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Summary

Sustained attention requires the coordination of neural activity across multiple cortical areas in the 

frontoparietal network, in particular prefrontal cortex (PFC) and posterior parietal cortex (PPC). 

Previous work has demonstrated that activity in these brain regions is coordinated by neuronal 

oscillations of the local field potential (LFP). However, the underlying coordination of activity in 

terms of organization of single unit (SU) spiking activity have remained poorly understood, 

particularly in a freely-moving task with unconstrained network dynamics. We found that long-

range functional connectivity between anatomically connected PFC and PPC was mediated by 

oscillations in the theta frequency band. SU activity in PFC was phase-locked to theta oscillations 

in PPC; spiking activity in PFC and PPC was locked to local high-gamma activity. Together, our 

results support a model in which frequency-specific synchronization mediates functional 

connectivity between and within PFC and PPC of the frontoparietal attention network in the freely 

moving animal.
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Sellers et al. investigate the neural correlates of sustained attention in the frontoparietal network 

using electrophysiology in the prefrontal and posterior parietal cortices. They demonstrate that 

theta oscillations mediate synchronization of PFC and PPC in a task-dependent manner. Spiking 

activity was coordinated by local and long-range activity, relying on different frequencies.

State- and behavior-dependent modulation of cortical oscillations is ubiquitous in both 

humans and animal models (Buzsaki and Draguhn, 2004, Engel et al., 2001). The 

hierarchical organization of oscillatory activity is particularly important for inter-area 

organization (Lisman and Jensen, 2013). The synchronization of oscillations across brain 

regions has been suggested to underlie effective communication across neuronal groups 

(Fries, 2005, Sarnthein et al., 1998, Varela et al., 2001). Within neuronal ensembles, 

synchronization in the gamma frequency band is commonly found in activated networks and 

increases the strength of neuronal input to other regions (Fries, 2009). Oscillatory activity 

appears to coordinate neuronal spiking within and across multiple brain regions (Canolty et 

al., 2010). Such preferential spiking activity, organized according to the phase of frequency-

specific oscillations, is particularly important for the encoding of discrete information, such 

as different objects in memory (Siegel et al., 2009). When oscillatory coupling becomes 

pathologically strong or weak, local spike synchrony becomes perturbed and neuronal 

communication is disrupted (Voytek and Knight, 2015). However, we still do not have a 

clear understanding of the multiplexed organization of spiking and oscillatory activity within 

and across brain regions.

Visual attention is ideal for investigating the organization of intra- and inter-area interaction 

dynamics since it requires coordination of activity both within and across brain regions 

(Clayton et al., 2015, Posner and Petersen, 1990, Womelsdorf and Fries, 2007), potentially 

with frequency-specific structure. Here, we focus on sustained attention, which can be 

defined as the selective prioritization of the neural representations of a specific task for a 

continuous amount of time (Buschman and Kastner, 2015). The activation of a number of 

cortical (frontal, parietal, temporal, occipital) as well as subcortical (thalamic and midbrain) 

regions is commonly observed in attention task-related fMRI studies (Petersen and Posner, 

Sellers et al. Page 2

Cell Rep. Author manuscript; available in PMC 2016 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2012, Scolari et al., 2015, Langner and Eickhoff, 2013, Corbetta and Shulman, 2002). In 

particular, the frontoparietal attention network is activated during attention-demanding 

visuospatial tasks (Katsuki and Constantinidis, 2012). Limited work has shown that 

prefrontal cortex (PFC) and posterior parietal cortex (PPC) exhibit LFP synchrony in beta 

(22–34Hz) and gamma (35–55Hz) frequencies in the head-fixed non-human primate during 

top-down and bottom-up attention, respectively (Buschman and Miller, 2007). However, the 

neurophysiological correlates of sustained attention at the finer-time scale of organizing SU 

activity are less clear. Furthermore, little is known about the interaction dynamics of these 

areas during naturalistic freely moving behavior; traditional head-fixed paradigms preclude 

natural movement and impose an artificial state of limited behavior. To fill this gap, we 

investigated LFP oscillations and single unit (SU) activity and their relationship both within 

and between PFC and PPC in the freely moving ferret during a task that requires visual 

sustained attention, the 5-choice serial reaction time task (5-CSRTT) (Carli et al., 1983, Bari 

et al., 2008). There is growing evidence that the synchronized neuronal activity underlying 

low-frequency oscillations mediates long-range organization while neuronal activity 

contributing to higher-frequency gamma oscillations organizes local activity (von Stein et 

al., 2000, Kopell et al., 2000). It has not been fully elucidated if the same frequency structure 

applies to the fine-temporal scale of spiking activity organization across brain areas. Thus, as 

an extension of the aforementioned EEG and modeling findings, we hypothesized that local 

organization of spiking activity during sustained attention is mediated by high frequency 

activity, while long-range organization relies on low-frequency oscillations.

