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Abstract

Identification of causative factors for common, chronic disorders is a major focus of current 

human health science research. These disorders are likely to be caused by multiple etiological 

agents. Available evidence also suggests that interactions between the risk factors may explain 

some of their pathogenic effects. While progress in genomics and allied biological research has 

brought forth powerful analytic techniques, the predicted complexity poses daunting analytic 

challenges. The search for pathogenesis of schizophrenia shares most of these challenges. We have 

reviewed the analytic and logistic problems associated with the search for pathogenesis. Evidence 

for pathogenic interactions is presented for selected diseases and for schizophrenia. We end by 

suggesting ‘recursive analyses’ as a potential design to address these challenges. This scheme 

involves initial focused searches for interactions motivated by available evidence, typically 

involving identified individual risk factors, such as candidate gene variants. Putative interactions 

are tested rigorously for replication and for biological plausibility. Support for the interactions 

from statistical and functional analyses motivates a progressively larger array of interactants that 

are evaluated recursively. The risk explained by the interactions is assessed concurrently and 

further elaborate searches may be guided by the results of such analyses. By way of example, we 
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summarize our ongoing analyses of dopaminergic polymorphisms, as well as infectious etiological 

factors in schizophrenia genesis to exemplify this approach.
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1. Introduction

Gene mapping research has illuminated the causes of rare monogenic conditions in humans 

[1] [2]. The challenge now is the search for prevalent chronic diseases such as cardiovascular 

diseases and obesity. The availability of the complete human genome sequence, its ongoing 

annotation, the public availability of DNA polymorphism data and the successful 

implementation of rapid, highly accurate and economical genotyping assays have all 

contributed to an explosion in our understanding of genetically complex traits and common, 

multi-factorial diseases. Nevertheless, daunting challenges remain.

The principal challenge is the evident complexity of the diseases and disorders of interest. 

Though many show familial segregation, simple Mendelian models appear insufficient to 

explain their inheritance. Though Mendelian laws can explain the inheritance of discrete 

traits elegantly, it has been debated whether they are applicable to quantitative variation in 

traits, as well as so called complexly inherited traits. Fisher [3] resolved this dilemma by 

suggesting that the correlation between related individuals for a quantitative trait could be 

explained by the cumulative, small-yet-discrete effects at a large number of genetic variants 

(loci). The resultant trait or phenotype imparted might be dichotomized by imposing an 

arbitrary threshold. This has evolved into a multi-factorial / polygenic threshold (MFPT) 

model for causation [4] [5]. The MFPT model proposes the presence of individual genetic 

risk factors of variable effect that may act discretely or interactively; environmental factors 

increase the variability of their expression. While the MFPT model has great explanatory 

power, defining the individual components and setting a threshold for a phenotype of interest 

can be difficult.

In the following sections, we initially review the analytic and logistical challenges in the 

search for etiology. Next, we provide selected examples of identified interactions in non-

psychiatric disorders. The evidence necessarily has to involve not only statistical evidence 

such as gene mapping studies, but also functional evidence from biological models. A 

summary of challenges posed by schizophrenia (SZ) follows. Published examples of 

interactions identified in SZ are then discussed. We end by arguing for an approach that we 

call ‘recursive analysis’ and provide examples from our ongoing work.

2. Analytic and logistical challenges in the search for etiology

If more than one etiological factor appears to cause a disease, two key questions arise in 

relation to pathogenesis. Foremost, do such factors act in isolation? If not, do they interact 

and in what manner? As the risk conferred by individual risk factors for common, 

etiologically complex disorders generally appears to be modest (odds ratios ~ 1.1–2.0), it 
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seems unlikely that such factors act in isolation. Therefore, interactions between risk factors 

envisaged in the MFPT model seem plausible. Such interactions can be conceptualized in 

the context of interactions between genetic risk factors (also called epistasis) and / or 

interactions between genetic and non-genetic or environmental risk factors (referred to here 

as G/E interactions). Further, the interactions need not be restricted to pairs of factors. 

Higher order interactions between numerous risk factors are likely.

