 1 contains 11 β-strands (β1 to β9, β15, and β16) and six
α-helices (α1 to α5 and α11). Subdomain 2 is located between the
β9 and β15 of subdomain 1 and contains five β-strands (β10 to β14)
and five α-helices (α6 to α10). The C-terminal domain contains
seven α-helices (α12 to α18) and seven β-strands (β17 to β23)
organized as independent β-barrel and α-helical motifs (Fig. 1D).
The monomer has a [4Fe-4S] cluster coordinated by three cysteine
residues (Cys-133, Cys-252, and Cys-346; the motif is C-X118-C-
X93-C) from the N-terminal domain (Fig. 2A). The fourth iron of
the cluster has no protein ligand.
The DALI server (13) was used to search the Protein Data

Bank to identify known structures with similar folds to LmFH-2.
Unsurprisingly, DALI finds the β-subunit of a putative class I FH
from Archaeoglobus fulgidus (PDB ID code 2ISB) as the strongest

match to the C-terminal domain of LmFH-2 (z-score of 22.9). The
high structural similarity is evident in the structural superposition,
which has an rmsd of 2.2 Å for 172 Cα atoms (of the 183 residues
comprising the C-terminal domain) (Fig. S2A). In fact, this con-
served region is classified by Structural Classification of Proteins
database (SCOP) (14) as a swiveling β/β/α domain, known to be a
mobile motif in multidomain proteins. Although the structure of
the α-subunit of this putative class I FH from A. fulgidus may turn
out to be similar to the N-terminal domain of LmFH-2, it has not
been determined. Moreover, the DALI server finds no close
matches to the full N-terminal domain of LmFH-2. The best
matches are to the Ni-binding domain of HypA from Thermo-
coccus kodakaraensis KOD1 (PDB ID code 3A43) (15) and the
N-terminal β-domain of L-serine dehydratase from Legionella
pneumophila (PDB ID code 4RQO) (16), but in both cases the
z-scores are low: 6 and 5.7, respectively. Z-scores below 2 indicate
structural dissimilarity. Structural comparisons to the identified
proteins reveal that only a fragment of LmFH-2 subdomain 1,
comprised of residues from one β-sheet (β4, β8, β9, β15, and β16)
and two helices (α2 and α5), is structurally similar (Fig. S2B). The
rmsds between this fragment of LmFH-2 and PDB ID codes 3A43
and 4RQO models are 2.7 and 2.7 Å for 74 and 100 aligned
Cα atoms, respectively. Thus, we can interpret the relatively low

Scheme 1.

Fig. 1. Crystal structure of LmFH-2. (A) Overall structure of the LmFH-2 functional dimer. The Upper and Lower panels represent two orthogonal views of the
structure with two domains: N terminal (blue and green) and C terminal (yellow). The Left and Right panels show the cartoon and electrostatic surface
potential representation of the LmFH-2 dimer, respectively. The [4Fe-4S] clusters are shown in magenta. (B) Ribbon diagram of LmFH-2 monomer. The
N-terminal domain is divided into two nonsequential subdomains 1 (light blue and dark blue) and 2 (green), and is connected to C-terminal domain (yellow)
by a linker (black arrow), as indicated in the linear schematic. (C) Ribbon diagram of LmFH-2 N-terminal subdomains 1 and 2. (D) Ribbon diagram of LmFH-2
C-terminal domain.
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z-scores as being a reasonably good alignment with a small
portion of the fold. According to the DALI server, no protein
with a known structure shares the full α + β-fold that we find
here for LmFH-2.
The dimer interface of LmFH-2 involves 32 residues of the

N-terminal domain from chains A and B, and is stabilized by 42
hydrogen bonds (Table S2) and two cation–π interactions between
Phe-63 and Lys-69. The great majority of residues at the interface
are completely conserved in class I FHs (Fig. S3). Phe-63 and Lys-
69 are not fully conserved, showing that the cation–π interaction is
a unique feature of cytosolic FHs from Leishmania spp.