Results

Animals performed a sustained attention task, the 5-CSRTT, during simultaneous recording 

of LFP and spiking activity in PFC and PPC (Figure 1a, b, and d). In this self-paced task, 

animals initiated trials to start a five second sustained attention period, during which no 

stimuli were presented. Correct response of the animal touching the window where the 

stimulus was presented resulted in a water reward. Animals performed this task with high 

accuracy (Figure 1c, performance of Animal C; see Figure S1 for performance of other 

animals; mean percent correct trials across recording sessions ± std: Animal A = 81.8 

± 7.89; Animal B = 78.2 ± 9.39, Animal C = 78.9 ± 7.01). We focused on the time period 5 s 

prior to trial initiation to 7 s after initiation, which encompassed the five second sustained 

attention period of interest; subsequent analyses included only trials with correct behavioral 

responses in which the animal was facing the screen at the time of stimulus onset. For a 

subset of analyses, we also looked at neuronal activity aligned to correct touch. In total, we 

analyzed 42 sessions (Animal A = 7, Animal B = 16, Animal C = 19) with a total of 2418 

trials (mean number of correct trials per recording ± std: Animal A = 35.14 ± 7.47, Animal 

B = 50.88 ± 22.27, Animal C = 71.47 ± 9.06). Signals recorded on electrode arrays were 

spike sorted; we analyzed 458 single units in PFC (Animal A = 155, Animal B = 172, 

Animal C = 131) and 397 single units in PPC (Animal A = 193, Animal B =142, Animal C 

= 62).

The frontoparietal attention network in humans and monkeys exhibits rich anatomical 

connectivity (Szczepanski et al., 2013, Cavada and Goldman-Rakic, 1989). Since nothing is 

known about the frontoparietal attention network in the ferret, we conducted a separate 
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tracing study (n = 4 animals) to determine if PFC and PPC exhibit direct anatomical 

connectivity. We performed anterograde tracing using rAAV5-CaMKII-GFP injected into 

PFC (Figures 2a–c and Figures S2a–c) and retrograde tracing using CTB injected into PPC 

(Figures 2d–f and Figures S2d–f). Results from both of these tracing methods were in 

agreement and demonstrated direct anatomical connections from PFC to PPC. Recording 

locations were verified with histology (Figure S3), and correspond to the PFC and PPC 

locations from the tracing study.

Task-Modulated Spiking Activity and Spectral Power in Select Frequencies

We first investigated how spiking activity was modulated during the task (Figure 3). We 

found 86.7% of PFC units and 85.1% of PPC units were modulated during the peristimulus 

period (− 5 to 7 s relative to initiation) (Figure 3a left, percent of significantly task-

modulated PFC units for each animal shown in color: Animal A = 80.7%, Animal B = 

89.5%, Animal C = 90.1%; Figure 3b left, PPC units: Animal A = 77.2%, Animal B = 

94.4%, Animal C = 88.7%). The largest breakpoints for each significantly modulated unit 

indicate at what time the greatest change in firing rate occurred (Figures 3a and b, right).

Next, we looked for modulation of LFP spectral power during the task, defined as an 

increase or decrease of spectral power. The PFC spectra reflected 1/f properties with no local 

maxima (Figure 3c left, averaged across recording sessions for Animal C). Delta, theta, and 

alpha power were significantly lower following touch compared to both before and after 

initiation (ANOVA, delta: F(2 7392) = 174, p < 0.001; theta: F(2,7392) = 182.1, p < 0.001; 

alpha:(F(2,7392) = 19.6, p< 0.001); power was not different before and after initiation for 

any frequency band. There were no differences between before initiation, after initiation, and 

after touch in beta power (F(2,7392) = 0.12, p = 0.89) or gamma power (F(2,7392) = 0.6, p = 

0.55). Overall, all these differences were quite small.

In contrast, PPC exhibited a local peak in activity at 5Hz (theta) (Figure 3c right, averaged 

across recording sessions for Animal C; insets show example traces of LFP activity in the 

theta frequency band after initiation and after touch). Delta and theta power were both task 

modulated (ANOVA, delta: F(2, 7392) = 97.5, p < 0.001; theta: F(2, 7392) = 309.4, p < 

0.001). Delta and theta power were strongest after initiation, showing a 1.23% and 1.5% 

increase, respectively, from before initiation and weakest after touch. Alpha and beta power 

were stronger after touch compared to before and after initiation (alpha: F(2, 7392) = 167.1, 

p < 0.001; beta: F(2,7392) = 253.4, p < 0.001); there was no significant difference between 

before and after initiation. Gamma and high gamma (80–120Hz) power were modestly 

increased during the sustained attention period compared to baseline (0.7% and 0.6% 

increase, respectively), but there was no difference between after touch and either condition 

(F(2,7392) = 6.56, p = 0.001). Overall, changes in spectral power were very small during the 

task. Because of the spectral peak in theta and our original hypothesis, we chose to focus our 

subsequent investigation on the organization of local and long-range activity within the 

theta, gamma, and high gamma frequency bands.
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Effective Connectivity and Task-Modulated Theta Phase Synchronization between PFC and 
PPC

Having demonstrated that select LFP frequencies exhibit task-dependent modulation in 

power, we next asked if activity in PFC and PPC was coordinated within these frequency 

bands. To assess synchronization between these areas across time and frequency, we 

calculated the phase-locking value (PLV) (Lachaux et al., 1999) between simultaneously 

recorded channel pairs in PFC and PPC (mean number of electrode pairs for each recording 