The biological underpinnings for such interactions may be diverse and could occur at 

different levels. Thus, the interactions may reflect the impact of several risk variants within 

the same gene (e.g., variants in exons that impact the protein product may act in conjunction 

with variants that alter transcription), or they may occur across different genes (e.g., see 

chapter by Chang-Gyu Han and colleagues in this issue). The impact of such interactions 

may be reflected as alterations in activities of different cell types, by effects on different 

metabolic pathways or across different regions in the brain for neuropsychiatric disorders. 

Environmental factors may directly impact such processes or lead to epigenetic changes [6].

Regardless of the biological mechanisms, it is reasonable to assume that the interactions 

would be demonstrable statistically in appropriate samples of adequate size. Indeed, the 

statistical evidence is typically the starting point for delineation of the biological 

interactions. However, proving the interactions statistically using an agnostic approach is 

dogged by false positive (type I) and false negative (type II) errors. The former can be tested 

using appropriate corrections for multiple testing, and true positives validated by replicate 

studies. However, as the number of risk factors increase, the potential interactions and the 

analytic space also increase exponentially, posing challenges for detection. This is the so 

called ‘curse of dimensionality’. It imposes significant concerns related to type II errors 

given finite sample sizes. There is therefore a recurrent tradeoff between the difficulties of 

controlling type I errors and minimizing the type II error rate. When one considers 

interactions at a genome-wide level, this task can be daunting. Another concern is whether 

the individual risk factors have detectable statistical effects when analyzed in isolation. If 

such main effects are modified by another environmental or genetic variant, the power to 

detect the main effect may be reduced [7]. Furthermore, the interactions hamper efforts at 

replication, if the ascertainment schemes for replicate samples alter the impact or frequency 

of individual risk factors. Conventional statistical approaches that depend on hierarchical 

model building may fail to detect interaction effects in the absence of main effects [8].

3. Current approaches to identify epistasis

Traditional approaches include logistic regression, analysis of variance (ANOVA) and 

likelihood tests. Several novel approaches have been developed, such as multi-factorial 

dimensionality reduction (MDR), pattern recognition, neural network, cellular automata and 

genetic algorithm [9]. If two loci interact, then the interacting genotypes could be 

represented in a 3 × 3 matrix as shown in Figure 1. The cells are shaded to indicate the 

degree of risk contributed by the interactions between the genotypes. MDR utilizes a cross-

validation approach to evaluate the classification. It takes account of empty cells or reduced 

cell sizes that can occur with relatively small samples. This approach was initially 
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introduced for balanced case-control or balanced discordant sib pairs. Other investigators 

have extended this approach to family based designs [10] and to unbalanced samples [11].

Several modifications of this approach have been developed. One of them combines the 

strength of logistic regression and the MDR. The two genotype interactions are partitioned 

into two to three genotype classes based on presumed risk level using a fixed classification 

scheme. The number of cases and controls in each classification scheme at different risk 

levels are then calculated. Interactions are then reported using Pearson’s χ2 statistic [12].

Additional approaches may prove useful on larger datasets such as genome-wide association 

studies (GWAS). For example, MDR identifies multiple order interactions through an 

exhaustive search and evaluates the association between each interaction and the disease by 

cross-validations. The exhaustive nature of the approach may be more appropriate for 

smaller datasets. Similarly, logic regression infers a tree-based relationship between the 

disease status and a set of markers, and evaluates the detected associations by permutation 

tests. A Bayesian approach may be more appropriate in the GWAS setting [13]. Zhang and 

Liu propose a Bayesian Epistasis Association Mapping algorithm (BEAM), which uses a 

Markov chain Monte Carlo method to evaluate individual markers based on the current 

status of other markers iteratively, providing a posterior probability that a marker is 

individually or epistatically associated with disease. Simulations under different models 

suggest that the method may be particularly useful when the marginal effect of an individual 

locus is small. The Bayesian method can also detect epistasis when no marginal effect is 

present, unlike the stepwise logistic procedures [13].

