
Neuronal Rap1 regulates energy balance, glucose homeostasis, 
and leptin actions

Kentaro Kaneko1, Pingwen Xu1, Elizabeth L. Cordonier1, Siyu S. Chen1, Amy Ng1, Yong 
Xu1,2, Alexei Morozov3,4, and Makoto Fukuda1

1Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 
Houston, TX 77030, USA

2Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, 
Houston, TX 77030, USA

3Unit on Behavioral Genetics, Laboratory of Molecular Pathophysiology, National Institute of 
Mental Health, National Institutes of Health, Maryland 20892, USA

4Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA

Abstract

The central nervous system (CNS) contributes to obesity and metabolic disease; however, the 

underlying neurobiological pathways remain to be fully established. Here we show that the small 

GTPase Rap1 is expressed in multiple hypothalamic nuclei that control whole-body metabolism 

and is activated in high-fat diet (HFD)-induced obesity. Genetic ablation of CNS Rap1 protects 

mice from dietary obesity, glucose imbalance, and insulin resistance in the periphery and from 

HFD-induced neuropathological changes in the hypothalamus, including diminished cellular leptin 

sensitivity and increased endoplasmic reticulum (ER) stress and inflammation. Further, 

pharmacological inhibition of CNS Rap1 signaling normalizes hypothalamic ER stress and 

inflammation, improves cellular leptin sensitivity, and reduces body weight in mice with dietary 

obesity. We also demonstrate that Rap1 mediates leptin resistance via interplay with ER stress. 

Thus, neuronal Rap1 critically regulates leptin sensitivity and mediates HFD-induced obesity and 

hypothalamic pathology and may represent a potential therapeutic target for obesity treatment.
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The central nervous system (CNS) has been long established as robust homeostatic systems 

for the maintenance of normal body weight and euglycemia (Coll et al., 2007; Dietrich and 

Horvath, 2013; Morton et al., 2006; Myers and Olson, 2012; Ryan et al., 2012). The crucial 

role of the CNS in the development of obesity is also becoming increasingly apparent with 

recent discoveries of obesity-susceptibility genes that are often associated with CNS 

functions (Locke et al., 2015). Obesogenic conditions such as high-fat diet (HFD) feeding 

cause these CNS homeostatic systems to shift toward positive energy balance, which 

ultimately leads to obesity (Ryan et al., 2012). However, the neural pathways that actively 

respond to HFD feeding and mediate adiposity under overnutrition remain incompletely 

characterized.

HFD leads to multiple, profound neuropathological changes in hypothalamic nuclei that 

control body weight (Konner and Bruning, 2012; Morton et al., 2006; Myers et al., 2010; 

Ryan et al., 2012). Hypercaloric feeding rapidly induces neuronal resistance to the actions of 

leptin, a powerful adipocyte-derived satiety hormone that maintains normal body weight and 

euglycemia (Frederich et al., 1995; Konner and Bruning, 2012; Morton et al., 2006; Myers 

et al., 2010; Ryan et al., 2012). Although the detailed mechanisms are still unclear, cellular 

leptin signaling in the CNS is clearly impaired in rodent models of HFD-induced obesity 

(Myers et al., 2012; Ryan et al., 2012). Thus, defective intracellular leptin signaling in the 

CNS has been proposed as an underlying cellular mechanism for leptin resistance. Signaling 

molecules that directly inhibit leptin signaling, including suppressor of cytokine signaling-3 

(SOCS-3) (Bjorbaek et al., 1998; Howard et al., 2004; Mori et al., 2004), protein tyrosine 

phosphatase 1B (PTP1B) (Bence et al., 2006; Cook and Unger, 2002; Zabolotny et al., 

2002), and T-cell protein tyrosine phosphatase (TCPTP) (Loh et al., 2011), have been 

identified as crucial mediators of leptin resistance. All of these factors are upregulated in the 

hypothalamus by HFD-induced obesity (Bjorbaek et al., 1998; Cook and Unger, 2002; Loh 

et al., 2011; Zabolotny et al., 2002). Moreover, neuron-specific deletion of these inhibitors 

protects against HFD-induced obesity as well as leptin resistance and insulin resistance 

(Bence et al., 2006; Howard et al., 2004; Loh et al., 2011; Mori et al., 2004). Thus, SOCS-3 
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and tyrosine phosphatases collectively contribute to the development of HFD-induced 

obesity. Obesity induced by HFD is also associated with ER stress and inflammation in the 

CNS. Recent studies suggest that HFD-induced ER stress and inflammation in the CNS 

impair hypothalamic control of body weight and glucose balance (Coll et al., 2007; Dietrich 

and Horvath, 2013; Morton et al., 2006; Myers and Olson, 2012; Ryan et al., 2012). 

Hypothalamic ER stress and inflammation are markedly increased by overfeeding and in 

multiple obesity models (De Souza et al., 2005; Ozcan et al., 2009; Zhang et al., 2008b). 

Pharmacologic or genetic induction of ER stress and/or inflammation in the CNS 

upregulates SOCS-3, PTP1B, and TCPTP expression and causes leptin resistance and 

obesity (Cakir et al., 2013; Hosoi et al., 2008; Zhang et al., 2008b). On the contrary, 

manipulations that alleviate hypothalamic ER stress or reduce hypothalamic inflammation 

ameliorate cellular leptin resistance and obesity in animals (Kleinridders et al., 2009; 

Milanski et al., 2009; Ozcan et al., 2009; Schneeberger et al., 2013; Zhang et al., 2008b). 

Although HFD feeding clearly elicits hypothalamic dysfunction, promoting obesity, the 

underlying molecular signaling pathways are poorly understood.

The Ras-like small GTPase Rap1 is a crucial regulator of multiple cellular processes, 

including adhesion, polarity, and proliferation, in non-neuronal cells (Gloerich and Bos, 

2011). In the CNS, Rap1 has diverse roles in an array of neuronal functions from neuronal 

excitability, synaptic plasticity, and neuronal polarity to memory and learning (Spilker and 

Kreutz, 2010). However, the contributions of CNS Rap1 to energy balance and glucose 

homeostasis are largely unknown. In the present study, we investigated the role of CNS 

Rap1 in the regulation of whole-body energy and glucose metabolism by producing and 

characterizing mice with targeted deletion of Rap1a and Rap1b, the genes encoding Rap1, 

selectively in forebrain neurons.

RESULTS

Loss of neuronal Rap1 protects against diet-induced obesity

We first investigated whether Rap1 is expressed in the hypothalamus. Consistent with 

previous work (Kim et al., 1990; Pan et al., 2008), quantitative real-time polymerase chain 

reaction (qRT-PCR) showed that Rap1a and Rap1b are expressed in various tissues, 

including the CNS, and that both mRNAs are abundant in the hypothalamus (Figure S1A). 