± std: Animal A = 779.14 ± 131.76, Animal B = 683.53 ± 212.55, Animal C = 498.32 

± 221.31). PLV can be conceptualized as a metric assessing connectivity or phase 

synchronization between two brain regions. We found prominent 5Hz theta phase 

synchronization before trial initiation (−3 to −1 s relative to trial initiation) and after trial 

initiation (1 to 3 s relative to initiation), but absence of phase synchronization following 

correct touch response (1 to 3 s relative to touch). A momentary disruption in this between-

area communication was also evident at the time of trial initiation (−0.5 to 0.5 s relative to 

trial initiations) (Figure 4a, phase at 5Hz of example raw traces from a single channel pair; 

Figure 4c, significant PLV for Animal A across recordings; Figure S4). For all animals, 5Hz 

was the most prominent carrier frequency of between-region phase synchronization (Figure 

4b). The periods before initiation and after initiation showed the most prominent phase 

locking, and were not significantly different in strength (paired t-test, before initiation vs 

after initiation: t(41) = −0.29, p = 0.77). Strikingly, phase locking between PFC and PPC 

was abolished after touch (Figure 4d, paired t-test, before initiation vs after touch: t(41) = 

9.25, P < 0.001; after initiation vs after touch: t(41) = 7.94, p < 0.001). Additionally, 76% of 

recordings showed decreased PLV at 5Hz during initiation compared to before and after 

initiation (Figure 4e, paired t-test, before vs during: t(41) = 3.24, p = 0.002; after vs during: 

t(41) = 3.36, p = 0.002).

Average phase lags across all recordings (PFC phase minus PPC phase) were small for all 

three animals (Figure 4f, Mean phase lags in degrees before initiation: Animal A = 27.0, 

Animal B = 5.4, Animal C = −11.2; after initiation: Animal A = 24.2, Animal B = 8.4, 

Animal C = −5.92), indicating that there may be direct interactions between these regions 

rather than a common input to both regions. However, this is not conclusive given that the 

average phase lag was not consistently positive or negative across the three animals, and thus 

it is unclear which oscillation is leading the other.

To test for directionality in the connectivity between PFC and PPC, we calculated spectral 

Granger causality between these brain areas. We found evidence of bi-directional effective 

connectivity in the theta frequency band during the sustained attention period with no clear 

preference for one of the two directions (Figure 4g, left: mean spectral Granger causality 

averaged across all animals ± 1 SEM, t-test comparing directions t(82) = 0.38, p = 0.70). 

Interestingly, we also found evidence for effective connectivity in the beta frequency band, 

significantly stronger in the bottom-up direction (t(82) = −3.45, p < 0.001). During the 

period after touch, theta Granger causality was significantly weaker in both directions 

compared to the attention period (Figure 4g, right: t(82) = −3.57, p < 0.001 and t(82) = 

−5.45, p < 0.001). Granger causality in the beta frequency range was not different in the top-

down and bottom-up directions following touch (t(82) = −1.27, p = 0.21), but was 
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significantly weaker in the bottom-up direction after touch compared to after initiation (t(82) 

= 2.28, p = 0.03). Together, this provides further evidence that long-range communication 

during attention-demanding behavior between PFC and PPC relies on theta oscillations, and 

this effective connectivity is modulated according to task period.

Unidirectional Long-Range Theta Spike-LFP Phase Locking

Theta phase synchronization and Granger causality between PFC and PPC indicate that this 

low-frequency oscillation may serve as the substrate for long-range cortico-cortical 

communication in the state of sustained attention. To confirm that this rhythmic interaction 

also guides spiking activity, we next assessed if spiking activity across these brain areas was 

also organized by theta oscillations. Specifically, we tested if the time of spiking in one area 

was influenced by the phase of the theta oscillation in the other area by calculating time- and 

frequency-resolved spike-LFP phase locking (Liebe et al., 2012, Totah et al., 2013).

Single units in PFC exhibited a lower firing rate on average compared to SUs in PPC (mean 

± std: Animal A, PFC = 13.35 ± 8.64Hz, PPC = 16.61 ± 10.21Hz, t(346) = −3.17, p = 0.002; 

Animal B, PFC = 12.06 ± 9.45Hz, PPC = 17.72 ± 12.99Hz, t(312) = −4.46, p < 0.001; 

Animal C, PFC = 10.96 ± 7.30Hz, PPC = 17.81 ± 11.38Hz, t(191) = −5.05, p < 0.001). Only 

Animal A exhibited a difference in PFC firing rate before and after trial initiation (mean 

PFC firing rate before and after initiation ± std: Animal A, 12.81 ± 8.67Hz, 13.73 ± 8.73Hz, 

t(154) = −5.12, p < 0.001), whereas Animals B and C showed different firing rates in PPC 

before and after trial initiation (mean PPC firing rate before and after initiation ± std: 

Animal B, 16.26 ± 11.65Hz, 18.76 ± 14.11Hz, t(141) = −7.45, p < 0.001; Animal C, 16.37 

± 10.43Hz, 18.84 ± 12.21Hz, t(61) = −5.95, p < 0.001). In keeping with the phase 

synchronization and Granger causality in the theta frequency band between PFC and PPC, 

we found that units in PFC were phase locked to the theta oscillation in PPC (Figure 5a, 

schematic). As shown by an example unit from Animal A, the strength of spike-LFP phase 

locking was centered on a narrow band at 5Hz (Figure 5b); a polar histogram shows the 

distribution of phases of each spike (see Figure S5c for the distribution of preferred phases 

for all PFC units with significant spike-LFP phase locking to the 5Hz oscillation in PPC). Of 

the 449 PFC unit – PPC phase pairs analyzed (Animal A = 152, Animal B = 168, Animal C 