It should be noted that none of these methods are likely to be successful if the risk variant/s, 

or highly correlated ‘surrogates’ are not included in the analyses. (The surrogates may be 

available due to linkage disequilibrium (LD), the non-random association between 

polymorphisms at the population level that occurs throughout the genome). The power of all 

these methods understandably declines if the LD between the risk loci and the surrogate or 

measured polymorphisms is modest. In addition, discrepancies between the frequency of the 

true risk allele and the frequency of the linked or correlated allele at the measured loci can 

have a substantial impact on the power to detect interactions. Increases in sample size can 

help improve power in these circumstances, but this may be a limiting factor.

Most epistatic interactions are examined in case-control sample setting. These models are 

powerful and provide comparative odds for risk for a given trait. However, careful selection 

of control sample of adequate power is essential. Further, variations in genetic backgrounds 

between cases and controls could alter the magnitude of the interactions. Therefore, some 

innovative methods focus on case-only designs. One such approach utilizes entropy-based 

statistics [14] [15]. The entropy is used to measure the uncertainly of random variables. Such 

a measure represents non-linear transformation of variables of interest. Non-linear 

transformation of genotype frequencies amplifies the difference between the equilibrium 

(independence) and non-equilibrium (interaction) states of the genetic locus system. The 

difference between genotype combination frequencies between the observed data and the 

one assuming no interactions reflect the change in the entropy measure for a given trait. The 

entropy-based statistic asymptotically follows a chi square distribution. This method was 
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recently used to suggest an interaction model for schizophrenia involving SNPs of NRG1, 
RGS4 and G72 [14]. A sequential forward selection procedure, where one SNP is added at a 

time may also be used to construct a genetic interaction network that shows the relative 

importance of a set of genetic loci on a clinical phenotype.

Association studies are designed to identify main effects of alleles across a potentially wide 

range of genetic backgrounds. To control for spurious associations, effects of the genetic 

background itself are often incorporated into the linear model, either in the form of sub-

population effects in the case of structure or in the form of genetic relationship matrices in 

the case of complex pedigrees. In this context, epistatic interactions between loci can be 

captured as interaction effects between the associated locus and the genetic background. 

Recently, Jannink developed genetic and statistical models to align the locus by genetic 

background interaction concept with more standard concepts of epistasis, when genetic 

background is modeled using an additive relationship matrix [16].

Epistatic interactions in quantitative traits

Logistic regression may be used to estimate epistatic variance for quantitative traits. In this 

situation, epistatic variance is partitioned into four orthogonal components, namely additive 

× additive, additive × dominant, dominant × dominant, and dominant × additive [17]. 

Another approach to test potentially non-additive multi-locus genotypes as predictors of 

quantitative trait is called the restricted partition method (RPM). RPM is a partitioning 

algorithm for examining multi-locus genotypes as (potentially non-additive) predictors of a 

quantitative trait. RPM is designed to detect qualitative genetic and environmental factors 

contributing to a quantitative trait. This method takes a multi-locus measured genotype 

approach and assesses the mean trait values for different multi-locus genotypes, thus 

examining the potential contributors to quantitative traits. Different mean trait values of 

multi-locus genotypes indicate that a locus or a combination of loci contribute to trait 

variation. This method may identify loci that contribute epistatically to a quantitative trait 

even when no single locus effects are observed [18]. The same approach may be used to 

examine gene-environment interactions, and in case-control datasets where quantitative trait 

values are replaced with 0's or 1's indicating control or case status [18]. A computationally 

more intense approach is the combinatorial partitioning method (CPM) that attempts to 

identify partitions of multi-locus genotypes that predict variations in quantitative traits. Each 

partition is examined for phenotypic similarity and the dissimilarity of partition means. This 

method can help identify the effect of combination of loci even when the main effect of 

individual loci cannot be detected.

