Skip to main content
. 2016 Sep 15;7:1388. doi: 10.3389/fpls.2016.01388

Figure 2.

Figure 2

Mathematical models of vacuole volume dynamics. (A) Microscopic image of a single Beta vulgaris root vacuole under iso-osmotic conditions; scale bar = 10 μm. (B) The W model assumes that only water moves across the membrane of the vacuole, thus the only parameter is Pf. (C) The WNOV model also considers that only water moves across the membrane but part of the vacuole volume is not involved in the osmotic response (Vb). This model also has two parameters: Pf and Vb. (D) The general model for water flow considers that JV can be consequence of the combined effects of osmotic (Δosm) and hydrostatic (ΔP) driving forces. In the WME model, ΔP was determined by the elastic modulus of the membrane (ε) and the volume change (ΔV) of the vacuole, in a hypo-osmotic medium. This model has two parameters: Pf and ε. (E) The WS model considers that water and solute fluxes (JV and Js, respectively) are driven by the osmotic gradient (Δosm) and all the volume of the vacuole (Vi) is active. This model has two parameters: Pf and Ps. (F) The WSNOV model considers that besides the inactive volume Vb the internal mass of solutes (mi) can be modified by the solute flux (Js). This model has three parameters: Pf, Ps, and Vb. For a detailed description of these models see the text.