= 129), 30.5% exhibited theta spike-LFP locking (Animal A = 60.5%, Animal B = 13.7%, 

Animal C = 17.1%), as defined by significant theta spike-LFP phase locking for at least 20% 

of the trial (Figure 5c, fraction of significantly phase-locking units across time for Animal 

A; see Figures S5a–b for other animals). Interestingly, phase locking of PFC units to PPC 

phase did not exhibit any significant fluctuations in strength across the duration of the trial 

(ANOVA: F(2,728) = 0.41, p = 0.66). Furthermore, across all recordings there was no 

significant change in the fraction of units which exhibited spike-LFP phase locking 

(ANOVA, F(2,114) = 1.67, p = 0.19). There was weak correlation between firing rate and 

strength of spike-LFP phase locking, significant for two animals (correlation coefficients: 

Animal A = 0.17, p =0.03; Animal B = 0.09, p = 0.22; Animal C = 0.31, p < 0.001).

In contrast, there was no sizeable phase locking of PPC units to theta oscillations in PFC. Of 

the 393 PPC unit – PFC phase pairs analyzed (Animal A = 189, Animal B = 142, Animal C 

= 62), only 1.8% exhibited theta spike-LFP locking (Figures S5d–f; Animal A = 1.6%, 
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Animal B = 2.1%, Animal C = 1.6%). There was weak negative correlation between firing 

rate and strength of spike-LFP phase locking (correlation coefficients: Animal A = −0.22, p 

= 0.003; Animal B = −0.21, p = 0.01; Animal C = −0.35, p = 0.005). This unidirectional 

coupling of PFC spikes to the PPC theta phase is in contrast to our finding of bidirectional 

effectivity connectivity measured with Granger causality. This discrepancy may shed light 

on the differences in information contained in suprathreshold (spiking) vs. subthreshold 

(spectral power) signals.

Local Theta and High Gamma Spike-LFP Phase Locking in PFC

Having established the importance of theta oscillations for the long-range coupling of PFC 

and PPC, we next sought to investigate whether theta oscillations were also implicated in the 

organization of local processing within each brain area. In principle, both long-range and 

local processing could rely on the theta oscillation; however, an alternative possibility is that 

local and long-range synchronization are mediated by different frequencies. In order to 

disambiguate between these possibilities, we investigated within-area spike-LFP phase 

locking (phase and units from the same brain area, on neighboring electrodes) across a broad 

range of frequencies.

We found that both theta and broad high gamma (80–120Hz) are relevant for local 

organization of spiking activity in deep layers of PFC. An example unit exhibited strong 

spike-LFP phase locking at 5Hz (Figure 6a and b). Calculating spike-LFP phase locking 

with the despiked LFP showed similar locking at 5Hz (Figure S6a). See Figure S7c for the 

distribution of preferred phase of firing for all PFC units with significant spike-LFP phase 

locking to the 5Hz oscillation in PFC. Having established that theta oscillations contribute to 

both local and long-range organization of PFC spiking activity, we wanted to see if given 

units exhibited one or both organization schemes. Of all PFC units with significant spike-

LFP phase locking, 56% (n = 90) exhibited significant spike-LFP phase locking to both local 

theta oscillations in PFC and long-range oscillations in PPC, while 15% (n = 24) and 29% (n 

= 47) exhibited only local or long-range locking, respectively (Figure 6c).

Another example PFC unit illustrates spike-LFP phase locking broadly in the high gamma 

frequencies (Figures 6d and e). Again, the spike-LFP synchrony was not an artifact of bleed 

through spiking activity, as the same profile is evident when using despiked LFP for the 

calculation (Figure S6b).

At the group level, 447 PFC unit – PFC phase pairs were analyzed (Animal A = 152, Animal 

B = 168, Animal C = 127) and 25.5% percent exhibited theta spike-LFP locking (Animal A 

= 50.7%, Animal B = 10.1%, Animal C = 15.8%) and 57.5% to 72.9% exhibited high 

gamma spike-LFP locking in the 80–120Hz range (Animal A = 66.5% to 82.9%, Animal B 

= 48.8% to 60.7.%, Animal C = 58.3% to 77.2%) (Figure 6f, Animal A; see Figure S7a–b 

for other animals). In addition to a greater fraction of units being significantly phase-locked 

to theta and high gamma, the strength of spike-LFP phase locking was greater in these 

frequencies compared to alpha, beta, and gamma frequencies (Figure 6g, average strength of 

significant spike-LFP phase locking for Animal A). Spike-LFP phase locking to the theta 

oscillation was only weakly correlated to overall firing rates in one animal (Animal A, 

correlation coefficient = 0.18, p = 0.03).
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High Gamma Spike-LFP Phase Locking Locally in PPC

We next asked if phase-locking to the theta oscillation and high gamma activity is a general 

principle that is shared by PFC and PPC. To answer this question, we performed the same 

analysis as above but for PPC units. PPC units showed strong spike-LFP phase locking to 

high gamma phase; a much smaller subset of PFC units exhibited spike-LFP phase locking 

to the theta phase. Of the PPC unit – PPC phase pairs analyzed (Animal A = 189, Animal B 

= 142, Animal C = 64), 8.4% percent exhibited theta spike-LFP locking (Figure 7b, Animal 

C; see Figure S7d–e for other animals; Animal A = 9.0%, Animal B = 9.2%, Animal C = 

4.7%) while 58.0% to 70.0% exhibited high gamma spike-LFP locking in the 80–120Hz 

range (Animal A = 70.4% to 79.4%, Animal B = 43.7% to 55.6%, Animal C = 53.1% to 

73.4%). Similar to the example unit in PFC, spike-LFP phase locking across broad high 

gamma frequencies is apparent in an example PPC unit (Figure 7c). The relative fraction of 

units in PPC with local theta coupling differs from the local organization of PFC units.