Analytic software

Several freewares are available. The reader is directed to a dedicated web site for analytic 

tools and for comprehensive discussion of other analytic methods (http://www.epistasis-

list.org). For example, Genetic Association Interaction Analysis (GAIA) is a web-based 

application for testing for statistical interactions between loci. This tool is based on the 

widely used case-control study design for genetic association analysis and is designed so 

that non-specialists may routinely apply tests for interaction. GAIA allows simple testing of 

both additive and additive plus dominance interaction models and includes permutation 
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testing to appropriately correct for multiple testing. GAIA also helps in prioritizing the loci 

in large scale studies before epistatic interactions are examined (http://www.bbu.cf.ac.uk/

html/research/biostats.htm) [19].

4. Epistasis in genetically complex diseases

Several examples of persuasive interactions are available in the literature. An update list of 

published epistatic and G/E interactions is maintained by Drs Motsinger-Reif, and David M. 

Reif (http://www.epistasis-list.org). For example, an epistatic interaction between IL-13 and 

IL4Ralpha gene alleles for asthma has been noted in Dutch, as well as Chinese samples [20] 

[21]. Variations in triglyceride levels may be partly explained based on epistatic interactions. 

Interestingly, these interactions appear to be gender specific. In females, an interaction 

between ApoB and ApoE has been shown to be associated with triglyceride levels whereas 

in males it occurs between the ApoAI/CIII/AIV and the LDLR [22].

5. Epistasis in schizophrenia

A genetic etiology for SZ is widely accepted, but environmental factors necessarily need to 

be invoked [4]. The impact of genetic factors is likely to be substantial, with heritability 

estimates of 60–70% [23, 24] and sibling recurrence risk ratio, λs, estimated at 8–10 [25]. 

Segregation analyses, as well as linkage and association studies strongly suggest that the 

genetic liability may not be due to a single locus [26] [27]. Though earlier simulation studies 

suggested that the variation in liability could be explained by 3 – 4 loci [25], current 

analyses suggest a much larger number. The magnitude of risk conferred varies widely, from 

relatively modest odds ratios (OR) for common variants (~1.2) [28] to substantial risks due 

to relatively rare variants, such as copy number variations (CNVs) (~ 13) [29]; [30].

Complex behavioral traits such as hallucinations and delusions that are the hallmarks of 

schizophrenia can be construed as having their roots in higher order interactions of neural 

networks in the brain. Several neurotransmitters, neuromodulators, their receptors and 

transporters along with the enzymes that synthesize and catabolize them could interact at 

different levels, enabling ‘cross-talk’ between different neural networks. Genetic variations 

that quantitatively alter the expression or qualitatively alter the chemical structure of the 

products that may affect the function could conceivably be important from an etiological 

perspective. Interactions among these genetic variations could either accentuate or attenuate 

the impact of genetic factors on the biological systems that underlie the psychopathology of 

schizophrenia. Some of the epistatic interactions observed in schizophrenia are described 

below.

5.1. Dysbindin

The DTNBP1 gene that encodes dysbindin has been implicated in schizophrenia 

susceptibility by a series of independent genetic association and gene expression studies. 

Dysbindin is part of a protein complex, termed the biogenesis of lysosome-related organelles 

complex 1 (BLOC-1), the molecular components of which might be involved in the 

regulation of vesicular trafficking and dendrite branching. Using canonical correlation 

analysis (CCA) to perform gene-based tests of epistasis in schizophrenia, Morris et al [31] 
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examined other BLOC-1 genes (MUTED, PLDN, CNO, SNAPAP, BLOC1S1, BLOC1S2, 

and BLOC1S3). They observed a main effect of BLOC1S3. Epistatic interactions were also 

observed between DTNBP1 and MUTED, though the latter did not have a main effect.

Another study examined the interaction between DTNBP1, RGS4 and IL3 [32]. This study 

utilized a multi-factorial dimensionality reduction Pedigree Disequilibrium test (MDR-PDT) 

in an Irish family based sample, and MDR in an independent Irish case-control sample. 

Associations with single SNPs had been noted earlier at each of the three genes of interest in 

the same samples [33]. In the family based sample, a 3-locus interaction between IL3 SNP 

rs2069803, DTNBP1 SNP rs2619539, and RGS4 SNP rs2661319 was observed. In the case-

control sample, a 2-locus interaction was observed between IL3 SNP rs31400 and DTNBP1 
SNP rs760761. The different patterns of interactions were attributed to lower power in the 

case-control sample.