Active Site of LmFH-2. The substrate S-malate is clearly identified
in both active sites of the LmFH-2 structure and it is found co-
ordinated to the unique iron (Fe4) of the [4Fe-4S] cluster via C2
carboxyl and hydroxyl oxygen atoms, as observed by the final σA-
weighted 2Fo–Fc map (Fig. 2A and Fig. S4). Notably, aconitase, a
[4Fe-4S] cluster-containing enzyme that catalyzes the stereo-
specific dehydration/rehydration of citrate to isocitrate via cis-
aconitate, also coordinates its substrate isocitrate via a carboxyl
and hydroxyl oxygen to the unique Fe atom of its [4Fe-4S] (17).
The active site of LmFH-2 is located in a deep cleft formed be-
tween the N- and C-terminal domains, and comprises the [4Fe-4S]
cluster, a water molecule, and 12 residues from chain A and 1
residue from chain B, suggesting that the dimerization can be
important for enzyme activity (Fig. 2 A and B). The N-terminal
domain of chain A provides seven residues (Cys-133, Gln-134,
Asp-135, Arg-173, Gly-216, Cys-252, Cys-346), with only Gly-216
located in a helix (α6), whereas all of the other residues are found
in loops. The C-terminal domain of chain A provides five residues

(Arg-421, Thr-467, Thr-468, Arg-471, Lys-491), with Arg-421 and
Arg-471 located in α13 and α15, respectively, and other residues in
loops. The N-terminal domain of chain B provides the His-334
that is located in a loop and is not directly involved in substrate
binding. Sequence comparisons with 26 members of the class I
FHs indicate that active site residues are fully conserved (Fig. S3).
The electrostatic surface potential of LmFH-2 dimer reveals a

positively charged cavity located at the interface between N- and
C-terminal domains from each monomer (Fig. 1A). This cavity,
which leads to the active site, contains two S-malate molecules
(Fig. 3A), suggesting that access to the active site is favored by
the charge distribution within this region. The residues Asn-219,
Gln-225, and Tyr-222 coordinate to S-malate in this positive
cavity (Fig. 3B), and sequence comparison indicates that only
Tyr-222 is not conserved in class I FHs (Fig. S3). Movement of
the “swiveling” C-terminal domain, which has higher B-factors
than average for the rest of the structure (Fig. S5), may also
regulate access to the active site.
Experimental evidence suggests that class I FHs catalyze the

dehydration of S-malate to fumarate by a carbanion intermediate
(E1cB) mechanism (Fig. 2C), with the [4Fe-4S] cluster acting as
a Lewis acid (9). The first step is thought to be deprotonation at
C3 to form the carbanion, and surprisingly we find that a Thr
(Thr-467) is the closest residue to C3, with the distance from the
OH group of Thr to the substrate C3 carbon of 3.34 Å (Fig. 2B).
Although the hydroxide group of Thr would not be expected to
be deprotonated, this OH group is close to a water molecule and
to two Arg residues (Arg-421 and Arg-471), any of which could
accept the proton. The reaction also requires a catalytic acid to
protonate the C2 hydroxyl group of S-malate for elimination as

Fig. 2. LmFH-2 active site. (A) The residues of chains A and B are shown in white and light blue, respectively. The substrate S-malate, [4Fe-4S] cluster and
water molecule are shown in green, yellow (S) and orange (Fe), and cyan, respectively. Mesh represents the final 2Fo–Fc electron density map contoured at 1.5
σ level (blue) for S-malate and the [4Fe-4S] cluster. A stereoview is shown in Fig. S4. (B) Interactions between S-malate and the active site residues in LmFH-2.
The water molecule, C, N, O, Fe, and S atoms are shown in cyan, black, blue, red, orange, and yellow, respectively. The hydrogen bonds are shown as green
dashed lines. The distance between the OH group of Thr-467 to the S-malate C3 carbon is shown as a black dashed line. Image created with LigPlot (30).
(C) Proposed mechanism for class I FHs to catalyze the dehydration of S-malate to fumarate. The first step is thought to be deprotonation of S-malate C3 by a
catalytic base (B:). The closest residue to C3 is Thr-467 (3.34 Å), which is near a water molecule and two Arg residues (Arg-421 and Arg-471), any of which could
accept the proton. The residue Asp-135, and its hydrogen-bonding partner His-334/B, are ideally positioned to play a role as a catalytic acid to protonate the
C2 hydroxyl group of S-malate for elimination as H2O and subsequent formation of fumarate.
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H2O and subsequent formation of fumarate. Here, Asp-135 and
its hydrogen-bonding partner, His-334/B, are ideally positioned
to play this role.
The structure of class II FHs is well known to be a homote-