Taken together, this work points to the coordination of low-frequency (theta) and high-

frequency (high gamma, 80–120Hz) activity in organizing spiking activity.

Discussion

We found that PFC and PPC exhibited effective connectivity and task-dependent 

synchronization in the theta frequency band selectively during a sustained attention task in a 

freely moving animal. PFC spiking was phase locked to local theta oscillations, local high-

gamma activity, and to long-range PPC theta oscillations. PPC spiking was primarily phase 

locked to local high-gamma activity. This suggests that overall regulation of neuronal 

processing during sustained attention is coordinated by a combination of local and long-

range activity, relying on different frequencies.

Relevance of PFC and PPC to Sustained Attention

Attention is a broad construct which has been defined as “the selective prioritization of the 

neural representations that are most relevant to one’s current behavioral goal” (Buschman 

and Kastner, 2015). Sustained attention, one facet of overall attention, involves focusing on 

one task for a continuous amount of time. The behavioral task in this study, the 5-CSRTT, 

includes aspects of the continuous performance task used in humans and has been used 

extensively in assessing sustained attention in animals (Robbins, 1998). We recorded from 

PFC in the rostral-most portion of the anterior sigmoid gyrus, similar to previous studies 

(Fritz et al., 2010) and the caudal portion of PPC located on the suprasylvian gyrus. This 

area of PFC in ferrets has been shown to have reciprocal connections with the mediodorsal 

nucleus of the thalamus (Duque and McCormick, 2010), and appears to be responsible for 

behaviorally-relevant selection of sensory stimuli (Fritz et al., 2010, Zhou et al., 2016). Our 

recording and tracer injection locations agreed with localization of PPC as previously 

defined in the ferret (Manger et al., 2002, Foxworthy and Meredith, 2011, Foxworthy et al., 

2013).

Through anterograde and retrograde tracing, we found that these areas in the ferret exhibit 

direct anatomical connections. In humans, direct frontoparietal connectivity assessed using 
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diffusion tensor imaging found that the strength of white-matter fibers is related to the 

efficiency of attentional selection in visuospatial tasks (Tuch et al., 2005). Taken together, 

our tracing results suggest that in ferrets, these regions of PFC and PPC may be homologous 

to aspects of the frontoparietal attention network in the non-human primate and human 

brains.

Extensive work in animals and humans has demonstrated the importance of the 

frontoparietal network, and in particular PFC and PPC, in mediating attention and cognitive 

control (Katsuki and Constantinidis, 2012). Inactivation of PFC in monkeys with muscimol 

injection resulted in a deficit in selective attention performance (Iba and Sawaguchi, 2003), 

and muscimol inactivation in both FEF (Wardak et al., 2006) and PPC (Wardak et al., 2004) 

resulted in deficits in visual attention. Lesion and imaging studies in humans have revealed 

that activation of frontal and parietal cortical areas is associated with performance on 

sustained attention tasks (Sarter et al., 2001, Kastner and Ungerleider, 2000). Our findings 

contribute to this body of work by elucidating similarities and differences in how activity in 

these brain areas is organized during sustained attention. The organization of activity across 

these areas not only provides further support of the importance of coordinated activation of 

these brain regions for mediating attentional processing, but provides further insight into the 

mechanism of such communication. For further discussion see the section Conceptual 

Model and Conclusions.

Cognitive Importance of Theta and High Gamma Oscillations

A framework for the role of cortical oscillations in sustained attention has recently been 

proposed: frontomedial theta oscillations mediate cognitive monitoring and control 

functions, low-frequency phase synchronization mediates communication across brain 

networks, gamma activity mediates excitation of task-relevant cortical areas, and alpha 

oscillations mediate inhibition of task-irrelevant cortical areas (Clayton et al., 2015). Our 

results provide further evidence for these organizing principles. We found task-modulated 

phase-locking in the theta band between PFC and PPC and evidence of bi-directional 

effective connectivity. Importantly, PLV between PFC and PPC was abolished following the 

behavioral touch response. Thus, phase locking between PFC and PPC appears to be 

behaviorally relevant as this communication mode is isolated to periods of the task leading 

up to and during sustained attention. Our Granger causality result further support this 

finding.