We further examined the hypothalamic distribution of Rap1 by immunohistochemistry 

analyses. Rap1 is expressed throughout the mediobasal hypothalamus, including in multiple 

nuclei that regulate whole-body metabolism such as the arcuate (ARC), ventromedial 

(VMH), and dorsomedial (DMH) nuclei (Figure S2A and Figure 1D). We then asked if CNS 

Rap1 is activated in HFD-induced obese mice. As shown in Figure S2B, the active (GTP-

bound) form of Rap1 is increased in the brain of HFD-induced obese mice compared with 

lean control mice. Total Rap1 levels were not changed in response to HFD (Figure 7A). 

These results and a previous study showing that Rap1 activity is increased in lean mice after 

acute HFD feeding (Fukuda et al., 2011) strongly suggest that Rap1 is involved in the 

metabolic responses to HFD feeding.

We thus explored whether CNS Rap1 contributes to diet-induced obesity and associated 

metabolic disturbances. To produce mice Rap1-null in the forebrain (Rap1ΔCNS) (Pan et al., 
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2008), we crossed double-floxed Rap1a and Rap1b (Rap1) mice to mice harboring the 

CaMKIIaCre driver, which express Cre recombinase in postnatal forebrain neurons in the 

CNS (Minichiello et al., 1999). We confirmed CNS-specific recombination of the floxed 

alleles (Figure 1A), forebrain (including hypothalamus) deletion of Rap1 mRNAs (Figure 

1B), and selective depletion of Rap1 protein from forebrain regions including the 

hypothalamus (Figure 1C). Rap1 protein levels were also significantly reduced in multiple 

hypothalamic nuclei (Figure 1D).

Using this Rap1ΔCNS mouse model, we examined if Rap1 has a role in the CNS regulation 

of energy and glucose homeostasis in vivo. Male Rap1ΔCNS and control male mice (the 

double floxed mice of Rap1a and Rap1b) were placed on a HFD starting at 4 weeks of age to 

test if loss of Rap1 protects against diet-induced obesity. The HFD-fed male Rap1ΔCNS mice 

showed markedly reduced body weight gain (Figure 2A), significantly lower adiposity 

(Figure 2E), and reduced serum leptin levels (Figure 2I) compared with controls. In contrast, 

Rap1ΔCNS and control male mice fed a normocaloric chow diet exhibited similar body 

weight, adiposity and serum leptin (Figures 2C, G and K). Female Rap1ΔCNS mice under 

HFD also demonstrated lower body weight and adiposity than female controls (Figures 2B, 

2D, 2F, 2H, 2J and 2L), suggesting no sexual dimorphism in Rap1 function. We used male 

mice only for subsequent experiments.

We then investigated the basis for the leaner phenotype of HFD-fed Rap1ΔCNS mice by 

directly assessing energy balance in open-circuit indirect calorimetry cages. Although body 

weight and adiposity of Rap1ΔCNS mice did not diverge from control animals after 2 weeks 

of HFD (Figure S3A and S3B), Rap1ΔCNS mice exhibited hypophagia (Figure 2M) 

associated with increased hypothalamic expression of anorexigenic neuropeptide POMC 

mRNA and decreased expression of orexigenic neuropeptide NPY and AgRP mRNAs 

(Figure 2S and Figure S5B). In contrast, no difference in energy expenditure (oxygen 

consumption, carbon dioxide production, locomotor activity, or thermogenesis) was 

observed between Rap1ΔCNS and control mice (Figures 2N–2Q). Notably, Rap1ΔCNS mice 

showed a lower respiratory quotient than controls, indicating the preferential use of fat as an 

energy source (Figure 2R). Thus, decreased food intake and preferential oxidation of fat as 

an energy substrate likely contributes to decreased adiposity in neuronal Rap1-null mice 

under hypercaloric feeding. In chow-fed lean mice, food intake (Figure S4A), energy 

expenditure (Figure S4B–4F) and mRNA levels of feeding-related hypothalamic 

neuropeptides (Figure S5A) did not differ significantly between genotypes. These findings 

suggest that CNS Rap1 plays a crucial role in mediating diet-induced body weight gain and 

adiposity.

Improved glucose balance and peripheral insulin sensitivity in Rap1ΔCNS mice

Consistent with the leaner body weight phenotype, Rap1ΔCNS mice displayed significantly 

lower levels of blood glucose and insulin than control animals under HFD feeding (Figures 

3A and 3B), suggesting that mice lacking Rap1 in the CNS have increased peripheral insulin 

sensitivity. Indeed, HFD-fed Rap1ΔCNS mice showed enhanced glucose tolerance (Figure 

3C) and improved insulin sensitivity (Figure 3D). This higher glucose-tolerant and insulin-

sensitive phenotype was also observed in age- and weight-matched Rap1ΔCNS cohorts 
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maintained on a normocaloric diet (Figures 3E–3H), suggesting that Rap1 deficiency in the 

CNS influences insulin/glucose balance regardless of body weight and adiposity. In further 

support of improved insulin sensitivity, insulin signaling was significantly enhanced in the 

liver, muscle, and fat of HFD-fed Rap1ΔCNS mice, as assessed by western blot analyses 

using phospho-specific antibodies to Akt and Gsk3β (Figure 3I), the central mediators of 

insulin signaling (Manning and Cantley, 2007). We also observed that hepatic insulin-

dependent phosphorylation of Akt was significantly increased in normal chow-fed 

Rap1ΔCNS mice (Figure S6). In agreement with enhanced hepatic insulin sensitivity, hepatic 

expression levels of the gluconeogenic genes phosphoenolpyruvate carboxykinase (Pepck) 

and glucose-6-phosphatase (G6pc) were significantly reduced in HFD-fed Rap1ΔCNS mice 

compared with HFD-fed controls (Figure 3J). Collectively, these findings suggest that in 

addition to its role in body weight regulation, neuronal Rap1 regulates glucose balance and 

peripheral insulin sensitivity.