tramer, with each monomer consisting of three domains, and its
active site is formed by residues of three monomers (7), which is
different from that found in LmFH-2. In addition, class II FH
performs the reaction without a [4Fe-4S] cluster as a cofactor. Be-
cause of these differences in structure and cofactor use, along with
their essential metabolic roles, class I FHs appear to represent an
excellent target for structure-based drug design against NTD.

LmFH-2 Tunnel as a Ligand-Binding Site. Interestingly, the dimeriza-
tion of LmFH-2 reveals a deep cavity on the top of the protein
formed between N-terminal domains from both chains (Fig. 4 and
Movie S1). This cavity is ∼15 Å from the [4Fe-4S] cluster (Fig.
4B), and does not connect to the active site cavity described above,

which is at the bottom of the structure. This “top” cavity generates
a tunnel that goes through the entire protein and exhibits a vol-
ume of 1,168.5 Å3 (Fig. 4A). Although tunnels have been observed
in a number of enzyme structures, they commonly provide passage
from the protein surface to a buried active site (18) or provide a
route from one active site to another to protect a highly reactive
(19) or very valuable (20) reaction intermediate. None of these
functions would seem to apply here. Interestingly, analysis of the
difference electron density map in this tunnel reveals the presence
of ligands from the crystallization condition, such as polyethylene
glycol and malonate, as well as glycerol.
Malonate is a known inhibitor of porcine class II FH, although

not a strong one, with a Ki of 40 mM (21), and has been observed
bound in the active site of class II FH from Rickettsia prowazekii
(22). Given that inhibition of class I FHs by malonate has not
been examined previously, we investigated its ability to inhibit
the L. major class I FH. Our results demonstrate that malonate is

Fig. 3. Substrate access to the active site of LmFH-2. (A) Electrostatic surface potential of the substrate-binding pocket showing the access of another
S-malate (green) to the active site. The [4Fe-4S] cluster is shown in yellow (S) and orange (Fe). (B) Interactions between the second molecule of S-malate found
in the positive cavity and N-terminal domain residues. The hydrogen bonds are shown as dashed lines. Image created with LigPlot (30).

Fig. 4. LmFH-2 cavities. (A) View of the tunnel (pink), formed between the N-terminal domains, which goes through the entire protein. The ligands polyethylene
glycol (orange), glycerol (yellow), and malonate (cyan) are found in this tunnel. (B) View of the dimer surface, showing the entrance of the tunnel (pink) and
the binding pockets of malonate (cyan), S-malate (green), and [4Fe-4S] cluster [yellow (S) and orange (Fe)]. (C and D) The interactions between malonate
(cyan) and the residues of the binding pocket on the top of protein and in the dimer interface, respectively. Blue mesh represents the final 2Fo–Fc electron density
map contoured at 1.5 σ level for residues of LmFH-2. Green mesh represents the Fo–Fc difference electron density map contoured at 3.0 σ level for malonate.
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a weak inhibitor of LmFH-2, with an IC50 of 9.8 ± 0.3 mM
against S-malate and 5.6 ± 0.3 mM against fumarate (Fig. S6).
Consistent with this finding, we observe S-malate and not
malonate bound in the active site when both are present in the
crystallization buffer. Instead of being bound in the active site,
malonate occupies two different types of pockets within the
“top” cavity (Fig. 4B), one near the tunnel entrance (Fig. 4C)
and the other at the tunnel center near the dimer interface (Fig.
4D). The residues His-41, Lys-144, Glu-207, Ala-354, and His-
355 coordinate to malonate at a pocket near the tunnel en-
trance, and sequence comparison indicates that those residues
are not conserved within class I FHs. However, the malonate
bound near the dimer interface is coordinated by residues Gln-
195/A, Asp-197/A, and Glu-267/B, where Gln-195 and Glu-267
are conserved and Asp-197 is either Asp or Glu. Although it is
unclear if this interface binding site is the source of the weak
inhibition by malonate, the interface site does seem to be a
conserved small molecule binding site at an interesting position
in the structure.