It should be noted that substantial work conducted in the frontoparietal network has found 

beta synchronization to play an important role in long-range synchronization mediating 

attention (Womelsdorf and Everling, 2015, Hipp et al., 2011, Gross et al., 2004). In this 

study, we found bottom-up effective connectivity from PPC to PFC in the beta frequency 

range using Granger causality, but not top-down connectivity; this form of communication 

was significantly weaker following correct touch. Continued work will be needed to clarify 

modes of long-range synchronization as a function of specific brain networks and behavioral 

demands.
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Organization of Spiking Activity by Oscillations

The organization of spiking activity and oscillations is critical for the effective integration of 

relevant task information. Compared to phase locking between PFC and PPC, it remains less 

apparent to what extent spike-LFP phase locking was functionally relevant in the attention 

task. We found that PFC units were phase-locked to the theta oscillation in both PFC and 

PPC, whereas PPC units were less prominently phase-locked to theta in PFC or PPC. This 

suggests that theta oscillations in PFC and PPC have different differential roles in organizing 

spiking activity; indeed, we found a local peak in PPC spectral activity in the theta band that 

increased during the sustained attention period, while PFC showed no such spectral peak or 

modulation. The lack of a theta peak in PFC could theoretically result in difficulty detecting 

spike-LFP phase locking because of the low-amplitude signal; however, we exclude this 

alternate explanation because strong local coupling was found between PFC spikes and PFC 

theta phase. It remains an outstanding question why fewer PPC units were phase locked to 

the local theta oscillation. While small, this subset of units may be serving an important 

function role. The activity of PPC units could be reflecting environmental sampling while 

the theta oscillation in PPC acts as a more global pacemaker, synchronizing with PFC to 

establish the PFC theta oscillation and guide spiking activity in PFC.

The emergence of theta as a fundamental rhythm for the coordination of activity across 

cortical areas may depend on the behavioral paradigm used. Most previous investigations of 

the electrophysiology of sustained attention required animals to be head-fixed; visual stimuli 

were presented and animals indicated trained responses by making or inhibiting saccades. 

These experiments provided excellent early insight into neural correlates underlying 

sustained attention. However, these experiments included fundamental shortcomings by 

restricting movement-related exploration. Head-fixation precludes natural movement and 

places the animal in an artificial state of limited behavior. In the present study, we 

implemented a sustained attention task in which the animals were freely-moving. Even in 

the context of a trained task, free movement allows for a broader range of behavioral actions 

and likely, underlying network dynamics. Therefore, the reported mechanisms of attentional 

processing likely more closely reflect neuronal processing during sustained attention in 

untrained everyday behavior. In particular, theta oscillations, which have previously been 

implicated in hippocampus for coordinating exploration and navigation, may have additional 

roles in neocortex for mediating attention in ethological tasks.

Conceptual Model and Conclusions

Taken together, our findings demonstrate that the simultaneous organization of spiking 

activity by multiple frequencies mediates local and long-range connectivity during 

cognitively demanding behavior. Theta oscillations mediated the long-range synchronization 

of PFC and PPC in a task-dependent manner. PFC exhibited local coupling of spiking 

activity to both theta and high gamma activity, while PPC spiking was primarily locally 

phase-locked to high gamma activity. PPC was more sensitive to task-modulation of spectral 

power than PFC. Given that PPC receives input from a number of sensory areas, it is not 

surprising that this region is more sensitive to salient sensory input compared to higher-order 

PFC. Interestingly, the phase synchronization of PFC and PPC was also transiently disrupted 

during the sensory signals. In general, theta activity in cortex may reflect connectivity in 
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absence of sensory input (e.g. a default mode network). During such states, PFC and PPC 

may synchronize in order to communicate about expectation, top-down allocation of 

resources, etc. The onset of sensory stimuli may induce a network state change in which 

PPC momentarily de-couples from PFC and allocates resources to the processing of relevant 

sensory cues. In support of such a model, PPC exhibited concentrations of SU structural 

break points, or significant modulation of firing rate, at these two behaviorally relevant time 

points. Taken one step further, this may also explain why fewer PPC units exhibited phase-

locking to the theta oscillation. PPC spiking activity may encode information about 

incoming sensory cues, rather than top-down expectation or program execution from PFC. 

In contrast, spiking in PFC was sensitive to bottom-up input from PPC, communicated 

through the phase of theta oscillations.

Experimental Procedures

Behavioral Task

See Supplemental Experimental Material for more details about procedures. All animal 

procedures were approved by the Institutional Animal Care and Use Committee of the 

University of North Carolina at Chapel Hill, and complied with guidelines set by the 

National Institute of Health. Experiments were conducted using spayed female ferrets 

(Mustela putorius furo, n = 3 behavior and electrophysiology, n = 4 for anatomical studies). 

A custom-built behavioral box was used for touchscreen implementation of the 5-choice 

serial reaction time task (5-CSRTT) (Bari et al., 2008)(Figure 1b).

Animals were trained and tested once daily on a 5 days on / 2 days off schedule. Animals 

were water restricted to enhance participation in the behavioral task. Animals initiated trials 

at the lick spout to trigger a 5 s delay period (‘sustained attention’). Following this, one of 

the five windows displayed a white square filling the response area for 3.5 s. A correct 

response was defined as touching this window during this 3.5 s stimulation period or the 2 s 

following.

Microelectrode Array Implantation Surgery

Animals were implanted with microelectrode arrays in both PFC and PPC. Aseptic surgical 

procedures were used, as previously described (Sellers et al., 2013, Sellers et al., 2015); also 

see Supplemental Experimental Procedures. Two small craniotomies were made to access 

the right hemisphere of PFC and PPC. 32-channel microelectrode arrays (tungsten 

electrodes oriented 4 x 8, 200μm spacing, low impedance reference electrode 1mm shorter 

on the same array) inserted into deep layers of cortex and secured using dental cement.