Enhanced leptin sensitivity in neuronal Rap1-deficient mice

Mice with genetic ablation of neuronal Rap1 exhibit traits suggestive of enhanced leptin 

sensitivity, including decreased circulating leptin levels (Figure 2I), hypophagia (Figure 

2M), and altered levels of leptin-regulated hypothalamic neuropeptides (Figure 2S). We 

therefore tested whether Rap1 is required for the development of HFD-induced leptin 

resistance. Rap1ΔCNS and control mice were placed on HFD (60% fat) for 8 weeks, 

beginning at 2 months of age, to induce leptin resistance. We did not observe any significant 

difference in body weight (28.02 ± 0.71 g for Control vs. 27.61 ± 0.62 g for Rap1ΔCNS, n = 

8/group, P > 0.05, t-test), fat mass (4.76 ± 0.45 g vs. 3.45 ± 0.42 g, n = 8/group, P > 0.05, t-

test), or lean mass (20.82 ± 0.44 g vs. 21.72 ± 0.31 g, n = 8/group, P > 0.05, t-test) between 

the two groups after 8 weeks of HFD feeding (Figure S3C and S3D), probably because of 

the late-onset of HFD challenge. Using these age- and body weight-matched cohorts, we 

then assessed the anorectic response to leptin by injecting Rap1ΔCNS and control mice with 

leptin twice daily. Although control mice developed leptin resistance (Figures 4A and 4B), 

Rap1ΔCNS mice responded to leptin with body weight reduction and suppression of food 

intake (Figures 4A and 4B). Further, cellular leptin sensitivity, as demonstrated by leptin-

induced phosphorylation of STAT3, a marker of activated leptin signaling (Bates et al., 2003; 

Gao et al., 2004; Metlakunta et al., 2008; Vaisse et al., 1996), was significantly enhanced in 

Rap1ΔCNS mice but absent in controls under HFD condition (Figure 4C). Also, 

hypothalamic Socs-3 and Tcptp were significantly lower in Rap1ΔCNS mice than in controls 

(Figure 4D). In addition to its effect under a HFD diet, Rap1 deficiency potently enhanced 

leptin actions under normal caloric conditions (Figure S7). Therefore, deletion of CNS Rap1 
enhances cellular leptin signaling and protects against leptin resistance.

ESI-05 reverses leptin resistance in HFD-induced obesity

To assess the translational value of CNS Rap1, we investigated the effects of a well-

established selective inhibitor of Epac2, ESI-05 (Rehmann, 2013; Tsalkova et al., 2012). 

Epac2 is one of the two members of exchange protein directly activated by cAMP (Epac) 

that serves as GTP/GDP exchange factors for Rap1. Epac2 is predominantly expressed 

throughout the brain and in the adrenal gland in humans (Kawasaki et al., 1998) and in mice 

(Figure S1B). We infused leptin, the selective Epac2 inhibitor ESI-05, or both into the brains 
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of wild-type HFD-induced obese mice. Co-administration of ESI-05 markedly sensitized 

leptin-responsive neurons, as indicated by restoring leptin-induced suppression of food 

intake, reduction of body weight (Figures 5A and 5B), and phosphorylation of independent 

leptin signaling mediators STAT3 and S6K (Figures 5C and 5D). Notably, ESI-05 restored 

leptin sensitivity to a similar degree in normocaloric-fed lean mice receiving leptin alone 

(Figures 5A and 5B). To confirm Rap1 mediation of ESI-05 effects, we repeated these 

experiments in Rap1ΔCNS mice. Consistent with mediation by Rap1, ESI-05 did not enhance 

leptin sensitivity in Rap1ΔCNS mice (Figures 5E and 5F). Next, we investigated whether 

ESI-05 has this anti-obesity effect when centrally administered alone to HFD-induced 

hyperleptinemic and leptin-resistant obese mice. Central daily infusion of ESI-05 (0.2 nmol/

brain/day) significantly reduced body weight and food intake of HFD-induced obese mice 

(Figures 5G and 5H). In contrast, the body weight of vehicle-treated control obese mice 

exhibited no changes during the course of the experiment (Figures 5G and 5H). Thus, 

chronic administration of ESI-05 alone is indeed able to decrease the body weight of HFD-

induced obese mice (vehicle versus ESI-05, P < 0.05). Collectively, these findings 

demonstrate that Epac2 inhibition reverses leptin resistance and reduces body weight in 

HFD-induced obese mice.

Rap1 is required to meditate leptin resistance conferred by chemically-induced ER stress

We next sought to determine potential underlying mechanisms by which central Epac-Rap1 

signaling contributes to leptin resistance. Cellular leptin resistance can be caused by multiple 

mechanisms that include ER stress and hyperleptinemia (Frederich et al., 1995; Konner and 

Bruning, 2012; Morton et al., 2006; Myers et al., 2010; Ozcan et al., 2009; Ryan et al., 2012; 

Zhang et al., 2008b), which prompted us to explore potential interactions between Epac 

signaling and putative leptin–resistance-inducing factors. First, we modeled leptin resistance 

by treating organotypic brain slices with pharmacological agents that induce cellular leptin 

resistance. Similar to previous observations (Fukuda et al., 2011; Williams et al., 2014), 

leptin-induced phosphorylation of STAT3 was blocked by treatment with ER stress inducers 

tunicamycin (TU), thapsigargin, and dithiothreitol (Figure 6A and 6B), whereas leptin 

stimulated STAT3 phosphorylation in controls (Figure 6A and 6B). Strikingly, pretreatment 

with ESI-05, a selective Epac2 inhibitor (Tsalkova et al., 2012) abolished ER stress-induced 

leptin resistance in slices (Figure 6A and 6B). ESI-05 also blocked cellular leptin resistance 

induced by forskolin, which activates Epac-Rap1 signaling (de Rooij et al., 1998; Fukuda et 

al., 2011) (Figure 6A and 6B). ESI-05 had negligible effects on leptin resistance resulting 

from treatment with high-dose leptin (mimicking hyperleptinemia) (Figure 6A and 6B). 

ESI-05 alone did not stimulate leptin-dependent STAT3 phosphorylation (Figure 6B). To 

further confirm the effect of ESI-05 in vivo, we chemically induced ER stress in the brain of 

lean C57BL/6 mice by the injection of TU. TU treatment increased GTP-bound (active) 

Rap1 in brain (Figure 6C). Inhibition of CNS Epac2 prevented hypothalamic leptin 

resistance and Socs-3 induction triggered by centrally injected TU in mice (Figure 6D and 

6E), confirming our ex vivo findings. Interestingly, other key factors involved in leptin 

resistance such as negative regulators of leptin signaling (PTP1B and TCPTP) and a positive 

regulator, SHP2 (Zhang et al., 2004) remained unaltered (Figure 6E). These findings suggest 

that Epac2 participates in ER–stress-induced leptin resistance.
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Reciprocal connection between Rap1 and ER stress in the CNS under overnutrition

Because HFD-induced obese mice exhibited both increased CNS Rap1 activity (Figure 7A 

and Figure S2B) and ER stress (Ozcan et al., 2009; Won et al., 2009; Zhang et al., 2008b) 