5.2. Dopaminergic genes

Tan and colleagues examined interactional effects of single nucleotide polymorphisms 

(SNPs) at Akt1 and catechol-O-methyl transferase (COMT) polymorphisms on prefrontal 

cortical function in schizophrenia [34]. They observed a main effect of Akt1 rs1130233 on a 

wide range of cognitive functions and fronto-striatal grey matter volume. In addition, an 

epistatic interaction of Akt1 with an exonic SNP of COMT (rs4680; val/met polymorphism) 

was observed on the prefrontal cortical activation. An epistatic interaction between allele A 

of rs1130233 and the val allele of COMT rs4580 was also observed on disproportionately 

inefficient prefrontal activation and reduced gray-matter volume of the prefrontal cortex.

5.3. DISC 1

Disrupted in schizophrenia 1 gene (DISC1) is disrupted in a t(1;11))q42.1;q14.3) 

translocation. In a large Scottish family, this gene segregates with schizophrenia, 

schizoaffective disorder and other psychiatric disorders [35]. DISC 1 is known to interact 

with several proteins such as NDEL1 and NDE1. Burdick et al reported an association 

between schizophrenia and a single haplotype block within NDEL1, but no significant 

association with individual SNPs at NDE1. They further found an epistatic interaction 

between NDEL1 SNP rs1391768 and DISC1 Ser704Cys. Further, an epistatic interaction 

was reported between DISC1 Ser704Cys and NDE1 rs3784859. These observations suggest 

epistatic interactions between DISC1, NDEL1 and NDE1 influences risk for SZ [36].

5.4. GABA & Dopamine

Postmortem brain studies have demonstrated reduced expression of glutamic acid 

decarboxylase 67 (GAD67), a key enzyme involved in the synthesis of γ-amino butyric acid 

(GABA). GAD-67 is encoded by GAD1. Straub et al reported an association of 8 of the 19 

SNPs on GAD1 were associated with schizophrenia only against the background of COMT 
Val/Val genotypes at rs4680, but not the other genotypes among patients [37]. Further, they 

observed statistical epistasis using unconditional logistic regression between two SNPs in 

COMT and SNPs in GAD1, suggesting a potential biological synergism leading to increased 

risk.
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5.5. Glutamatergic genes

The D-amino acid oxidase (DAO) signaling pathway has been implicated in the modulation 

of NMDA function in schizophrenia. Its catalytic activity depends on DAO activator 

(DAOA, formerly G72). Chumakov and colleagues first reported the association of 

DAOA/G30 with schizophrenia and a number of independent studies have since reported 

evidence of association between the DAOA and DAO genes and schizophrenia [38]. Though 

these associations have been questioned [39], an epistatic interaction was observed between 

the associated SNPs at DAOA (DAOA-M12, rs3916965) and DAO (DAO-M5, rs3918346) 

for schizophrenia risk (OR = 9.3) [40].

5.6. Glutamate and Dopamine

Functional MRI studies have pointed to the association between variants of COMT and the 

metabotropic glutamate receptor gene mgluR3 (GRM3) in regulating prefrontal activity. It 

was initially found that allele A of rs6465084 at GRM3 was associated with inefficient 

prefrontal processing of working memory and reduced NAA on 1H magnetic resonance 

spectroscopy [41]; [42] [43]. The combined effects of COMT and GRM3 were more 

pronounced on the prefrontal working memory processing. The GRM3 genotype earlier 

associated with suboptimal glutamatergic signaling was significantly associated with 

inefficient prefrontal engagement and altered prefrontal-parietal coupling against the 

background of COMT rs4680 (Val-homozygous genotype). Interestingly, a COMT rs4680 

Met-homozygous background appeared to ameliorate the ‘deleterious’ effects of the GRM3 
genotype on prefrontal processing [41].