In Vivo Electrophysiological Recordings

Continuous electrophysiological data were acquired at a sampling rate of 20kHz. A 

motorized commutator was used to allow unencumbered animal movement during 

electrophysiology. Behavioral responses were recorded as digital inputs together with the 

electrophysiology to ensure proper synchronization of neuronal activity and behavior.
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Data Analysis

Trial initiation was used for alignment of trials (−5 to 7 s relative to trial initiation). The five 

seconds following initiation represent the sustained attention period. For a subset of 

analyses, we additionally looked at neuronal activity aligned to screen touch, ranging from 

−2 to 5 s relative to touch. We only analyzed trials with correct responses, in which the 

animal was facing the screen at the time of stimulus onset.

Spectral analysis was performed by convolving the LFP signals with a family of Morlet 

wavelets. Standard definitions of frequency bands were used for initial exploratory analysis 

(delta = 0.5–4Hz, theta = 4–8Hz, alpha = 8–12Hz, beta = 12–30Hz, gamma = 30–80Hz, high 

gamma = 80–120Hz). We found that the LFP spectra of all animals exhibited a pronounced 

peak at 5Hz, and thus used this frequency for subsequent theta analysis. We also found that 

each animal exhibited a local peak in or close to the gamma frequency range (29Hz, 34Hz, 

and 33Hz, respectively) in PPC during the sustained attention period; we thus centered a 

10Hz-wide band around this local peak for each animal for analysis of gamma power in 

PPC.

Spikes were sorted into putative single units using standard methods (Offline Sorter, Plexon 

Inc, Dallas, TX). A structural change test (Chow, 1960, Kimchi and Laubach, 2009) was 

used to assess if the SU firing rate was significantly modulated over the course of the 

peristimulus time period. Phase locking values (PLV) between LFP signals in the two brain 

regions were calculated as previously described (Lachaux et al., 1999, Liebe et al., 2012). 

Pairwise spectral Granger causality was calculated using the GCCA Toolbox (Seth, 2010) to 

test for effective connectivity between PFC and PPC from 0.5 to 50Hz. In order to assess the 

degree of phase-locking of single units as a function of time and frequency, we calculated 

spike-LFP synchrony according to methods previously described (Totah et al., 2013).

Tracing Studies

Two types of tracer studies were completed to establish the presence of direct anatomical 

projections from PFC to PPC. Anterograde virus, rAAV5-CamKII-GFP, was injected in PFC 

or retrograde tracer Alexa 488-conjugated cholera toxin subunit B (CTB) was injected in 

PPC (Conte et al., 2009).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• PFC and PPC exhibit task-dependent theta synchronization during 

sustained attention

• Frequency-specific local and long-range activity mediate sustained 

attention

• Spiking in PFC phase locks to local and long-range theta oscillations

• Both PFC and PPC single units phase lock to local high gamma activity
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Figure 1. Animals performed a sustained visual attention task during simultaneous 
electrophysiological recordings in prefrontal cortex and posterior parietal cortex
a) Top: The 5-CSRTT was a self-paced task; the animal initiated each trial at the lick spout 

starting a five-second sustained attention period, after which a stimulus appeared in one of 

five windows; correct responses resulted in delivery of a water reward. Bottom: 

Electrophysiological signals were continuously recorded to provide LFP and spiking activity 

information.

b) Behavioral chamber with five response windows on a touch screen at one end and a lick 

spout at the other end.

c) After training, animals performed at approximately 80% of trials correct per session. 

Animal C shown, see Figure S1 for other animals.

d) Raster plots of two single units each in PFC and PPC aligned to trial initiation show task-

modulation in firing rate. Units showed heterogeneous changes in firing rate across time.
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Figure 2. Anterograde and retrograde tracing demonstrate anatomical connectivity between 
PFC and PPC. See Figure S2 for additional animals
a) rAAV5-CamKII-GFP was injected in PFC for anterograde tracing (solid circle). 

Expression was assessed in PPC (dashed circle). Arrow indicates direction of anatomical 

connections elucidated.

b) GFP was injected in PFC at 27mm relative to caudal crest (rcc). Red square in 

neighboring Nissl stained section indicates location of fluorescent image on the right. 

Injection site in PFC shows robust labeling of cell bodies; green = GFP, blue = DAPI 

counterstain, ASG = anterior sigmoid gyrus, PRG = proreal gyrus.

c) Cytochrome oxidase stained neighboring section in PPC (13.5mm rcc). Red square 

indicates location of fluorescent image on the right. Projections in PPC exhibit GFP 

labeling, indicating direct anatomical connections from the injection site location; SSG = 

suprasylvian gyrus, LG = lateral gyrus.

d) CTB-488 was injected in PPC for retrograde tracing (solid circle). Expression was 

assessed in PFC (dashed circle). Arrow indicates direction of anatomical connections 

elucidated.

e) CTB-488 was injected into PPC. Red square in neighboring section stained for 

cytochrome oxidase indicates location of fluorescent image on the right.