(Figure 7B), we next investigated whether Rap1 is involved in cellular processes that 

mediate HFD-induced ER stress. To test this, we manipulated CNS Rap1 activity by either 

pharmacologic inhibition using ESI-05 or by brain-specific Rap1 deletion (in Rap1ΔCNS 

mice). Central delivery of ESI-05 into the brain of wild-type HFD-induced obese mice 

significantly suppressed elevated Rap1 activity in the CNS (Figure 7A). Treatment with 

ESI-05 also reversed the increased expression levels of ER stress marker genes (Xbp1s, 
Chop and Atf4) and elevated Il-6 and Socs-3 in the hypothalamus of HFD-induced obese 

mice (Figure 7B). In addition, ESI-05 significantly reduced hypothalamic phosphorylation 

of the core components of the unfolded protein response (UPR), PERK, and eIF2α (Walter 

and Ron, 2011) (Figure 7C). These responses were almost completely recapitulated in 

Rap1ΔCNS mice. We challenged Rap1ΔCNS mice and age- and body weight-matched controls 

with HFD for 4 weeks and measured hypothalamic expression levels of ER stress markers 

and Il-6. After 4 weeks of HFD feeding, there were no significant differences in body weight 

and adiposity between the two groups. Nonetheless, qRT-PCR revealed significant increases 

in ER stress markers (Chop, Edem, Atf4, and Grp94) and pro-inflammatory cytokine Il-6 in 

the hypothalamus of control mice after HFD challenge, whereas HFD failed to upregulate 

the classical markers of UPR activation and Il-6 in Rap1ΔCNS mice (Figure 7D). This 

suggests that Rap1 deficiency in the CNS prevents HFD induction of ER stress and pro-

inflammatory cytokine Il-6. In contrast, a reduction in ER stress with the chemical ER 

chaperone tauroursodeoxycholic acid (TUDCA) (Ozcan et al., 2006) restored Rap1 activity 

to normal levels and reduced ER stress markers (Figure 7E and 7F). Socs-3 was markedly 

reduced in the hypothalamus of TUDCA- (Figure 7G) and ESI-05– (Figure 7B) treated 

obese mice. These findings revealed a previously unrecognized mechanistic link between ER 

stress and Epac-Rap1 signaling in mediating hypothalamic leptin resistance.

DISCUSSION

Overnutrition is associated with reduced sensitivity to key metabolic hormones such as 

leptin and insulin, and insensitivity to these hormones is fundamental to the pathogenesis of 

metabolic disease. Although it is clear that the CNS participates in the biological responses 

to obesogenic conditions, the detailed neurobiological pathways remain unclear. In this 

study, we provide compelling genetic and pharmacological evidence that Rap1 in the CNS 

acts as a key component of the mechanistic pathway linking overnutrition to obesity and 

metabolic disorders. Mice with Rap1-deficiency in the CNS gained significantly less body 

weight and adiposity during HFD feeding compared with HFD-fed control mice and were 

resistant to HFD-induced systemic glucose imbalance, central leptin resistance, and 

peripheral insulin resistance. In contrast, Rap1ΔCNS mice have little effect on body weight, 

energy expenditure and hypothalamic regulation of feeding-related neuropeptides under 

normocaloric feeding. A specific role for Rap1 in metabolic dysfunction under a 

hypercaloric diet is further supported by current and previous findings that CNS Rap1 

activity in HFD-fed mice is higher than in chow-fed ones. The decrease in adiposity in HFD-

fed Rap1ΔCNS mice is likely due to hypophagia without changes in energy expenditure 
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because motor activity and thermogenesis were unchanged. This unaltered energy 

expenditure in Rap1ΔCNS mice compared with controls is in accord with a previous study 

reporting that leptin does not actually enhance energy expenditure in mice but only prevents 

the decrease associated with leptin-induced hypophagia (Halaas et al., 1997). Additionally, 

Rap1ΔCNS mice have a decreased respiratory quotient, suggesting a preferential use of fat as 

an energy source. This may also contribute to the reduced adiposity gain during HFD 

feeding. Consistent with reduced feeding behavior, Rap1ΔCNS mice also have reduced 

mRNA levels of the orexigenic neuropeptides AgRP and NPY and increased mRNA 

encoding the anorexigenic neuropeptide POMC. As shown in Figure1C and 1D, Rap1-

expressing cells were retained in the hypothalamus of Rap1ΔCNS mice (Rap1afl/fl, Rap1bfl/fl, 
CaMKIIa-Cre). This is consistent with previous reports showing that CaMKIIα expression 

in the forebrain is almost exclusively restricted to excitatory, glutamatergic neurons and 

absent from GABAergic neurons and non-neuronal cells (Liu and Murray, 2012). Thus, 

Rap1ΔCNS mice is a partial knockdown model of CNS Rap1 and could potentially 

underestimate the role of CNS Rap1 in controlling metabolism. Collectively, these results 

suggest that CNS Rap1 plays a critical role in the development of HFD-induced obesity, 

while suppression can protect against obesity and metabolic disruption by controlling food 

intake and maintaining leptin and insulin sensitivity.

In addition to its effect on energy balance, deletion of Rap1a and Rap1b from forebrain 

neurons resulted in markedly improved glucose tolerance, enhanced systemic insulin 

sensitivity, and increased cellular insulin signaling in skeletal muscle, adipose tissue, and 

liver under HFD feeding. Consistent with improved hepatic insulin sensitivity, Rap1ΔCNS 

mice exhibit reduced hepatic expression of the key gluconeogenic enzymes, PEPCK and 

G6pc. Improved systemic glucose balance appears to occur independently of Rap1 deletion-

induced suppression of body weight and adiposity because age-, body weight- and adiposity-

matched lean Rap1ΔCNS mice also displayed lower glucose levels and improved glucose and 

insulin tolerance under normocaloric diet feeding. Thus, these data suggest a previously 

unrecognized role for neuronal Rap1 in controlling peripheral insulin sensitivity without 

changes in body weight. The molecular mechanisms mediating this effect are unclear, but 

could involve greatly reduced hypothalamic SOCS-3 in neuronal Rap1-deficient mice, as 

selective SOCS-3 deletion in VMH SF1 neurons (Zhang et al., 2008a) or leptin receptor-

expressing cells (Pedroso et al., 2014) improves glucose and insulin tolerance and enhances 

peripheral insulin sensitivity without affecting body weight. However, additional 

mechanisms are likely involved because Socs-3 expression alone did not induce glucose 

imbalance in mice when expressed in leptin-responsive neurons (Reed et al., 2010).