Conclusion
The crystal structure of LmFH-2 represents an important step
toward the validation of the metabolically essential class I FH
enzymes as targets against leishmaniasis, Chagas disease, and
sleeping sickness. We are excited to find that this class I FH has a
fold that shares no resemblance to mammalian class II FHs or to
any other protein of known structure, thus representing a struc-
turally unique drug target. With a structure of class I FH finally in
hand, the catalytic mechanism can be interrogated and designing a
structure-based drug to combat these NTDs can begin.

Materials and Methods
Crystallization and Data Collection. Recombinant LmFH-2 was expressed in
E. coli T7 express and purified by nickel affinity chromatography, as described
previously (5). The purification of LmFH-2 was performed with 1 mM DTT in all
buffers at 4 °C in an MBraun anaerobic glovebox. Initial LmFH-2 crystallization
conditions were identified using a Mosquito robot (TTP Labtech) in a room-
temperature MBraun anaerobic glovebox, and optimized using a hanging-
drop vapor-diffusion method at room temperature in a Coy anaerobic
chamber. Drops were prepared bymixing 1 μL of protein solution (8.7–10mg/mL
in 50 mM Tris, pH 8.5, 150 mM NaCl, 1 mM DTT) and 1 μL of reservoir so-
lution [2–4% (vol/vol) tacsimate, pH 5 (Hampton Research), 12–14% (vol/vol)

polyethylene glycol (PEG) 3,350 (Hampton Research)], equilibrated against
400 μL of reservoir solution. Tacsimate is composed of a mixture of titrated or-
ganic acid salts (23), containing the substrate S-malate and the inhibitor malo-
nate, which resulted in a structure with both molecules bound without further
addition of these molecules to the crystallization buffer. After 1 d, brownish
needle cluster-like crystals were obtained. The optimization of the crystals was
performed using microseeding techniques (24) and ethanol [2.7% (vol/vol)] as an
additive. The crystals were transferred to a cryoprotectant solution [8% (vol/vol)
tacsimate, pH 5, 18% (vol/vol) PEG 3,350, 25% (vol/vol) glycerol], and flash-
cooled in liquid nitrogen in the Coy chamber. Data collection was performed by
an inverse-beammethod (Friedel mates were measured rotating the crystal 180°
every 15 frames with 1° oscillation and exposure time of 1 s) at the 24-ID-C
beamline of the Advanced Photon Source. Diffraction data were processed and
scaled using HKL2000 (25). The statistics are summarized in Table S1.

Structure Determination and Refinement. The crystal structure of LmFH-2 was
solved by iron-SAD. The positions of the one sulfur and eight iron sites per
functional dimer were determined and refined using phenix.autosol (26). A
partial model was built in Coot (27) using a 4 Å resolution experimental map
with a figure of merit of 0.488, followed by model building using phenix.
autosol to 2.7 Å resolution and figure of merit of 0.368. Native data from
200 to 2.05 Å were used for structure refinement and iterative rounds of
model building and addition of water molecules in Coot (27). Refinement in
phenix.refine (26) used noncrystallographic symmetry restraints, TLS (trans-
lation, libration, and screw), and positional and individual B-factor re-
finement, with S-malate and malonate geometry restraints generated by
phenix.elbow (26). The Ramachandran statistics are 97.4% in the most fa-
vored region and 2.6% in the allowed region. The final model contains 2
polypeptide chains, 2 [4Fe-4S] clusters, 4 S-malate molecules, 4 malonate
molecules, 8 glycerol molecules, 1 PEG molecule, and 772 water molecules
(Table S1). Figures were created with PyMol Software (28). The electrostatic
surface potentials were calculated using the Adaptive Poisson-Boltzmann
Solver (29) plugin implemented in PyMol, using default parameters.
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