The same group later reported epistatic interactions of certain COMT SNPs, including 

Val/Met (rs4680), rs2097603 and rs165599 with SNPs at RGS4, G72, GRM3, and DISC1 on 

prefrontal cortex processing efficiency. Three of five RGS4 SNPs (rs90387, rs951436 and 

rs2661319) did not have significant main effects, yet they showed a significant increase in 

risk in interaction with COMT SNPs. In addition, three SNPs on G72/G30 also showed 

significant interaction in the background of COMT variations. Similar observations were 

made on some SNPs on GRM3 and DISC1 [44].

5.7. Neuregulin

Neuregulin-1 (NRG1) was identified as a potential risk for schizophrenia in an Icelandic 

genome-wide linkage analysis [45]. Benzel et al, studied eight genes from NRG and erbB 
family of genes [46]. Out of the 365 tested single polymorphisms (SNPs) that spanned eight 

genes, significant epistasis was found with 42 SNPs (p< 0.05) among 396 schizophrenia 

cases and 1,342 blood bank controls. Gene-gene interactions in this study point towards 

three additional genes (NRG2, NRG3, and erbB1), which are expressed in the central 

nervous system, that play a role together in their association in schizophrenia.

5.8. Intermediate phenotypes

COMT and PRODH SNPs were examined for their associations with MRI morphometric 

measures in young patients with schizophrenia or schizoaffective disorder. A main effect of 

two non-synonymous SNPs at PRODH (rs2008720, rs450046 and rs372055) on frontal 

white matter reduction and one SNP on COMT (rs2097603) on superior temporal gyrus grey 
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matter was observed. Epistatic interactions were observed on the inferior frontal lobe white 

matter when COMT Val allele was indexed with PRODH (rs20086720) alleles (GT or TT) 

and compared with the rest of the patients [47]. Quantitative phenotypes such as pre-pulse 

inhibition (PPI) and morphometric measurements on MRI scans have also been examined 

for epistatic interactions. In a small sample of female patients, the magnitude of eye-blink 

response did not show either a main effect or interaction effects with DRD2 Taq Ia and the 

COMT Val158Met polymorphisms [48].

5.9. Interactions between genetic and environmental risk factors

A ‘geneenvironment’ interaction model was examined in relation to obstetric complications 

(OCs), a putative environmental risk factor for SZ and a set of selected schizophrenia 

candidate genes (AKT1, BDNF, CAPON, CHRNA7, COMT, DTNBP1, GAD1, GRM3, 
NOTCH4, NRG1, PRODH, RGS4, TNF-alpha). Following multivariate analyses, variants of 

four genes, namely AKT1 (three SNPs), BDNF (two SNPs), DTNBP1 (one SNP) and 

GRM3 (one SNP) showed significant evidence for interactions with OCs [49].

6. A proposed systematic strategy for investigating interactions between 

risk factors

The studies reviewed above in relation to schizophrenia have largely examined interactions 

between carefully selected sets of genes, motivated by current concepts of the neurobiology 

of schizophrenia. They have to be considered tentative at present, as systematic replication 

has not been attempted for the majority. Furthermore, corrections for multiple comparisons 

have not been applied consistently. Thus, it is quite possible that some of these interactions 

reflect stochastic variation. In the face of such daunting challenges, is there a reasonable 

expectation of detecting meaningful interactions, or demonstrating that epistasis explains a 

greater proportion of disease risk than the main effects of individual risk alleles? Two 

general approaches are available at present. The first involves agnostic searches of GWAS 

data. The second involves focused searches based on prior evidence.

Statistical evidence for interactions can be garnered from GWAS datasets. These analyses 

are particularly persuasive when the interacting loci themselves have significant main 

effects. If main effects are undetectable initially, ‘true’ espistatic effects may still be present 

between these loci, or unmeasured risk alleles in LD with them. However, the investigator 

may wish to keep in mind the possibility that risk alleles or appropriate surrogates were not 

analyzed in the initial dataset. Replicate analyses are necessary to validate the epistatic 

effects. Replication of initial results from large GWAS datasets may thus require even larger 

samples for validation. Novel designs have been suggested to modify the classical 

independent replication model, such as a multi-stage design followed by joint analyses for 

single SNPs [50]. Such designs may eventually be applied for analysis of epistatic 

interactions.