The robust effects of forebrain-specific Rap1 deletion are likely mediated by enhanced 

hypothalamic sensitivity to leptin. Rap1ΔCNS mice fed a HFD have lower serum leptin levels 

than HFD-fed control mice, implying enhanced leptin sensitivity. We further demonstrate 

that pharmacological inhibition of CNS Rap1 signaling also improves multiple indices of 

leptin sensitivity and protects mice against development of leptin resistance. Rap1ΔCNS mice 

failed to develop resistance to the anorectic and cellular actions of exogenous leptin under 

HFD feeding conditions. Notably, Rap1ΔCNS mice displayed enhanced leptin actions 

regardless of diet type, further supporting the primary role of Rap1 in controlling neuronal 

leptin sensitivity. Although leptin sensitivity was increased in Rap1ΔCNS mice under both 
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normal chow and HFD conditions, we observed that food intake and preferential oxidation 

of fat were only affected in mice under hypercaloric feeding. The lack of the effects during a 

normocaloric diet may be due to the lower concentration of serum leptin levels in chow- fed 

mice, which may not be high enough to induce reduced food intake and increased 

preferential oxidation of fat even in Rap1 deficient mice. Remarkably, reduced Rap1 activity 

in the CNS, either by genetic deletion or by pharmacologic inhibition, resulted in 

suppression of two direct endogenous inhibitors of cellular leptin signaling, SOCS-3 and 

TCPTP, as well as inhibitory mechanisms such as inflammatory signals and UPR pathways. 

Because these inhibitors and inhibitory pathways appear to limit cellular leptin signaling 

under overnutrition (Bence et al., 2006; Bjorbaek et al., 1998; Cook and Unger, 2002; De 

Souza et al., 2005; Howard et al., 2004; Loh et al., 2011; Mori et al., 2004; Ozcan et al., 

2009; Zabolotny et al., 2002; Zhang et al., 2008b), reductions associated with Rap1 

deficiency likely account, at least in part, for enhanced leptin sensitivity in Rap1ΔCNS mice. 

These results collectively support our hypothesis that neuronal Rap1 is a major regulator of 

leptin sensitivity and acts as a mediator of leptin resistance in obesity.

One of the most important questions arising from this study concerns how overnutrition 

leads to the activation of Rap1 in the CNS. Rap1 can be activated (converted from the GDP- 

to GTP-bound form) by at least five distinct classes of guanine nucleotide exchange factors 

(GEFs) (Spilker and Kreutz, 2010). Previous studies reported that the GEFs Epac1 and 

Epac2 attenuate cellular leptin signaling in cultured cells and brain slices (Fukuda et al., 

2011; Sands et al., 2006). However, the biological significance of this effect remains 

controversial because while one study showed resistance to diet-induced obesity in Epac1-

null mice (Yan et al., 2013), another reported augmented diet-induced obesity and glucose 

imbalance in the Epac1 global-knockout mice (Kai et al., 2013). In contrast to this 

conflicting data on the role of Epac1 in the control of whole-body energy and glucose 

balance, our findings suggest that brain Epac2 is likely involved in Rap1 activation and its 

effects on hypothalamic functions in HFD-induced obesity. Interestingly, Rap1 activity is 

elevated in the brain of HFD induced obese mice, compared to that of normal chow fed-lean 

mice, in the absence of changes in the total protein levels of Rap1 (Figure 7A), Epac1 and 

Epac2 (Figure S2C), indicating that HFD activation of Epac-Rap1 signaling seems to be 

mediated via post-translational modification on Epac. Considering that Epac is directly 

activated by cAMP, one implication of this result is that Rap1 could be activated via G 

protein-coupled receptors (GPCRs) that act through either Gs or Gi to modulate the cAMP–

Epac pathway (Neves et al., 2002). Because CNS Rap1 activity is increased by HFD, it is 

interesting to speculate that a GPCR ligand is produced in response to HFD that links 

overnutrition to Rap1 activation in the CNS. Identification of such a circulating factor is a 

critical step for the development of agents that modulate CNS Rap1, possibly as 

pharmacological treatment for eating disorders, obesity, and metabolic diseases.

Our ex vivo studies revealed a previously unidentified link between Rap1 and ER stress, the 

relevance of which was substantiated in vivo. These findings imply that reciprocal 

interaction perpetuates CNS ER stress and Rap1 activation during overnutrition, 

subsequently leading to leptin resistance, and predict that inhibition of Epac-Rap1 signaling 

breaks this link. Suppression of CNS ER stress produces anti-obesity benefits (Hosoi et al., 

2014; Liu et al., 2015; Ozcan et al., 2009); therefore, suppression of Epac-Rap1 signaling 
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might also produce benefits by enhancing leptin sensitivity and improving energy balance. 

Our data strongly support this view. Central administration of ESI-05 to HFD-induced obese 

mice significantly reversed ER stress, expression of pro-inflammatory Il-6, and upregulation 

of the endogenous leptin inhibitor SOCS-3 in the hypothalamus. The effect of ESI-05 is 

sufficiently robust to restore leptin sensitivity to that of healthy lean mice. ESI-05 treatment 

is associated with prolonged weight loss maintenance even after treatment cessation. This 

distinguishing property of ESI-05 makes it more attractive as a potential anti-obesity 

therapy. While ESI-05 alone showed its effect within a few days after the onset of the 

treatment (Fig. 5G and H), an acute anorectic effect was only observed with ESI-05 plus a 

supraphysiological dose of leptin (5 µg). This may be due to differences in the concentration 

of leptin in the brain. Cerebrospinal fluid leptin concentration (< 0.5 ng/ml) was reported to 

be one to two orders of magnitude lower than serum levels (Schwartz et al., 1996). In 

addition, increasing the concentration of exogenous leptin in the brain causes a dose- and 

time-dependent decrease in body weight and food intake (Halaas et al., 1997; Rahmouni et 

al., 2002). Therefore, we speculate that the exogenous leptin given to the brain sensitized by 

ESI-05 causes a more robust and immediate reduction in body weight and food intake, than 

endogenous leptin. Nevertheless, it is important to note that ESI-05 alone caused a body 

weight reduction in HFD-induced obese mice. Apart from its action in the brain, Epac2 was 

reported to be involved in insulin secretion in pancreatic beta cells (Song et al., 2013; Zhang 

et al., 2009). Further studies will thus need to clarify whether systemic inhibition of Epac2 

affects whole body glucose balance. Additional evidence that Rap1 is the molecule that 

mediates the therapeutic benefit of ESI-05 comes from our experiments using Rap1ΔCNS 

mice. The lack of ESI-05 effects on leptin sensitivity in Rap1ΔCNS mice strongly suggests 

that the effect is via Rap1 and also rules out potential off-target effects of ESI-05. Most 

importantly, ESI-05 infusion alone causes weight loss in diet-induced obese and 

hyperleptinemic mice, likely by reversing leptin insensitivity associated with HFD-induced 

upregulation of SOCS-3. Collectively, these results demonstrate the potential of ESI-05 as a 

leptin sensitizer and provide insight into the promising, translational value of the Rap1 

pathway.