f) PFC exhibits expression of CTB-488. Red square in neighboring section stained for Nissl 

indicates location of fluorescent image on the right.
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Figure 3. Task-dependent modulation of single unit spiking and spectral activity
a) Left: 86.7% of PFC units across all animals showed significant modulation during the 

peristimulus period (−5 to 7 s relative to trial initiation). Colored pie pieces indicate 

significantly modulated units for each animal, while gray pieces show units with non-

significant modulation. Right: Distribution of the largest breakpoint for each significantly 

modulated PFC unit; structural change in spiking activity was most prominent during the 

sustained attention period. Dashed lines indicate trial initiation and stimulus onset times.

b) Left: 85.1% of PPC units across all animals exhibited significant modulation during the 

peristimulus period. Colors as in (a). Right: In PPC, distribution of the largest breakpoint for 

each significantly modulated unit; structural change in spiking activity was most prominent 

immediately following trial initiation and at stimulus onset.
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c) Spectra shows average power before initiation (−5 to 0 s relative to initiation), after 

initiation (0 to 5 s relative to initiation), and after touch (0 to 5 s relative to touch). Left: PFC 

exhibited 1/f structure with little spectral modulation. Right: In PPC, a prominent 5Hz peak 

was evident before and after trial initiation, but not following touch. Insets show example 

LFP activity filtered in the theta frequency band.
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Figure 4. Effective connectivity and task-dependent synchronization between PFC and PPC at 
5Hz
a) LFP-LFP phase locking was used to assess synchronization between PFC and PPC. At 

behaviorally-relevant periods during the behavior task (before initiation = −3 to −1 s relative 

to initiation, during initiation = −0.5 s to 0.5 relative to initiation, after initiation = 1 to 3 s 

relative to initiation, after touch = 1 to 3 s relative to touch) phases in PFC and PPC were 

assessed for consistent differences. Here, the phase at 5Hz is shown for one pair of channels 

across trials.

b) PLV was highest at 5Hz.

c) Averaged for Animal A, phase locking between PFC and PPC was prominent before and 

after trial initiation, weakened during trial initiation and by stimulus onset, and effectively 

abolished following touch. See Figure S4 for other animals.
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d) Phase locking values before initiation (left) and after initiation (right) were significantly 

greater than after touch (p-values for paired t-test). Each dot represents one recording 

session.

e) Phase locking values before initiation (left) and after initiation (right) were significantly 

greater than during initiation (p-values for paired t-test).

f) The phase difference between PFC and PPC was near zero for all animals, both before 

initiation and after initiation. Plot shows proportion of recordings vs phase differences in 

degrees.

g) Pairwise spectral Granger causality was calculated on the median LFP in each brain area 

during the sustained attention period (left) and after touch (right). Bi-directional effective 

connectivity in the theta range and bottom-up effective connectivity in the beta frequency 

range were evident during the attention period. Both of these forms of communication are 

decreased in the period after touch. Lines represent mean across recordings, shaded areas 

represent ± 1 SEM.
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Figure 5. Spiking activity in PFC exhibited long-range phase locking to PPC 5Hz oscillation
a) Spike-LFP phase locking was used to test if theta phase organized spiking activity across 

areas. Schematic showing that only a unidirectional long-range relationship was found, 

between PPC theta phase and PFC spiking activity.

b) An example unit recorded in PFC exhibited phase-locking to PPC 5Hz activity. Polar plot 

shows histogram of preferred phase of firing (in degrees).

c) Combined across recordings for Animal A, spike-LFP phase locking was most prominent 

at a narrow band centered on 5Hz, with a large fraction of units exhibiting significant spike-

LFP phase locking. Spike-LFP phase locking was present throughout the duration of the 

trial, and did not exhibit task-dependent modulation in strength. See Figure S5 for other 

animals.
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Figure 6. Both theta and high gamma activity were involved in the local organization of spiking 
activity in PFC
a) Spike-LFP phase locking was calculated between the 5Hz oscillation and spiking activity, 

both in PFC.

b) An example unit recorded in PFC exhibited phase-locking to PFC 5Hz activity. The polar 

plot shows preferred phase of firing; same unit as Figure 5b.

c) PFC units exhibited local and long-range spike-LFP phase locking to the 5Hz oscillation. 

Venn diagram indicates the percentage of units across all animals which exhibited local 

locking to PFC phase, long-range locking to PPC phase, or both local and long-range 

locking.

d) Spike-LFP phase locking was calculated between high-gamma activity and spiking 

activity, both in PFC.

e) An example unit recorded in PFC exhibited phase locking to broad high-gamma activity.

f) Across recordings for Animal A, units were predominantly phase-locked to oscillations at 

5Hz and activity in the high gamma band.

g) Across recordings for Animal A, the average Rayleigh’s Z for significantly locked units 

(a measure of the strength of phase locking) was also highest for spike-LFP phase locking at 

5Hz and in the high gamma range.
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Figure 7. Spiking activity in PPC was coupled to high gamma activity
a) Spike-LFP phase locking was calculated between high-gamma activity and spiking 

activity, both in PPC.

b) Across recordings in Animal C, units were predominantly phase-locked to high-gamma 

activity. In contrast to PPC, no prominent spike-LFP phase locking was seen at 5Hz.

c) An example unit recorded in PPC exhibited phase locking to broad high-gamma activity.
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