Alternatively, an incremental approach that we denote ‘recursive analysis’ may be used 

(Figure 2). In this approach, initial analyses are motivated by plausible interactions between 

plausible risk factors that individually appear to confer risk. This choice reflects an attempt 
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to increase likelihood of detecting interactions a priori. Replication is attempted only if 

statistically meaningful interactions are noted. If replicable interactions are noted, a search 

for plausible biological function follows. Satisfactory functional evidence for the 

interactions then motivates searches for further interactions based on available data. This 

approach will enable a solid foundation for a MFPT model for SZ. While appealing, this 

approach is critically dependent on convincing identification of risk factor/s. It has been 

difficult to validate particular candidate gene risk alleles for schizophrenia. Furthermore, 

such an approach may fail to detect interactions in which individual risk factors or alleles 

themselves do not have main effects.

It is worthwhile to emphasize the need to correct for multiple testing. Such corrections can 

be complex when one is testing epistatic interactions, and particularly when such tests are 

being conducted recursively on the same sample/s. Simulations may be helpful in this 

context (see ref 52). However, replication in an independent sample remains the most 

convincing way to ensure that ‘true’ associations are reported. On the other hand, it needs to 

be remembered that failure to replicate can be due to factors other than a false positive initial 

result, such as sample heterogeneity.

The recursive approach is not merely a variant of the ‘candidate gene’ scheme. For example, 

the initial association tests may stem from a prior linkage or GWAS analysis. Furthermore, 

our scheme extends beyond a simplistic candidate gene approach as it implicitly seeks to 

build on initial associations with single polymorphisms.

We have adopted the recursive approach for systematic studies of dopamine (DA) gene 

variation in SZ. Though a large number of studies have already been published without 

consistent results, our review suggested that most published studies were inadequate either 

because an insufficient number of polymorphisms were analyzed or because the samples 

used were underpowered to detect relatively small effects (OR ~ 1.5) [51]. We 

systematically investigated 18 DA genes in two independent samples and detected replicable 

interactions between four DA genes. Simulations suggested that the observed interactions 

were unlikely to occur by chance [52].

We have also used the recursive analysis approach to investigate G/E interactions. A 

substantial number of studies have suggested that infections, particularly during the prenatal 

period may confer risk for SZ [53]. Many of these studies have been inconsistent, 

presumably due to difficulties in documenting remote exposure to infectious agents using a 

cross-sectional design. We reasoned that the infectious risk factor hypothesis could be tested 

indirectly by comparing exposure among families with single affected and multiply affected 

individuals. Consistent with our predictions, exposure was more frequent among the latter 

[54]. It should be noted that these results do not prove causality per se. Intriguingly, our 

association studies of the HLA region revealed associations with SZ; the associations were 

more prominent among individuals with prior exposure to cytomegalovirus (CMV) [55]. 

Further fine mapping analyses revealed plausible pleiotropic associations at exonic 

polymorphisms of the MHC Class I polypeptide-related sequence B (MICB) gene [55]. 

Replicate studies are now in progress.

Prasad et al. Page 10

Brain Res Bull. Author manuscript; available in PMC 2016 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Conclusions

The etiology of common disorders like schizophrenia may be meaningfully explained on the 

basis of interactive risk conferred by an unknown number of risk factors. The identification 

and analyses of such factors poses difficult challenges, particularly when the identity and 

impact of individual factors is uncertain. Current agnostic searches based on GWAS datasets 

may provide important insights. We propose another rational method, called ‘recursive 

analyses’. This approach relies on systematic, step-wise interrogation of interactions 

between individual factors for which reliable a priori information is available. Both 

approaches have relative strengths and weaknesses. A combined approach that utilizes their 

relative strengths may ultimately provide the most convincing evidence.
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Figure 1. Genotypes at two epistatic loci
A, B indicate loci that are not in linkage disequilibrium. The subscripts indicate alleles at 

these loci. The shades indicate the differing risks imposed by combinations of genotypes, 

with darker shades referring to higher risk.
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Figure 2. 
Model for recursive analysis
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