EXPERIMENTAL PROCEDURES

Mice and Diets

Mice were used for all experiments. C57BL/6 mice were obtained from the Jackson 

Laboratory. Rap1aloxp/loxp/Rap1bloxp/loxp mice were provided by Dr. Alexei Morozov (Pan 

et al., 2008). All genetically modified mice were backcrossed to C57BL/6 (Jackson 

Laboratories) background more than six times. Rap1ΔCNS mice were generated in the 

following breeding strategy: double floxed male mice of Rap1a and Rap1b were crossed to 

the female CaMKIIα Cre driver (line 159) (Minichiello et al., 1999). We used only female 

CaMKIICre to obtain cohorts since CaMKIICre is expressed in testis (Figure 1A) 

(Minichiello et al., 1999) and the male germline can produce offspring that carries the Cre 

allele in all tissues. From these matings, we produced mice with deletion of Rap1a and 

Rap1b in Cre-expressing neurons and control mice with floxed Rap1a and Rap1b genes. All 

mice were maintained on a 12:12 hr light-dark cycle condition and temperature-controlled 

environment with ad libitum access to water and normal diet (Pico Lab 5V5R) or high-fat 
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diet (60% kcal fat; Research diet, D12492). Care of all animals and procedures conformed to 

the Guide for Care and Use of Laboratory Animals of the US National Institutes of Health 

and were approved by the Institutional Animal Care and Use Committee of Baylor College 

of Medicine (AN-6076).

Physiological Measurements

Body weight was measured weekly. Blood samples were collected via saphenous vein from 

4-hour-fasted mice. Serum blood was isolated after centrifugation (5000 × g for 10 min) at 

4 °C and stored at − 80 °C. Blood glucose was measured by using One Touch Ultra Blood 

Glucose Meter. Plasma leptin and insulin were analyzed with Milliplex MAP Mouse 

Metabolic Hormone Magnetic Bead Panel Kit. Glucose tolerance tests were performed on 

overnight fasted mice. D-glucose (1.5 g/kg) was injected intraperitoneally and blood glucose 

was measured at indicated time periods. Insulin tolerance tests were performed on 4-hour-

fasted mice. Insulin (1 U/kg) was injected intraperitoneally and blood glucose was measured 

at indicated periods.

Body Composition and Energy Expenditure Measurements

Whole-body composition was measured using NMR imaging (EchoMRI). Body weight- and 

body composition-matched 5-week-old control and Rap1ΔCNS mice were fed on a high-fat 

diet. Two weeks later, metabolic assessment was performed at 7 weeks of age. Mice were 

first acclimatized to the metabolic cages and housed individually for 3 days before 

measurements were taken. Metabolic parameters, including O2 consumption, CO2 

production, respiratory exchange ratio, heat production, ambulatory activity and food intake, 

were determined by using the Columbus Instruments Comprehensive Lab Animal 

Monitoring System (CLAMS).

Leptin Sensitivity Test

Mice were singly housed and acclimatized for 1 week prior to the study. Body weight- and 

body composition-matched 15-week-old control and Rap1ΔCNS mice were placed on high-

fat diet for 8 weeks. Both groups were injected intraperitoneally with vehicle (Dulbecco’s 

PBS, dPBS, Sigma-Aldrich, D8537) twice a day (5 p.m. and 9 a.m.) for 4 consecutive days. 

Three days after the last vehicle treatment, mice were injected intraperitoneally with leptin 

(3 mg/kg, Harbor-UCLA Research and Education Institute) twice a day for 6 consecutive 

days. Food intake and body weight were measured daily. Similarly, we performed a leptin 

sensitivity test for ESI-05 treatment mice. I.c.v. surgery was carried out on mice fed a high-

fat diet and then they were singly housed. One week after the i.c.v. surgery, the mice were 

injected with vehicle, leptin (2 µg/mouse), ESI-05 (0.2 nmol/mouse) or leptin/ESI-05 twice a 

day. Body weight and food intake were measured daily.

Organotypic Brain Slice Culture

Hypothalamic slices were made essentially as described before (Fukuda et al., 2011). 

Briefly, C57BL/6 mice pups, 8–11 days old, were decapitated, and the brains were quickly 

removed. Hypothalamic tissues were blocked and sectioned in depth of 250 µm on a 

vibratome (VT1000S, Leica) in chilled Gey's Balanced Salt Solution (Invitrogen) enriched 
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with glucose (0.5%) and KCl (30 mM). The coronal slices containing the arcuate nucleus 

were then placed on Millicell-CM filters (Millipore, pore size 0.4 µm, diameter 30 mm), and 

then maintained at an air-media interface in MEM (Invitrogen) supplemented with heat-

inactivated horse serum (25%, Invitrogen), glucose (32 mM) and GlutaMAX (2 mM, 

Invitrogen). Cultures were typically maintained for 10 days in standard medium, which was 

replaced three times a week. After 10 days, the slices were used for experiments.

Cannula Implantation and Treatments

Mice were anaesthetized with isoflurane and positioned in a stereotaxic frame. The skull 

was exposed and a 26-gauge single stainless steel guide cannula (C315GS-5-SPC, Plastics 

One, Roanoke, VA, USA) was implanted into the third cerebral ventricles (−0.9 mm from 

the bregma, ±0.5 mm lateral, −2.5 mm from the skull). The cannula was secured to the skull 

with screws and dental cement. After i.c.v. cannulation, the mice were housed singly and 

given at least 1 week to recover. On experimental days, the mice were infused with 1 µL of 

each solution: vehicle (dPBS or dimethyl sulfoxide), leptin (2 µg/mouse), ESI-05 (0.2 nmol/

mouse, Axxora, BLG-M092-05), Leptin/ESI-05, Tunicamycin (TU, 10 µg/mouse, EMD 

Millipore, 654380), TU/ESI-05, or TUDCA (2.5 µg/mouse, EMD Millipore, 580549).

Detection of GTP-Rap1 by Rap1 Pull-down Assay

Rap1 pull-down assay was performed using the Active Rap1 Pull-Down and Detection Kit 

(Thermo Fisher Scientific) according to the manufacturer's recommendation. After brain 

samples were dissected out, samples were then snap frozen and subsequently stored at 

−80°C. Proteins were extracted by the provided lysis/wash/buffer with protease cocktail 

inhibitor and then lysates were centrifuged at 16,000 × g for 15 min at 4 °C. The protein 

concentration was determined with the BCA protein assay reagent (Pierce, 23225) with 

bovine serum albumin as standard. Equal amounts of protein were subjected to affinity 

precipitation of GTP-Rap1 by using the Active Rap1 Pull-Down and Detection Kit. The 

amount of Rap1 was assessed by performing Western blotting with provided antibody 

(1:1,000). To assess the levels of total Rap1 or β-actin, cell extract was directly applied to 

Western blotting without pull-down assay.

Statistics

The data are presented as mean ± SEM. Statistical analyses were performed using GraphPad 

Prism for a two-tailed unpaired Student’s t test, or one- or two-way ANOVA followed by 

post hoc Tukey’s, Bonferroni’s or Sidak's tests. P < 0.05 was considered to be statistically 

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The small GTPase Rap1 in the brain is activated in high-fat diet-

induced obesity

• Loss of neuronal Rap1 protects against diet-induced obesity and 

glucose imbalance

• Rap1 controls neural leptin sensitivity

• Brain Rap1 interacts with ER stress pathways in leptin resistance and 

obesity
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Figure 1. Validation of Rap1ΔCNS mice
(A) PCR genotyping analyses were performed from several tissues of Rap1ΔCNS and control 

(Rap1 floxed) mice. Cre-deleted alleles are detected only in hypothalamus, neocortex, and 

testis.

(B) Hypothalamic Rap1 mRNA levels were measured using qPCR analyses (n=3 per group).

(C) Rap1 Western blot and densitometric quantification of hypothalamic Rap1. β-Actin was 

used as a loading control (n=4 per group).
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(D) Representative images of brain slices from Rap1ΔCNS mice and control mice stained for 

Rap1. (Left) immunohistochemistry images. (Right) Quantification of 

immunohistochemistry.

*P<0.05, **P<0.01, ***P<0.001 compared to control mice based on t-tests in (B, C and D). 

Arcuate nucleus (ARC), ventromedial hypothalamus (VMH), dorsomedial hypothalamus 

(DMH). Scale bar, 200 µm. See also Figure S1 and S2.
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Figure 2. Loss of neuronal Rap1 protects against diet-induced obesity
(A–L) Weekly body weight of HFD-fed males (A) and females (B) (n=10–17 per group). 

Body composition in HFD-fed male (E) and female (F) mice at 20 weeks of age. Serum 

leptin levels in HFD-fed male (I) and female (J) mice at 24 weeks of age. The HFD was 

initiated at 4 weeks of age. Weekly body weight of normal chow-fed males (C) and females 

(D) (n=9–12 per group). Body composition in normal chow-fed male (G) and female (H) 

mice at 20 weeks of age. Serum leptin levels in normal chow-fed male (K) and female (L) 

mice at 24 weeks of age.
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(M–R) Metabolic profile of 2-week HFD-fed male Rap1ΔCNS mice (n=8 per group) on food 

intake (M), O2 consumption (N), CO2 production (O), heat production (P), ambulatory 

activity (Q), and respiratory exchange ratio (R) during 24 hour, dark, or light cycles. Note 

that mice at 7 weeks of age had comparable body weight (control: 23.41 ± 0.7g vs. 

Rap1ΔCNS: 23.07 ± 0.7g, P >0.05, t-tests), fat mass (control: 4.41 ± 0.7g vs. Rap1ΔCNS: 3.16 

± 0.2g, P >0.05, t-tests) and lean mass (control: 16.86 ± 0.4g vs. Rap1ΔCNS: 17.27 ± 0.5g, P 
>0.05, t-tests) at the time of the CLAMS study.

(S) Hypothalamic mRNA expression of the feeding-related neuropeptide genes. 

Hypothalami were collected from HFD-fed male mice at 28 weeks of age (n=6 per group). 

qPCR analyses were performed to measure mRNAs.

*P<0.05, **P<0.01, ***P<0.001 for Two-way ANOVA followed by Sidak's multiple 

comparisons tests in (A and B) or t-tests in (E, F, G, H, J, M, R and S). See also Figure S3, 

S4 and S5.
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Figure 3. Improved glucose homeostasis in Rap1ΔCNS mice
(A–D) Glucose homeostasis parameters of Rap1ΔCNS or control mice fed a high-fat diet for 

24 weeks (n=7–14 per group). Glucose (A), serum insulin levels (B), GTT (C) and ITT (D).

(E–H) Glucose profile of age- and body weight-matched lean cohorts (control: 21.23 

± 0.910 g vs. Rap1ΔCNS: 21.78 ± 0.78 g, P >0.05 based on t-tests) at 7 weeks of age (n=7–12 

per group). Glucose (E), serum insulin levels (F), GTT (G) and ITT (H).

(I) Cellular insulin sensitivity (n=4 per group). Western blot (Left) and quantification (Right) 
of Akt (Thr308) and GSK-3β (Ser9) phosphorylation in liver, fat and muscle 10 minutes after 
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a bolus injection of insulin (1 U/kg, i.p.) or saline into Rap1ΔCNS or control mice fed a HFD 

for 24 weeks.

(J) qPCR analysis of hepatic mRNA expression of genes encoding G6pc and Pepck of 24-

week HFD-fed Rap1ΔCNS mice (n=6 per group).

*P<0.05, **P<0.01, ***P<0.001 for t-tests in (A, B, E and J), Two-way ANOVA followed 

by Sidak's multiple comparisons tests in (C, D, G and H), or One-way ANOVA followed by 

Tukey's multiple comparison test in (I). See also Figure S6.
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Figure 4. Leptin sensitivity is increased in Rap1ΔCNS mice
(A and B) Male mice were maintained on a high-fat diet for 8 weeks and were injected with 

leptin (3 mg/kg, twice per day, i.p.) or vehicle during the indicated period. Body weight (A) 

and food intake (B) were measured every day. Age- and body weight-matched cohorts were 

used (n=8 per group).

(C) Leptin (3 mg/kg, i.p.) was administered to the indicated mice (n=3 per group). (Left) 
Representative immunohistochemistry images for pSTAT3. Scale bar, 100 µm. (Right) 
Quantification of immunohistochemistry.
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(D) Hypothalamic expression of genes involved in leptin resistance in Rap1ΔCNS and control 

mice. Hypothalami were collected from age-matched normal chow or 4 weeks HFD-fed 

male mice at 12 weeks of age (after high-fat diet feeding, control: 36.77 ± 1.0 g vs. 

Rap1ΔCNS: 34.59 ± 0.6 g, P>0.05 based on t-tests, after normal chow feeding, control: 32.06 

± 1.7 g vs. Rap1ΔCNS: 29.78 ± 1.3 g, P>0.05 t-tests) (n=4–5 per group).

*P<0.05, **P<0.01, ***P<0.001 for Two-way ANOVA followed by Bonferroni's multiple 

comparisons tests in (A and B) or One-way ANOVA followed by Tukey's multiple 

comparison test in (C and D). See also Figure S3 and S7.
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Figure 5. ESI-05 reverses leptin resistance in HFD-induced obese mice
(A and B) ESI-05 enhances leptin-induced body weight reduction (A) and food intake 

suppression (B). Leptin (2 µg) or vehicle was i.c.v. infused with or without ESI-05 (0.2 

nmol) to HFD-fed obese C57BL/6 mice (HFD for 5 months, n=8–10 per group) or lean 

normal chow-fed C57BL/6 mice (n=5 per group) (twice per day for 3 days).

(C) Western blot images (Top) and quantification (Bottom) of hypothalamic STAT3 (Tyr705) 

and S6K (Thr389) phosphorylation 1 hour after a bolus injection of leptin (2 µg, i.c.v.) or 
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saline into HFD-fed mice that received ESI-05 (0.2 nmol, i.c.v.) or vehicle 3 hours before 

leptin injection (n=5 per group).

(D) Representative immunohistochemistry images of hypothalamic pSTAT3. HFD-fed obese 

mice received ESI-05 (2 nmol, i.c.v.) or vehicle followed 3 hours later by i.c.v. injection of 

leptin (2 µg) for 1 hour. Scale bar, 100 µm.

(E and F) Effect of ESI-05 on leptin sensitivity in Rap1ΔCNS mice. Body weight change (E) 

and food intake (F). HFD-fed obese control or Rap1ΔCNS mice (HFD for 5 weeks, n=5–7 per 

group) received i.c.v. injections of leptin (2 µg) with or without ESI-05 (0.2 nmol) twice a 

day over 3 days.

(G and H) Effect of ESI-05 on body weight and food intake in HFD-induced obese mice. 

Body weight change (G) and food intake (H). HFD-fed obese C57BL/6J mice (HFD for 16 

weeks, n=10 per group) received i.c.v. injections of ESI-05 (0.2 nmol for Day 1–14, 1 nmol 

for Day 15–18), once a day.

*P<0.05, **P<0.01, ***P<0.001 for Two-way ANOVA followed by Tukey’s multiple 

comparison test in (A, B, E and F) or Sidak's multiple comparison test in (C, G and H).
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Figure 6. Rap1 mediates leptin resistance conferred by chemically-induced ER stress
(A) Effect of ESI-05 on multiple forms of leptin resistance in organotypic brain slices. The 

slices were incubated with either forskolin (Fsk, 20 µM), thapsigargin (Tg, 30 µM), 

tunicamycin (TU, 30 µM), dithiothreitol (DTT, 1 mM) or a high dose of leptin 

(Hyperleptinemia, 120 nM) in the presence or absence of ESI-05 (50 µM) for 6 hours, and 

then stimulated with leptin (120 nM, 60 min). Leptin-induced pSTAT3 are shown. Scale bar, 

100 µm.

(B) Quantification of hypothalamic pSTAT3 (n=3–21 per group) in organotypic brain slices.
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(C) Activation of brain Rap1 by chemically induced ER stress. Lean C57BL/6 mice were 

administered with Tunicamycin (10 µg, i.c.v.) for the indicated period (n=5–6 per group). 

Proteins were extracted from the treated brains and Rap1 activity was measured.

(D) ESI-05 blocks ER stress-induced leptin resistance in vivo. Tunicamycin (10 µg, i.c.v.) 

was injected with or without ESI-05 (0.2 nmol, i.c.v.) into the brain of lean C57BL/6 mice. 

Three hours later, leptin (5 µg, i.c.v.) was administered to the mice (n=4–5 per group). The 

hypothalami were collected at 60 min after leptin injection and subjected to Western blot 

analysis using pSTAT3 antibodies.

(E) Relative mRNA expression of Socs-3, Ptp1b, Tcptp and Shp2 in brains of the mice 

centrally receiving Tunicamicin (10 µg) with or without ESI-05 (0.2 nmol) for 4 hours 

(n=12–13 per group).

*P <0.05, **P<0.01, ***P<0.001 for One-way ANOVA followed by Tukey's multiple 

comparison test in (B, C, D and E).
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Figure 7. Blockade of Rap1 signaling in the CNS protects mice from HFD induction of 
hypothalamic ER stress and Il-6
(A) Western blot images (Left) and quantification (Right) of the amount of active form of 

Rap in the brain of lean mice or HFD-induced obese mice that received ESI-05 (0.2 nmol, 

i.c.v., twice a day for 3 days) or vehicle (n=10 per group).

(B) Relative mRNA expression of Socs-3, Ptp1b, Tcptp, Shp2, Il-6, Xbp1s, Chop, Edem, 

Atf4 and Grp94, in the hypothalamus of ESI-05-treated HFD-induced obese mice or lean 

control mice. Mice were maintained on a HFD or a normal chow for 33 weeks and received 

ESI-05 (0.2 nmol, i.c.v., twice a day) or vehicle for 3 days (n=9 per group).
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(C) Western blot images (Left) and quantification (Right) of SOCS-3, BIP, CHOP, eIF2α, 

PERK, β-Actin, and phosphorylated forms of eIF2α and PERK in the hypothalamus of 

HFD-induced obese mice that were given ESI-05 (0.2 nmol, i.c.v., twice a day for 10 days) 

or vehicle (n=7–10 per group).

(D) Relative mRNA expression of Il-6, Xbp1s, Bip, Chop, Edem, Atf4 and Grp94 in the 

hypothalamus of Rap1ΔCNS. Rap1ΔCNS or control animals were challenged with a HFD for 4 

weeks. Age- and body weight-matched cohorts were used (n=4–5 per group).

(E) Relative mRNA expression of Xbp1s, Bip, Chop, Edem, Atf4 and Grp94 in brains of the 

mice. The hypothalami were collected from HFD-fed obese or normal chow fed mice (HFD 

for 62 weeks, n=4–7 per group) that received vehicle or TUDCA (2.5 µg, i.c.v.) for 3 days. 

Hypothalamic mRNA levels were determined by qPCR analyses.

(F and G) A chemical chaperone decreased both Rap1 activity (F) and mRNA expression of 

Socs-3 (G) in the brain of HFD-induced obese mice. The brain samples were collected from 

HFD-fed obese or normal chow fed mice (HFD for 62 weeks, n=4–7 per group) that 

received TUDCA (2.5 µg, i.c.v.) for 3 days, and subjected to Rap1 assay and qPCR analyses.

*P <0.05, **P<0.01, ***P<0.001 for One-way ANOVA followed by Tukey's multiple 

comparison test in (A, B, D, E, F, and G) or t-tests in (C).
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